Theory CZH_UCAT_Limit_Product
section‹Products and coproducts as limits and colimits›
theory CZH_UCAT_Limit_Product
imports
CZH_UCAT_Limit
CZH_Elementary_Categories.CZH_ECAT_Discrete
begin
subsection‹Product and coproduct›
subsubsection‹Definition and elementary properties›
text‹
The definition of the product object is a specialization of the
definition presented in Chapter III-4 in \<^cite>‹"mac_lane_categories_2010"›.
In the definition presented below, the discrete category that is used in the
definition presented in \<^cite>‹"mac_lane_categories_2010"› is parameterized by
an index set and the functor from the discrete category is
parameterized by a function from the index set to the set of
the objects of the category.
›
locale is_cat_obj_prod =
is_cat_limit α ‹:⇩C I› ℭ ‹:→: I A ℭ› P π + cf_discrete α I A ℭ
for α I A ℭ P π
syntax "_is_cat_obj_prod" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ <⇩C⇩F⇩.⇩∏ _ :/ _ ↦↦⇩Cı _)› [51, 51, 51, 51, 51] 51)
translations "π : P <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_obj_prod α I A ℭ P π"
locale is_cat_obj_coprod =
is_cat_colimit α ‹:⇩C I› ℭ ‹:→: I A ℭ› U π + cf_discrete α I A ℭ
for α I A ℭ U π
syntax "_is_cat_obj_coprod" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ >⇩C⇩F⇩.⇩∐ _ :/ _ ↦↦⇩Cı _)› [51, 51, 51, 51, 51] 51)
translations "π : A >⇩C⇩F⇩.⇩∐ U : I ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_obj_coprod α I A ℭ U π"
text‹Rules.›
lemma (in is_cat_obj_prod) is_cat_obj_prod_axioms'[cat_lim_cs_intros]:
assumes "α' = α" and "P' = P" and "A' = A" and "I' = I" and "ℭ' = ℭ"
shows "π : P' <⇩C⇩F⇩.⇩∏ A' : I' ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_obj_prod_axioms)
mk_ide rf is_cat_obj_prod_def
|intro is_cat_obj_prodI|
|dest is_cat_obj_prodD[dest]|
|elim is_cat_obj_prodE[elim]|
lemmas [cat_lim_cs_intros] = is_cat_obj_prodD
lemma (in is_cat_obj_coprod) is_cat_obj_coprod_axioms'[cat_lim_cs_intros]:
assumes "α' = α" and "U' = U" and "A' = A" and "I' = I" and "ℭ' = ℭ"
shows "π : A' >⇩C⇩F⇩.⇩∐ U' : I' ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_obj_coprod_axioms)
mk_ide rf is_cat_obj_coprod_def
|intro is_cat_obj_coprodI|
|dest is_cat_obj_coprodD[dest]|
|elim is_cat_obj_coprodE[elim]|
lemmas [cat_lim_cs_intros] = is_cat_obj_coprodD
text‹Duality.›
lemma (in is_cat_obj_prod) is_cat_obj_coprod_op:
"op_ntcf π : A >⇩C⇩F⇩.⇩∐ P : I ↦↦⇩C⇘α⇙ op_cat ℭ"
using cf_discrete_vdomain_vsubset_Vset
by (intro is_cat_obj_coprodI)
(
cs_concl cs_shallow
cs_simp: cat_op_simps cs_intro: cat_cs_intros cat_op_intros
)
lemma (in is_cat_obj_prod) is_cat_obj_coprod_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf π : A >⇩C⇩F⇩.⇩∐ P : I ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_obj_coprod_op)
lemmas [cat_op_intros] = is_cat_obj_prod.is_cat_obj_coprod_op'
lemma (in is_cat_obj_coprod) is_cat_obj_prod_op:
"op_ntcf π : U <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ op_cat ℭ"
using cf_discrete_vdomain_vsubset_Vset
by (intro is_cat_obj_prodI)
(
cs_concl cs_shallow
cs_simp: cat_op_simps cs_intro: cat_cs_intros cat_op_intros
)
lemma (in is_cat_obj_coprod) is_cat_obj_prod_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf π : U <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_obj_prod_op)
lemmas [cat_op_intros] = is_cat_obj_coprod.is_cat_obj_prod_op'
subsubsection‹Universal property›
lemma (in is_cat_obj_prod) cat_obj_prod_unique_cone':
assumes "π' : P' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e :→: I A ℭ : :⇩C I ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : P' ↦⇘ℭ⇙ P ∧ (∀j∈⇩∘I. π'⦇NTMap⦈⦇j⦈ = π⦇NTMap⦈⦇j⦈ ∘⇩A⇘ℭ⇙ f')"
by
(
rule cat_lim_unique_cone'[
OF assms, unfolded the_cat_discrete_components(1)
]
)
lemma (in is_cat_obj_prod) cat_obj_prod_unique:
assumes "π' : P' <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : P' ↦⇘ℭ⇙ P ∧ π' = π ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C I) ℭ f'"
by (intro cat_lim_unique[OF is_cat_obj_prodD(1)[OF assms]])
