Theory CZH_UCAT_Limit_Equalizer
section‹Equalizers and coequalizers as limits and colimits›
theory CZH_UCAT_Limit_Equalizer
imports
CZH_UCAT_Limit
CZH_Elementary_Categories.CZH_ECAT_Parallel
begin
subsection‹Equalizer and coequalizer›
subsubsection‹Definition and elementary properties›
text‹
See \<^cite>‹"noauthor_wikipedia_2001"›\footnote{
\url{https://en.wikipedia.org/wiki/Equaliser_(mathematics)}
}.
›
locale is_cat_equalizer =
is_cat_limit α ‹⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F› ℭ ‹⇑→⇑⇩C⇩F ℭ (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F'› E ε +
F': vsv F'
for α 𝔞 𝔟 F F' ℭ E ε +
assumes cat_eq_F_in_Vset[cat_lim_cs_intros]: "F ∈⇩∘ Vset α"
and cat_eq_F_ne[cat_lim_cs_intros]: "F ≠ 0"
and cat_eq_F'_vdomain[cat_lim_cs_simps]: "𝒟⇩∘ F' = F"
and cat_eq_F'_app_is_arr[cat_lim_cs_intros]: "𝔣 ∈⇩∘ F ⟹ F'⦇𝔣⦈ : 𝔞 ↦⇘ℭ⇙ 𝔟"
syntax "_is_cat_equalizer" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ <⇩C⇩F⇩.⇩e⇩q '(_,_,_,_') :/ ⇑⇩C ↦↦⇩Cı _)› [51, 51, 51, 51, 51, 51] 51)
translations "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_equalizer α 𝔞 𝔟 F F' ℭ E ε"
locale is_cat_coequalizer =
is_cat_colimit α ‹⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F› ℭ ‹⇑→⇑⇩C⇩F ℭ (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F 𝔟 𝔞 F'› E ε +
F': vsv F'
for α 𝔞 𝔟 F F' ℭ E ε +
assumes cat_coeq_F_in_Vset[cat_lim_cs_intros]: "F ∈⇩∘ Vset α"
and cat_coeq_F_ne[cat_lim_cs_intros]: "F ≠ 0"
and cat_coeq_F'_vdomain[cat_lim_cs_simps]: "𝒟⇩∘ F' = F"
and cat_coeq_F'_app_is_arr[cat_lim_cs_intros]: "𝔣 ∈⇩∘ F ⟹ F'⦇𝔣⦈ : 𝔟 ↦⇘ℭ⇙ 𝔞"
syntax "_is_cat_coequalizer" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ '(_,_,_,_') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q _ :/ ⇑⇩C ↦↦⇩Cı _)› [51, 51, 51, 51, 51, 51] 51)
translations "ε : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_coequalizer α 𝔞 𝔟 F F' ℭ E ε"
text‹Rules.›
lemma (in is_cat_equalizer) is_cat_equalizer_axioms'[cat_lim_cs_intros]:
assumes "α' = α"
and "E' = E"
and "𝔞' = 𝔞"
and "𝔟' = 𝔟"
and "F'' = F"
and "F''' = F'"
and "ℭ' = ℭ"
shows "ε : E' <⇩C⇩F⇩.⇩e⇩q (𝔞',𝔟',F'',F''') : ⇑⇩C ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_equalizer_axioms)
mk_ide rf is_cat_equalizer_def[unfolded is_cat_equalizer_axioms_def]
|intro is_cat_equalizerI|
|dest is_cat_equalizerD[dest]|
|elim is_cat_equalizerE[elim]|
lemmas [cat_lim_cs_intros] = is_cat_equalizerD(1)
lemma (in is_cat_coequalizer) is_cat_coequalizer_axioms'[cat_lim_cs_intros]:
assumes "α' = α"
and "E' = E"
and "𝔞' = 𝔞"
and "𝔟' = 𝔟"
and "F'' = F"
and "F''' = F'"
and "ℭ' = ℭ"
shows "ε : (𝔞',𝔟',F'',F''') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ⇑⇩C ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_coequalizer_axioms)
mk_ide rf is_cat_coequalizer_def[unfolded is_cat_coequalizer_axioms_def]