lemma (in is_cat_obj_prod) cat_obj_prod_unique':
assumes "π' : P' <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : P' ↦⇘ℭ⇙ P ∧ (∀i∈⇩∘I. π'⦇NTMap⦈⦇i⦈ = π⦇NTMap⦈⦇i⦈ ∘⇩A⇘ℭ⇙ f')"
proof-
interpret π': is_cat_obj_prod α I A ℭ P' π' by (rule assms(1))
show ?thesis
by
(
rule cat_lim_unique'[
OF π'.is_cat_limit_axioms, unfolded the_cat_discrete_components(1)
]
)
qed
lemma (in is_cat_obj_coprod) cat_obj_coprod_unique_cocone':
assumes "π' : :→: I A ℭ >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e U' : :⇩C I ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : U ↦⇘ℭ⇙ U' ∧ (∀j∈⇩∘I. π'⦇NTMap⦈⦇j⦈ = f' ∘⇩A⇘ℭ⇙ π⦇NTMap⦈⦇j⦈)"
by
(
rule cat_colim_unique_cocone'[
OF assms, unfolded the_cat_discrete_components(1)
]
)
lemma (in is_cat_obj_coprod) cat_obj_coprod_unique:
assumes "π' : A >⇩C⇩F⇩.⇩∐ U' : I ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : U ↦⇘ℭ⇙ U' ∧ π' = ntcf_const (:⇩C I) ℭ f' ∙⇩N⇩T⇩C⇩F π"
by (intro cat_colim_unique[OF is_cat_obj_coprodD(1)[OF assms]])
lemma (in is_cat_obj_coprod) cat_obj_coprod_unique':
assumes "π' : A >⇩C⇩F⇩.⇩∐ U' : I ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : U ↦⇘ℭ⇙ U' ∧ (∀j∈⇩∘I. π'⦇NTMap⦈⦇j⦈ = f' ∘⇩A⇘ℭ⇙ π⦇NTMap⦈⦇j⦈)"
by
(
rule cat_colim_unique'[
OF is_cat_obj_coprodD(1)[OF assms], unfolded the_cat_discrete_components
]
)
lemma cat_obj_prod_ex_is_iso_arr:
assumes "π : P <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ ℭ" and "π' : P' <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : P' ↦⇩i⇩s⇩o⇘ℭ⇙ P" and "π' = π ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C I) ℭ f"
proof-
interpret π: is_cat_obj_prod α I A ℭ P π by (rule assms(1))
interpret π': is_cat_obj_prod α I A ℭ P' π' by (rule assms(2))
from that show ?thesis
by
(
elim cat_lim_ex_is_iso_arr[
OF π.is_cat_limit_axioms π'.is_cat_limit_axioms
]
)
qed
lemma cat_obj_prod_ex_is_iso_arr':
assumes "π : P <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ ℭ" and "π' : P' <⇩C⇩F⇩.⇩∏ A : I ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : P' ↦⇩i⇩s⇩o⇘ℭ⇙ P"
and "⋀j. j ∈⇩∘ I ⟹ π'⦇NTMap⦈⦇j⦈ = π⦇NTMap⦈⦇j⦈ ∘⇩A⇘ℭ⇙ f"
proof-
interpret π: is_cat_obj_prod α I A ℭ P π by (rule assms(1))
interpret π': is_cat_obj_prod α I A ℭ P' π' by (rule assms(2))
from that show ?thesis
by
(
elim cat_lim_ex_is_iso_arr'[
OF π.is_cat_limit_axioms π'.is_cat_limit_axioms,
unfolded the_cat_discrete_components(1)
]
)
qed
lemma cat_obj_coprod_ex_is_iso_arr:
assumes "π : A >⇩C⇩F⇩.⇩∐ U : I ↦↦⇩C⇘α⇙ ℭ" and "π' : A >⇩C⇩F⇩.⇩∐ U' : I ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : U ↦⇩i⇩s⇩o⇘ℭ⇙ U'" and "π' = ntcf_const (:⇩C I) ℭ f ∙⇩N⇩T⇩C⇩F π"
proof-
interpret π: is_cat_obj_coprod α I A ℭ U π by (rule assms(1))
interpret π': is_cat_obj_coprod α I A ℭ U' π' by (rule assms(2))
from that show ?thesis
by
(
elim cat_colim_ex_is_iso_arr[
OF π.is_cat_colimit_axioms π'.is_cat_colimit_axioms
]
)
qed
lemma cat_obj_coprod_ex_is_iso_arr':
assumes "π : A >⇩C⇩F⇩.⇩∐ U : I ↦↦⇩C⇘α⇙ ℭ" and "π' : A >⇩C⇩F⇩.⇩∐ U' : I ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : U ↦⇩i⇩s⇩o⇘ℭ⇙ U'"
and "⋀j. j ∈⇩∘ I ⟹ π'⦇NTMap⦈⦇j⦈ = f ∘⇩A⇘ℭ⇙ π⦇NTMap⦈⦇j⦈"
proof-
interpret π: is_cat_obj_coprod α I A ℭ U π by (rule assms(1))
interpret π': is_cat_obj_coprod α I A ℭ U' π' by (rule assms(2))
from that show ?thesis
by
(
elim cat_colim_ex_is_iso_arr'[
OF π.is_cat_colimit_axioms π'.is_cat_colimit_axioms,
unfolded the_cat_discrete_components(1)
]
)
qed
subsection‹Small product and small coproduct›
subsubsection‹Definition and elementary properties›
locale is_tm_cat_obj_prod =
is_cat_limit α ‹:⇩C I› ℭ ‹:→: I A ℭ› P π + tm_cf_discrete α I A ℭ
for α I A ℭ P π
syntax "_is_tm_cat_obj_prod" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ <⇩C⇩F⇩.⇩t⇩m⇩.⇩∏ _ :/ _ ↦↦⇩C⇩.⇩t⇩mı _)› [51, 51, 51, 51, 51] 51)
translations "π : P <⇩C⇩F⇩.⇩t⇩m⇩.⇩∏ A : I ↦↦⇩C⇩.⇩t⇩m⇘α⇙ ℭ" ⇌
"CONST is_tm_cat_obj_prod α I A ℭ P π"
locale is_tm_cat_obj_coprod =
is_cat_colimit α ‹:⇩C I› ℭ ‹:→: I A ℭ› U π + tm_cf_discrete α I A ℭ
for α I A ℭ U π
syntax "_is_tm_cat_obj_coprod" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ >⇩C⇩F⇩.⇩t⇩m⇩.⇩∐ _ :/ _ ↦↦⇩C⇩.⇩t⇩mı _)› [51, 51, 51, 51, 51] 51)
translations "π : A >⇩C⇩F⇩.⇩t⇩m⇩.⇩∐ U : I ↦↦⇩C⇩.⇩t⇩m⇘α⇙ ℭ" ⇌
"CONST is_tm_cat_obj_coprod α I A ℭ U π"
text‹Rules.›
lemma (in is_tm_cat_obj_prod) is_tm_cat_obj_prod_axioms'[cat_lim_cs_intros]:
assumes "α' = α" and "P' = P" and "A' = A" and "I' = I" and "ℭ' = ℭ"
shows "π : P' <⇩C⇩F⇩.⇩t⇩m⇩.⇩∏ A' : I' ↦↦⇩C⇩.⇩t⇩m⇘α'⇙ ℭ'"
unfolding assms by (rule is_tm_cat_obj_prod_axioms)
mk_ide rf is_tm_cat_obj_prod_def
|intro is_tm_cat_obj_prodI|
|dest is_tm_cat_obj_prodD[dest]|
|elim is_tm_cat_obj_prodE[elim]|
lemmas [cat_lim_cs_intros] = is_tm_cat_obj_prodD
lemma (in is_tm_cat_obj_coprod)
is_tm_cat_obj_coprod_axioms'[cat_lim_cs_intros]:
assumes "α' = α" and "U' = U" and "A' = A" and "I' = I" and "ℭ' = ℭ"
shows "π : A' >⇩C⇩F⇩.⇩t⇩m⇩.⇩∐ U' : I' ↦↦⇩C⇩.⇩t⇩m⇘α'⇙ ℭ'"
unfolding assms by (rule is_tm_cat_obj_coprod_axioms)
mk_ide rf is_tm_cat_obj_coprod_def
|intro is_tm_cat_obj_coprodI|
|dest is_tm_cat_obj_coprodD[dest]|
|elim is_tm_cat_obj_coprodE[elim]|
lemmas [cat_lim_cs_intros] = is_tm_cat_obj_coprodD
text‹Elementary properties.›
sublocale is_tm_cat_obj_prod ⊆ is_cat_obj_prod
by
(
intro is_cat_obj_prodI,
rule is_cat_limit_axioms,
rule cf_discrete_axioms
)
lemmas (in is_tm_cat_obj_prod) tm_cat_obj_prod_is_cat_obj_prod =
is_cat_obj_prod_axioms
sublocale is_tm_cat_obj_coprod ⊆ is_cat_obj_coprod
by
(
intro is_cat_obj_coprodI,
rule is_cat_colimit_axioms,
rule cf_discrete_axioms
)
lemmas (in is_tm_cat_obj_coprod) tm_cat_obj_coprod_is_cat_obj_coprod =
is_cat_obj_coprod_axioms
sublocale is_tm_cat_obj_prod ⊆ is_tm_cat_limit α ‹:⇩C I› ℭ ‹:→: I A ℭ› P π
by
(
intro
is_tm_cat_limitI
is_tm_cat_coneI
is_ntcf_axioms
tm_cf_discrete_the_cf_discrete_is_tm_functor
cat_cone_obj
cat_lim_ua_fo
)
lemmas (in is_tm_cat_obj_prod) tm_cat_obj_prod_is_tm_cat_limit =
is_tm_cat_limit_axioms
sublocale is_tm_cat_obj_coprod ⊆ is_tm_cat_colimit α ‹:⇩C I› ℭ ‹:→: I A ℭ› U π
by
(
intro
is_tm_cat_colimitI
is_tm_cat_coconeI
is_ntcf_axioms
tm_cf_discrete_the_cf_discrete_is_tm_functor
cat_cocone_obj
cat_colim_ua_of
)
lemmas (in is_tm_cat_obj_coprod) tm_cat_obj_coprod_is_tm_cat_colimit =
is_tm_cat_colimit_axioms
text‹Duality.›
lemma (in is_tm_cat_obj_prod) is_tm_cat_obj_coprod_op:
"op_ntcf π : A >⇩C⇩F⇩.⇩t⇩m⇩.⇩∐ P : I ↦↦⇩C⇩.⇩t⇩m⇘α⇙ op_cat ℭ"
using cf_discrete_vdomain_vsubset_Vset
by (intro is_tm_cat_obj_coprodI)
(cs_concl cs_simp: cat_op_simps cs_intro: cat_op_intros)
lemma (in is_tm_cat_obj_prod) is_tm_cat_obj_coprod_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf π : A >⇩C⇩F⇩.⇩t⇩m⇩.⇩∐ P : I ↦↦⇩C⇩.⇩t⇩m⇘α⇙ ℭ'"
unfolding assms by (rule is_tm_cat_obj_coprod_op)
lemmas [cat_op_intros] = is_tm_cat_obj_prod.is_tm_cat_obj_coprod_op'
lemma (in is_tm_cat_obj_coprod) is_tm_cat_obj_coprod_op:
"op_ntcf π : U <⇩C⇩F⇩.⇩t⇩m⇩.⇩∏ A : I ↦↦⇩C⇩.⇩t⇩m⇘α⇙ op_cat ℭ"
using cf_discrete_vdomain_vsubset_Vset
by (intro is_tm_cat_obj_prodI)
(cs_concl cs_simp: cat_op_simps cs_intro: cat_op_intros)
lemma (in is_tm_cat_obj_coprod) is_tm_cat_obj_prod_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf π : U <⇩C⇩F⇩.⇩t⇩m⇩.⇩∏ A : I ↦↦⇩C⇩.⇩t⇩m⇘α⇙ ℭ'"
unfolding assms by (rule is_tm_cat_obj_coprod_op)
lemmas [cat_op_intros] = is_tm_cat_obj_coprod.is_tm_cat_obj_prod_op'
subsection‹Finite product and finite coproduct›
locale is_cat_finite_obj_prod = is_cat_obj_prod α I A ℭ P π
for α I A ℭ P π +
assumes cat_fin_obj_prod_index_in_ω: "I ∈⇩∘ ω"
syntax "_is_cat_finite_obj_prod" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ <⇩C⇩F⇩.⇩∏⇩.⇩f⇩i⇩n _ :/ _ ↦↦⇩Cı _)› [51, 51, 51, 51, 51] 51)
translations "π : P <⇩C⇩F⇩.⇩∏⇩.⇩f⇩i⇩n A : I ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_finite_obj_prod α I A ℭ P π"
locale is_cat_finite_obj_coprod = is_cat_obj_coprod α I A ℭ U π
for α I A ℭ U π +
assumes cat_fin_obj_coprod_index_in_ω: "I ∈⇩∘ ω"
syntax "_is_cat_finite_obj_coprod" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ >⇩C⇩F⇩.⇩∐⇩.⇩f⇩i⇩n _ :/ _ ↦↦⇩Cı _)› [51, 51, 51, 51, 51] 51)