|intro is_cat_coequalizerI|
|dest is_cat_coequalizerD[dest]|
|elim is_cat_coequalizerE[elim]|
lemmas [cat_lim_cs_intros] = is_cat_coequalizerD(1)
text‹Elementary properties.›
lemma (in is_cat_equalizer)
cat_eq_𝔞[cat_lim_cs_intros]: "𝔞 ∈⇩∘ ℭ⦇Obj⦈"
and cat_eq_𝔟[cat_lim_cs_intros]: "𝔟 ∈⇩∘ ℭ⦇Obj⦈"
proof-
from cat_eq_F_ne obtain 𝔣 where 𝔣: "𝔣 ∈⇩∘ F" by force
have "F'⦇𝔣⦈ : 𝔞 ↦⇘ℭ⇙ 𝔟" by (rule cat_eq_F'_app_is_arr[OF 𝔣])
then show "𝔞 ∈⇩∘ ℭ⦇Obj⦈" "𝔟 ∈⇩∘ ℭ⦇Obj⦈" by auto
qed
lemma (in is_cat_coequalizer)
cat_coeq_𝔞[cat_lim_cs_intros]: "𝔞 ∈⇩∘ ℭ⦇Obj⦈"
and cat_coeq_𝔟[cat_lim_cs_intros]: "𝔟 ∈⇩∘ ℭ⦇Obj⦈"
proof-
from cat_coeq_F_ne obtain 𝔣 where 𝔣: "𝔣 ∈⇩∘ F" by force
have "F'⦇𝔣⦈ : 𝔟 ↦⇘ℭ⇙ 𝔞" by (rule cat_coeq_F'_app_is_arr[OF 𝔣])
then show "𝔞 ∈⇩∘ ℭ⦇Obj⦈" "𝔟 ∈⇩∘ ℭ⦇Obj⦈" by auto
qed
sublocale is_cat_equalizer ⊆ cf_parallel α ‹𝔞⇩P⇩L F› ‹𝔟⇩P⇩L F› F 𝔞 𝔟 F' ℭ
by (intro cf_parallelI cat_parallelI)
(
auto simp:
cat_lim_cs_simps cat_parallel_cs_intros cat_lim_cs_intros cat_cs_intros
)
sublocale is_cat_coequalizer ⊆ cf_parallel α ‹𝔟⇩P⇩L F› ‹𝔞⇩P⇩L F› F 𝔟 𝔞 F' ℭ
by (intro cf_parallelI cat_parallelI)
(
auto simp:
cat_lim_cs_simps cat_parallel_cs_intros cat_lim_cs_intros cat_cs_intros
)
text‹Duality.›
lemma (in is_cat_equalizer) is_cat_coequalizer_op:
"op_ntcf ε : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ⇑⇩C ↦↦⇩C⇘α⇙ op_cat ℭ"
by (intro is_cat_coequalizerI)
(
cs_concl
cs_simp: cat_lim_cs_simps cat_op_simps
cs_intro: V_cs_intros cat_op_intros cat_lim_cs_intros
)+
lemma (in is_cat_equalizer) is_cat_coequalizer_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf ε : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_coequalizer_op)
lemmas [cat_op_intros] = is_cat_equalizer.is_cat_coequalizer_op'
lemma (in is_cat_coequalizer) is_cat_equalizer_op:
"op_ntcf ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ op_cat ℭ"
by (intro is_cat_equalizerI)
(
cs_concl
cs_simp: cat_lim_cs_simps cat_op_simps
cs_intro: V_cs_intros cat_op_intros cat_lim_cs_intros
)+
lemma (in is_cat_coequalizer) is_cat_equalizer_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_equalizer_op)
lemmas [cat_op_intros] = is_cat_coequalizer.is_cat_equalizer_op'
text‹Further properties.›
lemma (in category) cat_cf_parallel_𝔞𝔟:
assumes "vsv F'"
and "F ∈⇩∘ Vset α"
and "𝒟⇩∘ F' = F"
and "⋀𝔣. 𝔣 ∈⇩∘ F ⟹ F'⦇𝔣⦈ : 𝔞 ↦⇘ℭ⇙ 𝔟"
and "𝔞 ∈⇩∘ ℭ⦇Obj⦈"
and "𝔟 ∈⇩∘ ℭ⦇Obj⦈"
shows "cf_parallel α (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F' ℭ"
proof-
have "𝔞⇩P⇩L F ∈⇩∘ Vset α" "𝔟⇩P⇩L F ∈⇩∘ Vset α"
by (simp_all add: Axiom_of_Pairing 𝔟⇩P⇩L_def 𝔞⇩P⇩L_def assms(2))
then show ?thesis
by (intro cf_parallelI cat_parallelI)
(simp_all add: assms cat_parallel_cs_intros cat_cs_intros)
qed
lemma (in category) cat_cf_parallel_𝔟𝔞:
assumes "vsv F'"
and "F ∈⇩∘ Vset α"
and "𝒟⇩∘ F' = F"