translations "π : A >⇩C⇩F⇩.⇩∐⇩.⇩f⇩i⇩n U : I ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_finite_obj_coprod α I A ℭ U π"
lemma (in is_cat_finite_obj_prod) cat_fin_obj_prod_index_vfinite: "vfinite I"
using cat_fin_obj_prod_index_in_ω by auto
sublocale is_cat_finite_obj_prod ⊆ I: finite_category α ‹:⇩C I›
by (intro finite_categoryI')
(
auto
simp: NTDom.HomDom.category_axioms the_cat_discrete_components
intro!: cat_fin_obj_prod_index_vfinite
)
lemma (in is_cat_finite_obj_coprod) cat_fin_obj_coprod_index_vfinite:
"vfinite I"
using cat_fin_obj_coprod_index_in_ω by auto
sublocale is_cat_finite_obj_coprod ⊆ I: finite_category α ‹:⇩C I›
by (intro finite_categoryI')
(
auto
simp: NTDom.HomDom.category_axioms the_cat_discrete_components
intro!: cat_fin_obj_coprod_index_vfinite
)
text‹Rules.›
lemma (in is_cat_finite_obj_prod)
is_cat_finite_obj_prod_axioms'[cat_lim_cs_intros]:
assumes "α' = α" and "P' = P" and "A' = A" and "I' = I" and "ℭ' = ℭ"
shows "π : P' <⇩C⇩F⇩.⇩∏⇩.⇩f⇩i⇩n A' : I' ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_finite_obj_prod_axioms)
mk_ide rf
is_cat_finite_obj_prod_def[unfolded is_cat_finite_obj_prod_axioms_def]
|intro is_cat_finite_obj_prodI|
|dest is_cat_finite_obj_prodD[dest]|
|elim is_cat_finite_obj_prodE[elim]|
lemmas [cat_lim_cs_intros] = is_cat_finite_obj_prodD
lemma (in is_cat_finite_obj_coprod)
is_cat_finite_obj_coprod_axioms'[cat_lim_cs_intros]:
assumes "α' = α" and "U' = U" and "A' = A" and "I' = I" and "ℭ' = ℭ"
shows "π : A' >⇩C⇩F⇩.⇩∐⇩.⇩f⇩i⇩n U' : I' ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_finite_obj_coprod_axioms)
mk_ide rf
is_cat_finite_obj_coprod_def[unfolded is_cat_finite_obj_coprod_axioms_def]
|intro is_cat_finite_obj_coprodI|
|dest is_cat_finite_obj_coprodD[dest]|
|elim is_cat_finite_obj_coprodE[elim]|
lemmas [cat_lim_cs_intros] = is_cat_finite_obj_coprodD
text‹Duality.›
lemma (in is_cat_finite_obj_prod) is_cat_finite_obj_coprod_op:
"op_ntcf π : A >⇩C⇩F⇩.⇩∐⇩.⇩f⇩i⇩n P : I ↦↦⇩C⇘α⇙ op_cat ℭ"
by (intro is_cat_finite_obj_coprodI)
(
cs_concl cs_shallow
cs_simp: cat_op_simps
cs_intro: cat_fin_obj_prod_index_in_ω cat_cs_intros cat_op_intros
)
lemma (in is_cat_finite_obj_prod) is_cat_finite_obj_coprod_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf π : A >⇩C⇩F⇩.⇩∐⇩.⇩f⇩i⇩n P : I ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_finite_obj_coprod_op)
lemmas [cat_op_intros] = is_cat_finite_obj_prod.is_cat_finite_obj_coprod_op'
lemma (in is_cat_finite_obj_coprod) is_cat_finite_obj_prod_op:
"op_ntcf π : U <⇩C⇩F⇩.⇩∏⇩.⇩f⇩i⇩n A : I ↦↦⇩C⇘α⇙ op_cat ℭ"
by (intro is_cat_finite_obj_prodI)
(
cs_concl cs_shallow
cs_simp: cat_op_simps
cs_intro: cat_fin_obj_coprod_index_in_ω cat_cs_intros cat_op_intros
)
lemma (in is_cat_finite_obj_coprod) is_cat_finite_obj_prod_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf π : U <⇩C⇩F⇩.⇩∏⇩.⇩f⇩i⇩n A : I ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_finite_obj_prod_op)
lemmas [cat_op_intros] = is_cat_finite_obj_coprod.is_cat_finite_obj_prod_op'
subsection‹Product and coproduct of two objects›
subsubsection‹Definition and elementary properties›
locale is_cat_obj_prod_2 = is_cat_obj_prod α ‹2⇩ℕ› ‹if2 a b› ℭ P π
for α a b ℭ P π
syntax "_is_cat_obj_prod_2" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ <⇩C⇩F⇩.⇩× {_,_} :/ 2⇩C ↦↦⇩Cı _)› [51, 51, 51, 51, 51] 51)
translations "π : P <⇩C⇩F⇩.⇩× {a,b} : 2⇩C ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_obj_prod_2 α a b ℭ P π"
locale is_cat_obj_coprod_2 = is_cat_obj_coprod α ‹2⇩ℕ› ‹if2 a b› ℭ P π
for α a b ℭ P π
syntax "_is_cat_obj_coprod_2" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ {_,_} >⇩C⇩F⇩.⇩⊎ _ :/ 2⇩C ↦↦⇩Cı _)› [51, 51, 51, 51, 51] 51)
translations "π : {a,b} >⇩C⇩F⇩.⇩⊎ U : 2⇩C ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_obj_coprod_2 α a b ℭ U π"
abbreviation proj_fst where "proj_fst π ≡ vpfst (π⦇NTMap⦈)"
abbreviation proj_snd where "proj_snd π ≡ vpsnd (π⦇NTMap⦈)"
text‹Rules.›
lemma (in is_cat_obj_prod_2) is_cat_obj_prod_2_axioms'[cat_lim_cs_intros]:
assumes "α' = α" and "P' = P" and "a' = a" and "b' = b" and "ℭ' = ℭ"
shows "π : P' <⇩C⇩F⇩.⇩× {a',b'} : 2⇩C ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_obj_prod_2_axioms)
mk_ide rf is_cat_obj_prod_2_def
|intro is_cat_obj_prod_2I|
|dest is_cat_obj_prod_2D[dest]|
|elim is_cat_obj_prod_2E[elim]|
lemmas [cat_lim_cs_intros] = is_cat_obj_prod_2D
lemma (in is_cat_obj_coprod_2) is_cat_obj_coprod_2_axioms'[cat_lim_cs_intros]:
assumes "α' = α" and "P' = P" and "a' = a" and "b' = b" and "ℭ' = ℭ"
shows "π : {a',b'} >⇩C⇩F⇩.⇩⊎ P' : 2⇩C ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_obj_coprod_2_axioms)
mk_ide rf is_cat_obj_coprod_2_def
|intro is_cat_obj_coprod_2I|
|dest is_cat_obj_coprod_2D[dest]|
|elim is_cat_obj_coprod_2E[elim]|
lemmas [cat_lim_cs_intros] = is_cat_obj_coprod_2D
text‹Duality.›
lemma (in is_cat_obj_prod_2) is_cat_obj_coprod_2_op:
"op_ntcf π : {a,b} >⇩C⇩F⇩.⇩⊎ P : 2⇩C ↦↦⇩C⇘α⇙ op_cat ℭ"
by (rule is_cat_obj_coprod_2I[OF is_cat_obj_coprod_op])
lemma (in is_cat_obj_prod_2) is_cat_obj_coprod_2_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf π : {a,b} >⇩C⇩F⇩.⇩⊎ P : 2⇩C ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_obj_coprod_2_op)
lemmas [cat_op_intros] = is_cat_obj_prod_2.is_cat_obj_coprod_2_op'
lemma (in is_cat_obj_coprod_2) is_cat_obj_prod_2_op:
"op_ntcf π : P <⇩C⇩F⇩.⇩× {a,b} : 2⇩C ↦↦⇩C⇘α⇙ op_cat ℭ"
by (rule is_cat_obj_prod_2I[OF is_cat_obj_prod_op])
lemma (in is_cat_obj_coprod_2) is_cat_obj_prod_2_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf π : P <⇩C⇩F⇩.⇩× {a,b} : 2⇩C ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_obj_prod_2_op)
lemmas [cat_op_intros] = is_cat_obj_coprod_2.is_cat_obj_prod_2_op'
text‹Product/coproduct of two objects is a finite product/coproduct.›
sublocale is_cat_obj_prod_2 ⊆ is_cat_finite_obj_prod α ‹2⇩ℕ› ‹if2 a b› ℭ P π
proof(intro is_cat_finite_obj_prodI)
show "2⇩ℕ ∈⇩∘ ω" by simp
qed (cs_concl cs_shallow cs_simp: two[symmetric] cs_intro: cat_lim_cs_intros)
sublocale is_cat_obj_coprod_2 ⊆ is_cat_finite_obj_coprod α ‹2⇩ℕ› ‹if2 a b› ℭ P π
proof(intro is_cat_finite_obj_coprodI)
show "2⇩ℕ ∈⇩∘ ω" by simp
qed (cs_concl cs_shallow cs_simp: two[symmetric] cs_intro: cat_lim_cs_intros)
text‹Elementary properties.›
lemma (in is_cat_obj_prod_2) cat_obj_prod_2_lr_in_Obj:
shows cat_obj_prod_2_left_in_Obj[cat_lim_cs_intros]: "a ∈⇩∘ ℭ⦇Obj⦈"
and cat_obj_prod_2_right_in_Obj[cat_lim_cs_intros]: "b ∈⇩∘ ℭ⦇Obj⦈"
proof-
have 0: "0 ∈⇩∘ 2⇩ℕ" and 1: "1⇩ℕ ∈⇩∘ 2⇩ℕ" by simp_all
show "a ∈⇩∘ ℭ⦇Obj⦈" and "b ∈⇩∘ ℭ⦇Obj⦈"
by
(
intro
cf_discrete_selector_vrange[OF 0, simplified]
cf_discrete_selector_vrange[OF 1, simplified]
)+
qed
lemmas [cat_lim_cs_intros] = is_cat_obj_prod_2.cat_obj_prod_2_lr_in_Obj
lemma (in is_cat_obj_coprod_2) cat_obj_coprod_2_lr_in_Obj:
shows cat_obj_coprod_2_left_in_Obj[cat_lim_cs_intros]: "a ∈⇩∘ ℭ⦇Obj⦈"
and cat_obj_coprod_2_right_in_Obj[cat_lim_cs_intros]: "b ∈⇩∘ ℭ⦇Obj⦈"
by
(
intro is_cat_obj_prod_2.cat_obj_prod_2_lr_in_Obj[
OF is_cat_obj_prod_2_op, unfolded cat_op_simps
]
)+
lemmas [cat_lim_cs_intros] = is_cat_obj_coprod_2.cat_obj_coprod_2_lr_in_Obj
text‹Utilities/help lemmas.›
lemma helper_I2_proj_fst_proj_snd_iff:
"(∀j∈⇩∘2⇩ℕ. π'⦇NTMap⦈⦇j⦈ = π⦇NTMap⦈⦇j⦈ ∘⇩A⇘ℭ⇙ f') ⟷
(proj_fst π' = proj_fst π ∘⇩A⇘ℭ⇙ f' ∧ proj_snd π' = proj_snd π ∘⇩A⇘ℭ⇙ f')"
unfolding two by auto
lemma helper_I2_proj_fst_proj_snd_iff':
"(∀j∈⇩∘2⇩ℕ. π'⦇NTMap⦈⦇j⦈ = f' ∘⇩A⇘ℭ⇙ π⦇NTMap⦈⦇j⦈) ⟷
(proj_fst π' = f' ∘⇩A⇘ℭ⇙ proj_fst π ∧ proj_snd π' = f' ∘⇩A⇘ℭ⇙ proj_snd π)"
unfolding two by auto
subsubsection‹Universal property›
lemma (in is_cat_obj_prod_2) cat_obj_prod_2_unique_cone':
assumes "π' : P' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e :→: (2⇩ℕ) (if2 a b) ℭ : :⇩C (2⇩ℕ) ↦↦⇩C⇘α⇙ ℭ"
shows
"∃!f'. f' : P' ↦⇘ℭ⇙ P ∧
proj_fst π' = proj_fst π ∘⇩A⇘ℭ⇙ f' ∧
proj_snd π' = proj_snd π ∘⇩A⇘ℭ⇙ f'"
by
(
rule cat_obj_prod_unique_cone'[
OF assms, unfolded helper_I2_proj_fst_proj_snd_iff
]
)