and "⋀𝔣. 𝔣 ∈⇩∘ F ⟹ F'⦇𝔣⦈ : 𝔟 ↦⇘ℭ⇙ 𝔞"
and "𝔞 ∈⇩∘ ℭ⦇Obj⦈"
and "𝔟 ∈⇩∘ ℭ⦇Obj⦈"
shows "cf_parallel α (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F 𝔟 𝔞 F' ℭ"
proof-
have "𝔞⇩P⇩L F ∈⇩∘ Vset α" "𝔟⇩P⇩L F ∈⇩∘ Vset α"
by (simp_all add: Axiom_of_Pairing 𝔟⇩P⇩L_def 𝔞⇩P⇩L_def assms(2))
then show ?thesis
by (intro cf_parallelI cat_parallelI)
(simp_all add: assms cat_parallel_cs_intros cat_cs_intros)
qed
lemma cat_cone_cf_par_eps_NTMap_app:
assumes "ε :
E <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⇑→⇑⇩C⇩F ℭ (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F' :
⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ"
and "vsv F'"
and "F ∈⇩∘ Vset α"
and "𝒟⇩∘ F' = F"
and "⋀𝔣. 𝔣 ∈⇩∘ F ⟹ F'⦇𝔣⦈ : 𝔞 ↦⇘ℭ⇙ 𝔟"
and "𝔣 ∈⇩∘ F"
shows "ε⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ = F'⦇𝔣⦈ ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
proof-
let ?II = ‹⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F›
and ?II_II = ‹⇑→⇑⇩C⇩F ℭ (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F'›
interpret ε: is_cat_cone α E ?II ℭ ?II_II ε by (rule assms(1))
from assms(5,6) have 𝔞: "𝔞 ∈⇩∘ ℭ⦇Obj⦈" and 𝔟: "𝔟 ∈⇩∘ ℭ⦇Obj⦈" by auto
interpret par: cf_parallel α ‹𝔞⇩P⇩L F› ‹𝔟⇩P⇩L F› F 𝔞 𝔟 F' ℭ
by (intro ε.NTDom.HomCod.cat_cf_parallel_𝔞𝔟 assms 𝔞 𝔟)
from assms(6) have 𝔣: "𝔣 : 𝔞⇩P⇩L F ↦⇘⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F⇙ 𝔟⇩P⇩L F"
by (simp_all add: par.the_cat_parallel_is_arr_𝔞𝔟F)
note ε.cat_cone_Comp_commute[cat_cs_simps del]
from ε.ntcf_Comp_commute[OF 𝔣] assms(6) show ?thesis
by
(
cs_prems
cs_simp: cat_parallel_cs_simps cat_cs_simps
cs_intro: cat_cs_intros cat_parallel_cs_intros
)
qed
lemma cat_cocone_cf_par_eps_NTMap_app:
assumes "ε :
⇑→⇑⇩C⇩F ℭ (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F 𝔟 𝔞 F' >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E :
⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ"
and "vsv F'"
and "F ∈⇩∘ Vset α"
and "𝒟⇩∘ F' = F"
and "⋀𝔣. 𝔣 ∈⇩∘ F ⟹ F'⦇𝔣⦈ : 𝔟 ↦⇘ℭ⇙ 𝔞"
and "𝔣 ∈⇩∘ F"
shows "ε⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ F'⦇𝔣⦈"
proof-
let ?II = ‹⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F›
and ?II_II = ‹⇑→⇑⇩C⇩F ℭ (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F 𝔟 𝔞 F'›
interpret ε: is_cat_cocone α E ?II ℭ ?II_II ε by (rule assms(1))
from assms(5,6)
have 𝔞: "𝔞 ∈⇩∘ ℭ⦇Obj⦈" and 𝔟: "𝔟 ∈⇩∘ ℭ⦇Obj⦈" and F'𝔣: "F'⦇𝔣⦈ : 𝔟 ↦⇘ℭ⇙ 𝔞"
by auto
interpret par: cf_parallel α ‹𝔟⇩P⇩L F› ‹𝔞⇩P⇩L F› F 𝔟 𝔞 F' ℭ
by (intro ε.NTDom.HomCod.cat_cf_parallel_𝔟𝔞 assms 𝔞 𝔟)
note ε_NTMap_app =
cat_cone_cf_par_eps_NTMap_app[
OF ε.is_cat_cone_op[unfolded cat_op_simps],
unfolded cat_op_simps,
OF assms(2-6),
simplified
]
from ε_NTMap_app F'𝔣 show ?thesis
by
(
cs_concl cs_shallow
cs_simp: cat_parallel_cs_simps category.op_cat_Comp[symmetric]