lemma (in is_cat_obj_prod_2) cat_obj_prod_2_unique:
assumes "π' : P' <⇩C⇩F⇩.⇩× {a,b} : 2⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : P' ↦⇘ℭ⇙ P ∧ π' = π ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C (2⇩ℕ)) ℭ f'"
by (rule cat_obj_prod_unique[OF is_cat_obj_prod_2D[OF assms]])
lemma (in is_cat_obj_prod_2) cat_obj_prod_2_unique':
assumes "π' : P' <⇩C⇩F⇩.⇩× {a,b} : 2⇩C ↦↦⇩C⇘α⇙ ℭ"
shows
"∃!f'. f' : P' ↦⇘ℭ⇙ P ∧
proj_fst π' = proj_fst π ∘⇩A⇘ℭ⇙ f' ∧
proj_snd π' = proj_snd π ∘⇩A⇘ℭ⇙ f'"
by
(
rule cat_obj_prod_unique'[
OF is_cat_obj_prod_2D[OF assms],
unfolded helper_I2_proj_fst_proj_snd_iff
]
)
lemma (in is_cat_obj_coprod_2) cat_obj_coprod_2_unique_cocone':
assumes "π' : :→: (2⇩ℕ) (if2 a b) ℭ >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e P' : :⇩C (2⇩ℕ) ↦↦⇩C⇘α⇙ ℭ"
shows
"∃!f'. f' : P ↦⇘ℭ⇙ P' ∧
proj_fst π' = f' ∘⇩A⇘ℭ⇙ proj_fst π ∧
proj_snd π' = f' ∘⇩A⇘ℭ⇙ proj_snd π"
by
(
rule cat_obj_coprod_unique_cocone'[
OF assms, unfolded helper_I2_proj_fst_proj_snd_iff'
]
)
lemma (in is_cat_obj_coprod_2) cat_obj_coprod_2_unique:
assumes "π' : {a,b} >⇩C⇩F⇩.⇩⊎ P' : 2⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : P ↦⇘ℭ⇙ P' ∧ π' = ntcf_const (:⇩C (2⇩ℕ)) ℭ f' ∙⇩N⇩T⇩C⇩F π"
by (rule cat_obj_coprod_unique[OF is_cat_obj_coprod_2D[OF assms]])
lemma (in is_cat_obj_coprod_2) cat_obj_coprod_2_unique':
assumes "π' : {a,b} >⇩C⇩F⇩.⇩⊎ P' : 2⇩C ↦↦⇩C⇘α⇙ ℭ"
shows
"∃!f'. f' : P ↦⇘ℭ⇙ P' ∧
proj_fst π' = f' ∘⇩A⇘ℭ⇙ proj_fst π ∧
proj_snd π' = f' ∘⇩A⇘ℭ⇙ proj_snd π"
by
(
rule cat_obj_coprod_unique'[
OF is_cat_obj_coprod_2D[OF assms],
unfolded helper_I2_proj_fst_proj_snd_iff'
]
)
lemma cat_obj_prod_2_ex_is_iso_arr:
assumes "π : P <⇩C⇩F⇩.⇩× {a,b} : 2⇩C ↦↦⇩C⇘α⇙ ℭ"
and "π' : P' <⇩C⇩F⇩.⇩× {a,b} : 2⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : P' ↦⇩i⇩s⇩o⇘ℭ⇙ P" and "π' = π ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C (2⇩ℕ)) ℭ f"
proof-
interpret π: is_cat_obj_prod_2 α a b ℭ P π by (rule assms(1))
interpret π': is_cat_obj_prod_2 α a b ℭ P' π' by (rule assms(2))
from that show ?thesis
by
(
elim cat_obj_prod_ex_is_iso_arr[
OF π.is_cat_obj_prod_axioms π'.is_cat_obj_prod_axioms
]
)
qed
lemma cat_obj_coprod_2_ex_is_iso_arr:
assumes "π : {a,b} >⇩C⇩F⇩.⇩⊎ U : 2⇩C ↦↦⇩C⇘α⇙ ℭ"
and "π' : {a,b} >⇩C⇩F⇩.⇩⊎ U' : 2⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : U ↦⇩i⇩s⇩o⇘ℭ⇙ U'" and "π' = ntcf_const (:⇩C (2⇩ℕ)) ℭ f ∙⇩N⇩T⇩C⇩F π"
proof-
interpret π: is_cat_obj_coprod_2 α a b ℭ U π by (rule assms(1))
interpret π': is_cat_obj_coprod_2 α a b ℭ U' π' by (rule assms(2))
from that show ?thesis
by
(
elim cat_obj_coprod_ex_is_iso_arr[
OF π.is_cat_obj_coprod_axioms π'.is_cat_obj_coprod_axioms
]
)
qed
subsection‹Projection cone›
subsubsection‹Definition and elementary properties›
definition ntcf_obj_prod_base :: "V ⇒ V ⇒ (V ⇒ V) ⇒ V ⇒ (V ⇒ V) ⇒ V"
where "ntcf_obj_prod_base ℭ I F P f =
[(λj∈⇩∘:⇩C I⦇Obj⦈. f j), cf_const (:⇩C I) ℭ P, :→: I F ℭ, :⇩C I, ℭ]⇩∘"
definition ntcf_obj_coprod_base :: "V ⇒ V ⇒ (V ⇒ V) ⇒ V ⇒ (V ⇒ V) ⇒ V"
where "ntcf_obj_coprod_base ℭ I F P f =
[(λj∈⇩∘:⇩C I⦇Obj⦈. f j), :→: I F ℭ, cf_const (:⇩C I) ℭ P, :⇩C I, ℭ]⇩∘"
text‹Components.›
lemma ntcf_obj_prod_base_components:
shows "ntcf_obj_prod_base ℭ I F P f⦇NTMap⦈ = (λj∈⇩∘:⇩C I⦇Obj⦈. f j)"
and "ntcf_obj_prod_base ℭ I F P f⦇NTDom⦈ = cf_const (:⇩C I) ℭ P"
and "ntcf_obj_prod_base ℭ I F P f⦇NTCod⦈ = :→: I F ℭ"
and "ntcf_obj_prod_base ℭ I F P f⦇NTDGDom⦈ = :⇩C I"
and "ntcf_obj_prod_base ℭ I F P f⦇NTDGCod⦈ = ℭ"
unfolding ntcf_obj_prod_base_def nt_field_simps
by (simp_all add: nat_omega_simps)
lemma ntcf_obj_coprod_base_components:
shows "ntcf_obj_coprod_base ℭ I F P f⦇NTMap⦈ = (λj∈⇩∘:⇩C I⦇Obj⦈. f j)"
and "ntcf_obj_coprod_base ℭ I F P f⦇NTDom⦈ = :→: I F ℭ"
and "ntcf_obj_coprod_base ℭ I F P f⦇NTCod⦈ = cf_const (:⇩C I) ℭ P"
and "ntcf_obj_coprod_base ℭ I F P f⦇NTDGDom⦈ = :⇩C I"
and "ntcf_obj_coprod_base ℭ I F P f⦇NTDGCod⦈ = ℭ"
unfolding ntcf_obj_coprod_base_def nt_field_simps
by (simp_all add: nat_omega_simps)
text‹Duality.›