cs_intro: cat_cs_intros cat_parallel_cs_intros
)
qed
lemma (in is_cat_equalizer) cat_eq_eps_NTMap_app:
assumes "𝔣 ∈⇩∘ F"
shows "ε⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ = F'⦇𝔣⦈ ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
by
(
intro cat_cone_cf_par_eps_NTMap_app[
OF
is_cat_cone_axioms
F'.vsv_axioms
cat_eq_F_in_Vset
cat_eq_F'_vdomain
cat_eq_F'_app_is_arr
assms
]
)+
lemma (in is_cat_coequalizer) cat_coeq_eps_NTMap_app:
assumes "𝔣 ∈⇩∘ F"
shows "ε⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ F'⦇𝔣⦈"
by
(
intro cat_cocone_cf_par_eps_NTMap_app[
OF is_cat_cocone_axioms
F'.vsv_axioms
cat_coeq_F_in_Vset
cat_coeq_F'_vdomain
cat_coeq_F'_app_is_arr
assms
]
)+
lemma (in is_cat_equalizer) cat_eq_Comp_eq:
assumes "𝔤 ∈⇩∘ F" and "𝔣 ∈⇩∘ F"
shows "F'⦇𝔤⦈ ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = F'⦇𝔣⦈ ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
using cat_eq_eps_NTMap_app[OF assms(1)] cat_eq_eps_NTMap_app[OF assms(2)]
by auto
lemma (in is_cat_coequalizer) cat_coeq_Comp_eq:
assumes "𝔤 ∈⇩∘ F" and "𝔣 ∈⇩∘ F"
shows "ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ F'⦇𝔤⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ F'⦇𝔣⦈"
using cat_coeq_eps_NTMap_app[OF assms(1)] cat_coeq_eps_NTMap_app[OF assms(2)]
by auto
subsubsection‹Universal property›
lemma is_cat_equalizerI':
assumes "ε :
E <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⇑→⇑⇩C⇩F ℭ (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F' :
⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ"
and "vsv F'"
and "F ∈⇩∘ Vset α"
and "𝒟⇩∘ F' = F"
and "⋀𝔣. 𝔣 ∈⇩∘ F ⟹ F'⦇𝔣⦈ : 𝔞 ↦⇘ℭ⇙ 𝔟"
and "𝔣 ∈⇩∘ F"
and "⋀ε' E'. ε' :
E' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⇑→⇑⇩C⇩F ℭ (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F' :
⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ ⟹
∃!f'. f' : E' ↦⇘ℭ⇙ E ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f'"
shows "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
proof-
let ?II = ‹⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F›
and ?II_II = ‹⇑→⇑⇩C⇩F ℭ (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F'›
interpret ε: is_cat_cone α E ?II ℭ ?II_II ε by (rule assms(1))
from assms(5,6) have 𝔞: "𝔞 ∈⇩∘ ℭ⦇Obj⦈" and 𝔟: "𝔟 ∈⇩∘ ℭ⦇Obj⦈" by auto
interpret par: cf_parallel α ‹𝔞⇩P⇩L F› ‹𝔟⇩P⇩L F› F 𝔞 𝔟 F' ℭ
by (intro ε.NTDom.HomCod.cat_cf_parallel_𝔞𝔟 assms 𝔞 𝔟) simp
show ?thesis
proof(intro is_cat_equalizerI is_cat_limitI assms(1-3))
fix u' r' assume prems: "u' : r' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ?II_II : ?II ↦↦⇩C⇘α⇙ ℭ"
interpret u': is_cat_cone α r' ?II ℭ ?II_II u' by (rule prems)
from assms(7)[OF prems] obtain f'
where f': "f' : r' ↦⇘ℭ⇙ E"
and u'_NTMap_app_𝔞: "u'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f'"
and unique_f':
"⋀f''.