lemma (in cf_discrete) op_ntcf_ntcf_obj_coprod_base[cat_op_simps]:
"op_ntcf (ntcf_obj_coprod_base ℭ I F P f) =
ntcf_obj_prod_base (op_cat ℭ) I F P f"
proof-
note [cat_op_simps] = the_cat_discrete_op[OF cf_discrete_vdomain_vsubset_Vset]
show ?thesis
unfolding
ntcf_obj_prod_base_def ntcf_obj_coprod_base_def op_ntcf_def nt_field_simps
by (simp add: nat_omega_simps cat_op_simps)
qed
lemma (in cf_discrete) op_ntcf_ntcf_obj_prod_base[cat_op_simps]:
"op_ntcf (ntcf_obj_prod_base ℭ I F P f) =
ntcf_obj_coprod_base (op_cat ℭ) I F P f"
proof-
note [cat_op_simps] = the_cat_discrete_op[OF cf_discrete_vdomain_vsubset_Vset]
show ?thesis
unfolding
ntcf_obj_prod_base_def ntcf_obj_coprod_base_def op_ntcf_def nt_field_simps
by (simp add: nat_omega_simps cat_op_simps)
qed
subsubsection‹Natural transformation map›
mk_VLambda ntcf_obj_prod_base_components(1)
|vsv ntcf_obj_prod_base_NTMap_vsv[cat_cs_intros]|
|vdomain ntcf_obj_prod_base_NTMap_vdomain[cat_cs_simps]|
|app ntcf_obj_prod_base_NTMap_app[cat_cs_simps]|
mk_VLambda ntcf_obj_coprod_base_components(1)
|vsv ntcf_obj_coprod_base_NTMap_vsv[cat_cs_intros]|
|vdomain ntcf_obj_coprod_base_NTMap_vdomain[cat_cs_simps]|
|app ntcf_obj_coprod_base_NTMap_app[cat_cs_simps]|
subsubsection‹Projection natural transformation is a cone›
lemma (in tm_cf_discrete) tm_cf_discrete_ntcf_obj_prod_base_is_cat_cone:
assumes "P ∈⇩∘ ℭ⦇Obj⦈" and "⋀a. a ∈⇩∘ I ⟹ f a : P ↦⇘ℭ⇙ F a"
shows "ntcf_obj_prod_base ℭ I F P f : P <⇩C⇩F⇩.⇩c⇩o⇩n⇩e :→: I F ℭ : :⇩C I ↦↦⇩C⇘α⇙ ℭ"
proof(intro is_cat_coneI is_tm_ntcfI' is_ntcfI')
from assms(2) have [cat_cs_intros]:
"⟦ a ∈⇩∘ I; P' = P; Fa = F a ⟧ ⟹ f a : P' ↦⇘ℭ⇙ Fa" for a P' Fa
by simp
show "vfsequence (ntcf_obj_prod_base ℭ I F P f)"
unfolding ntcf_obj_prod_base_def by auto
show "vcard (ntcf_obj_prod_base ℭ I F P f) = 5⇩ℕ"
unfolding ntcf_obj_prod_base_def by (auto simp: nat_omega_simps)
from assms show "cf_const (:⇩C I) ℭ P : :⇩C I ↦↦⇩C⇘α⇙ ℭ"
by
(
cs_concl
cs_intro:
cf_discrete_vdomain_vsubset_Vset
cat_discrete_cs_intros
cat_cs_intros
)
show ":→: I F ℭ : :⇩C I ↦↦⇩C⇘α⇙ ℭ"
by (cs_concl cs_shallow cs_intro: cat_discrete_cs_intros)
show "ntcf_obj_prod_base ℭ I F P f⦇NTMap⦈⦇a⦈ :
cf_const (:⇩C I) ℭ P⦇ObjMap⦈⦇a⦈ ↦⇘ℭ⇙ :→: I F ℭ⦇ObjMap⦈⦇a⦈"
if "a ∈⇩∘ :⇩C I⦇Obj⦈" for a
proof-
from that have "a ∈⇩∘ I" unfolding the_cat_discrete_components by simp
from that this show ?thesis
by
(
cs_concl cs_shallow
cs_simp: cat_cs_simps cat_discrete_cs_simps cs_intro: cat_cs_intros
)
qed
show
"ntcf_obj_prod_base ℭ I F P f⦇NTMap⦈⦇b⦈ ∘⇩A⇘ℭ⇙
cf_const (:⇩C I) ℭ P⦇ArrMap⦈⦇g⦈ =
:→: I F ℭ⦇ArrMap⦈⦇g⦈ ∘⇩A⇘ℭ⇙ ntcf_obj_prod_base ℭ I F P f⦇NTMap⦈⦇a⦈"
if "g : a ↦⇘:⇩C I⇙ b" for a b g
proof-
note g = the_cat_discrete_is_arrD[OF that]
from that g(4)[unfolded g(7-9)] g(1)[unfolded g(7-9)] show ?thesis
unfolding g(7-9)
by
(
cs_concl
cs_simp: cat_cs_simps cat_discrete_cs_simps
cs_intro:
cf_discrete_vdomain_vsubset_Vset
cat_cs_intros cat_discrete_cs_intros
)
qed
qed
(
auto simp:
assms
ntcf_obj_prod_base_components
tm_cf_discrete_the_cf_discrete_is_tm_functor
)
lemma (in tm_cf_discrete) tm_cf_discrete_ntcf_obj_coprod_base_is_cat_cocone:
assumes "P ∈⇩∘ ℭ⦇Obj⦈" and "⋀a. a ∈⇩∘ I ⟹ f a : F a ↦⇘ℭ⇙ P"
shows "ntcf_obj_coprod_base ℭ I F P f :
:→: I F ℭ >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e P : :⇩C I ↦↦⇩C⇘α⇙ ℭ"
proof-
note [cat_op_simps] =
the_cat_discrete_op[OF cf_discrete_vdomain_vsubset_Vset]
cf_discrete.op_ntcf_ntcf_obj_prod_base[OF cf_discrete_op]
cf_discrete.cf_discrete_the_cf_discrete_op[OF cf_discrete_op]
have "op_ntcf (ntcf_obj_coprod_base ℭ I F P f) :
P <⇩C⇩F⇩.⇩c⇩o⇩n⇩e op_cf (:→: I F ℭ) : op_cat (:⇩C I) ↦↦⇩C⇘α⇙ op_cat ℭ"
unfolding cat_op_simps
by
(
rule tm_cf_discrete.tm_cf_discrete_ntcf_obj_prod_base_is_cat_cone[
OF tm_cf_discrete_op, unfolded cat_op_simps, OF assms
]
)
from is_cat_cone.is_cat_cocone_op[OF this, unfolded cat_op_simps]
show ?thesis .
qed
lemma (in tm_cf_discrete) tm_cf_discrete_ntcf_obj_prod_base_is_cat_obj_prod:
assumes "P ∈⇩∘ ℭ⦇Obj⦈"
and "⋀a. a ∈⇩∘ I ⟹ f a : P ↦⇘ℭ⇙ F a"
and "⋀u' r'.
⟦ u' : r' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e :→: I F ℭ : :⇩C I ↦↦⇩C⇘α⇙ ℭ ⟧ ⟹
∃!f'.
f' : r' ↦⇘ℭ⇙ P ∧
u' = ntcf_obj_prod_base ℭ I F P f ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C I) ℭ f'"
shows "ntcf_obj_prod_base ℭ I F P f : P <⇩C⇩F⇩.⇩∏ F : I ↦↦⇩C⇘α⇙ ℭ"
proof
(
intro
is_cat_obj_prodI
is_cat_limitI
tm_cf_discrete_ntcf_obj_prod_base_is_cat_cone[OF assms(1,2), simplified]
assms(1,3)
)
show "cf_discrete α I F ℭ"
by (cs_concl cs_shallow cs_intro: cat_small_discrete_cs_intros)
qed
lemma (in tm_cf_discrete) tm_cf_discrete_ntcf_obj_coprod_base_is_cat_obj_coprod:
assumes "P ∈⇩∘ ℭ⦇Obj⦈"
and "⋀a. a ∈⇩∘ I ⟹ f a : F a ↦⇘ℭ⇙ P"
and "⋀u' r'. ⟦ u' : :→: I F ℭ >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e r' : :⇩C I ↦↦⇩C⇘α⇙ ℭ ⟧ ⟹
∃!f'.
f' : P ↦⇘ℭ⇙ r' ∧
u' = ntcf_const (:⇩C I) ℭ f' ∙⇩N⇩T⇩C⇩F ntcf_obj_coprod_base ℭ I F P f"
shows "ntcf_obj_coprod_base ℭ I F P f : F >⇩C⇩F⇩.⇩∐ P : I ↦↦⇩C⇘α⇙ ℭ"
(is ‹?nc : F >⇩C⇩F⇩.⇩∐ P : I ↦↦⇩C⇘α⇙ ℭ›)
proof-
let ?np = ‹ntcf_obj_prod_base (op_cat ℭ) I F P f›
interpret is_cat_cocone α P ‹:⇩C I› ℭ ‹:→: I F ℭ› ?nc
by (intro tm_cf_discrete_ntcf_obj_coprod_base_is_cat_cocone[OF assms(1,2)])
note [cat_op_simps] =
the_cat_discrete_op[OF cf_discrete_vdomain_vsubset_Vset]
cf_discrete.op_ntcf_ntcf_obj_prod_base[OF cf_discrete_op]
cf_discrete.cf_discrete_the_cf_discrete_op[OF cf_discrete_op]
have "∃!f'.
f' : P ↦⇘ℭ⇙ r ∧
u = ?np ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C I) (op_cat ℭ) f'"
if "u : r <⇩C⇩F⇩.⇩c⇩o⇩n⇩e :→: I F (op_cat ℭ) : :⇩C I ↦↦⇩C⇘α⇙ op_cat ℭ" for u r
proof-
interpret u: is_cat_cone α r ‹:⇩C I› ‹op_cat ℭ› ‹:→: I F (op_cat ℭ)› u
by (rule that)
from assms(3)[OF u.is_cat_cocone_op[unfolded cat_op_simps]] obtain g
where g: "g : P ↦⇘ℭ⇙ r"
and op_u: "op_ntcf u = ntcf_const (:⇩C I) ℭ g ∙⇩N⇩T⇩C⇩F ?nc"
and g_unique:
"⟦ g' : P ↦⇘ℭ⇙ r; op_ntcf u = ntcf_const (:⇩C I) ℭ g' ∙⇩N⇩T⇩C⇩F ?nc ⟧ ⟹
g' = g"
for g'
by metis
show ?thesis
proof(intro ex1I conjI; (elim conjE)?)
from op_u have
"op_ntcf (op_ntcf u) = op_ntcf (ntcf_const (:⇩C I) ℭ g ∙⇩N⇩T⇩C⇩F ?nc)"
by simp
from this g show "u = ?np ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C I) (op_cat ℭ) g"
by (cs_prems cs_simp: cat_op_simps cs_intro: cat_cs_intros)
fix g' assume prems:
"g' : P ↦⇘ℭ⇙ r"
"u = ?np ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C I) (op_cat ℭ) g'"
from prems(2) have
"op_ntcf u = op_ntcf (?np ∙⇩N⇩T⇩C⇩F ntcf_const (:⇩C I) (op_cat ℭ) g')"
by simp
from this prems(1) g have "op_ntcf u = ntcf_const (:⇩C I) ℭ g' ∙⇩N⇩T⇩C⇩F ?nc"
by
(
subst (asm)
the_cat_discrete_op[OF cf_discrete_vdomain_vsubset_Vset, symmetric]
)
(
cs_prems
cs_simp:
cat_op_simps
op_ntcf_ntcf_vcomp[symmetric]
is_ntcf.ntcf_op_ntcf_op_ntcf
op_ntcf_ntcf_obj_coprod_base[symmetric]
op_ntcf_ntcf_const[symmetric]
cs_intro: cat_cs_intros cat_op_intros
)
from g_unique[OF prems(1) this] show "g' = g" .
qed (rule g)
qed
from is_cat_obj_prod.is_cat_obj_coprod_op
[
OF tm_cf_discrete.tm_cf_discrete_ntcf_obj_prod_base_is_cat_obj_prod
[
OF tm_cf_discrete_op,
unfolded cat_op_simps,
OF assms(1,2) this,
folded op_ntcf_ntcf_obj_coprod_base
],
unfolded cat_op_simps
]
show "?nc : F >⇩C⇩F⇩.⇩∐ P : I ↦↦⇩C⇘α⇙ ℭ".
qed
text‹\newpage›
end