⟦
f'' : r' ↦⇘ℭ⇙ E;
u'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f''
⟧ ⟹ f'' = f'"
by metis
show "∃!f'. f' : r' ↦⇘ℭ⇙ E ∧ u' = ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'"
proof(intro ex1I conjI; (elim conjE)?)
show "u' = ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'"
proof(rule ntcf_eqI)
show "u' : cf_const ?II ℭ r' ↦⇩C⇩F ?II_II : ?II ↦↦⇩C⇘α⇙ ℭ"
by (rule u'.is_ntcf_axioms)
from f' show "ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f' :
cf_const ?II ℭ r' ↦⇩C⇩F ?II_II : ?II ↦↦⇩C⇘α⇙ ℭ"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros )
have dom_lhs: "𝒟⇩∘ (u'⦇NTMap⦈) = ?II⦇Obj⦈"
unfolding cat_cs_simps by simp
from f' have dom_rhs:
"𝒟⇩∘ ((ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f')⦇NTMap⦈) = ?II⦇Obj⦈"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
show "u'⦇NTMap⦈ = (ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f')⦇NTMap⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume prems': "a ∈⇩∘ ?II⦇Obj⦈"
note [cat_parallel_cs_simps] =
cat_cone_cf_par_eps_NTMap_app[
OF u'.is_cat_cone_axioms assms(2-5), simplified
]
cat_cone_cf_par_eps_NTMap_app[OF assms(1-5), simplified]
u'_NTMap_app_𝔞
from prems' f' assms(6) show
"u'⦇NTMap⦈⦇a⦈ = (ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f')⦇NTMap⦈⦇a⦈"
by (elim the_cat_parallel_ObjE; simp only:)
(
cs_concl
cs_simp: cat_parallel_cs_simps cat_cs_simps
cs_intro: cat_cs_intros cat_parallel_cs_intros
)
qed (cs_concl cs_intro: V_cs_intros cat_cs_intros)+
qed simp_all
fix f'' assume prems'':
"f'' : r' ↦⇘ℭ⇙ E" "u' = ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f''"
from prems''(2) have u'_NTMap_a:
"u'⦇NTMap⦈⦇a⦈ = (ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'')⦇NTMap⦈⦇a⦈"
for a
by simp
have "u'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f''"
using u'_NTMap_a[of ‹𝔞⇩P⇩L F›] prems''(1)
by
(
cs_prems
cs_simp: cat_parallel_cs_simps cat_cs_simps
cs_intro: cat_parallel_cs_intros cat_cs_intros
)
from unique_f'[OF prems''(1) this] show "f'' = f'".
qed (rule f')
qed (use assms in fastforce)+
qed
lemma is_cat_coequalizerI':
assumes "ε :
⇑→⇑⇩C⇩F ℭ (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F 𝔟 𝔞 F' >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E :
⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ"
and "vsv F'"
and "F ∈⇩∘ Vset α"
and "𝒟⇩∘ F' = F"
and "⋀𝔣. 𝔣 ∈⇩∘ F ⟹ F'⦇𝔣⦈ : 𝔟 ↦⇘ℭ⇙ 𝔞"
and "𝔣 ∈⇩∘ F"
and "⋀ε' E'. ε' :
⇑→⇑⇩C⇩F ℭ (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F 𝔟 𝔞 F' >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E' :
⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ ⟹
∃!f'. f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = f' ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
shows "ε : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
proof-
let ?op_II = ‹⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F›
and ?op_II_II = ‹⇑→⇑⇩C⇩F ℭ (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F 𝔟 𝔞 F'›
and ?II = ‹⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F›
and ?II_II = ‹⇑→⇑⇩C⇩F (op_cat ℭ) (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F'›
interpret ε: is_cat_cocone α E ?op_II ℭ ?op_II_II ε by (rule assms(1))
from assms(5,6) have 𝔞: "𝔞 ∈⇩∘ ℭ⦇Obj⦈" and 𝔟: "𝔟 ∈⇩∘ ℭ⦇Obj⦈" by auto
interpret par: cf_parallel α ‹𝔟⇩P⇩L F› ‹𝔞⇩P⇩L F› F 𝔟 𝔞 F' ℭ
by (intro ε.NTDom.HomCod.cat_cf_parallel_𝔟𝔞 assms 𝔞 𝔟) simp
interpret op_par: cf_parallel α ‹𝔞⇩P⇩L F› ‹𝔟⇩P⇩L F› F 𝔞 𝔟 F' ‹op_cat ℭ›
by (rule par.cf_parallel_op)
have assms_4':
"∃!f'. f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘op_cat ℭ⇙ f'"
if "ε' : E' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ?II_II : ?II ↦↦⇩C⇘α⇙ op_cat ℭ" for ε' E'
proof-
have [cat_op_simps]:
"f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘op_cat ℭ⇙ f' ⟷
f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = f' ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
for f'
by (intro iffI conjI; (elim conjE)?)
(
cs_concl cs_shallow
cs_simp: category.op_cat_Comp[symmetric] cat_op_simps cat_cs_simps
cs_intro: cat_cs_intros cat_parallel_cs_intros
)+
interpret ε': is_cat_cone α E' ?II ‹op_cat ℭ› ?II_II ε' by (rule that)
show ?thesis
unfolding cat_op_simps
by
(
rule assms(7)[
OF ε'.is_cat_cocone_op[unfolded cat_op_simps],
unfolded cat_op_simps
]
)
qed
interpret op_ε: is_cat_equalizer α 𝔞 𝔟 F F' ‹op_cat ℭ› E ‹op_ntcf ε›
by
(
rule
is_cat_equalizerI'
[
OF ε.is_cat_cone_op[unfolded cat_op_simps],
unfolded cat_op_simps,
OF assms(2-6) assms_4',
simplified
]
)
show ?thesis by (rule op_ε.is_cat_coequalizer_op[unfolded cat_op_simps])
qed
lemma (in is_cat_equalizer) cat_eq_unique_cone:
assumes "ε' :
E' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⇑→⇑⇩C⇩F ℭ (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F' : ⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ"
(is ‹ε' : E' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ?II_II : ?II ↦↦⇩C⇘α⇙ ℭ›)
shows "∃!f'. f' : E' ↦⇘ℭ⇙ E ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f'"
proof-
interpret ε': is_cat_cone α E' ?II ℭ ?II_II ε' by (rule assms(1))
from cat_lim_ua_fo[OF assms(1)] obtain f' where f': "f' : E' ↦⇘ℭ⇙ E"
and ε'_def: "ε' = ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'"
and unique:
"⟦ f'' : E' ↦⇘ℭ⇙ E; ε' = ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'' ⟧ ⟹ f'' = f'"
for f''
by auto
from cat_eq_F_ne obtain 𝔣 where 𝔣: "𝔣 ∈⇩∘ F" by force
show ?thesis
proof(intro ex1I conjI; (elim conjE)?)
show f': "f' : E' ↦⇘ℭ⇙ E" by (rule f')
from ε'_def have "ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = (ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f')⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
by simp
from this f' show ε'_NTMap_app_I: "ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f'"
by
(
cs_prems
cs_simp: cat_cs_simps cs_intro: cat_cs_intros cat_parallel_cs_intros
)
fix f'' assume prems:
"f'' : E' ↦⇘ℭ⇙ E" "ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f''"
have "ε' = ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f''"
proof(rule ntcf_eqI[OF ])
show "ε' : cf_const ?II ℭ E' ↦⇩C⇩F ?II_II : ?II ↦↦⇩C⇘α⇙ ℭ"
by (rule ε'.is_ntcf_axioms)
from f' prems(1) show "ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'' :
cf_const ?II ℭ E' ↦⇩C⇩F ?II_II : ?II ↦↦⇩C⇘α⇙ ℭ"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
show "ε'⦇NTMap⦈ = (ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'')⦇NTMap⦈"
proof(rule vsv_eqI, unfold cat_cs_simps)
show "vsv ((ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'')⦇NTMap⦈)"
by (cs_concl cs_intro: cat_cs_intros)
from prems(1) show "?II⦇Obj⦈ = 𝒟⇩∘ ((ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'')⦇NTMap⦈)"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
fix a assume prems': "a ∈⇩∘ ?II⦇Obj⦈"
note [cat_cs_simps] =
cat_eq_eps_NTMap_app[OF 𝔣]
cat_cone_cf_par_eps_NTMap_app
[
OF
ε'.is_cat_cone_axioms
F'.vsv_axioms
cat_eq_F_in_Vset
cat_eq_F'_vdomain
cat_eq_F'_app_is_arr 𝔣,
simplified
]
from prems' prems(1) 𝔣 have [cat_cs_simps]:
"ε'⦇NTMap⦈⦇a⦈ = ε⦇NTMap⦈⦇a⦈ ∘⇩A⇘ℭ⇙ f''"
by (elim the_cat_parallel_ObjE; simp only:)
(
cs_concl
cs_simp: cat_cs_simps cat_parallel_cs_simps prems(2)
cs_intro: cat_cs_intros cat_parallel_cs_intros
)+
from prems' prems show
"ε'⦇NTMap⦈⦇a⦈ = (ε ∙⇩N⇩T⇩C⇩F ntcf_const ?II ℭ f'')⦇NTMap⦈⦇a⦈"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
qed auto
qed simp_all
from unique[OF prems(1) this] show "f'' = f'" .
qed
qed
lemma (in is_cat_equalizer) cat_eq_unique:
assumes "ε' : E' <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows
"∃!f'. f' : E' ↦⇘ℭ⇙ E ∧ ε' = ε ∙⇩N⇩T⇩C⇩F ntcf_const (⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F) ℭ f'"
by (rule cat_lim_unique[OF is_cat_equalizerD(1)[OF assms]])
lemma (in is_cat_equalizer) cat_eq_unique':
assumes "ε' : E' <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : E' ↦⇘ℭ⇙ E ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f'"
proof-
interpret ε': is_cat_equalizer α 𝔞 𝔟 F F' ℭ E' ε' by (rule assms(1))
show ?thesis by (rule cat_eq_unique_cone[OF ε'.is_cat_cone_axioms])
qed
lemma (in is_cat_coequalizer) cat_coeq_unique_cocone:
assumes "ε' :
⇑→⇑⇩C⇩F ℭ (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F 𝔟 𝔞 F' >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E' :
⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ"
(is ‹ε' : ?II_II >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E' : ?II ↦↦⇩C⇘α⇙ ℭ›)
shows "∃!f'. f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = f' ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
proof-
interpret ε': is_cat_cocone α E' ?II ℭ ?II_II ε' by (rule assms(1))
have [cat_op_simps]:
"f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘op_cat ℭ⇙ f' ⟷
f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = f' ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
for f'
by (intro iffI conjI; (elim conjE)?)
(
cs_concl cs_shallow
cs_simp: category.op_cat_Comp[symmetric] cat_op_simps cat_cs_simps
cs_intro: cat_cs_intros cat_parallel_cs_intros
)+
show ?thesis
by
(
rule is_cat_equalizer.cat_eq_unique_cone[
OF is_cat_equalizer_op ε'.is_cat_cone_op[unfolded cat_op_simps],
unfolded cat_op_simps
]
)
qed
lemma (in is_cat_coequalizer) cat_coeq_unique:
assumes "ε' : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'.
f' : E ↦⇘ℭ⇙ E' ∧ ε' = ntcf_const (⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F) ℭ f' ∙⇩N⇩T⇩C⇩F ε"
by (rule cat_colim_unique[OF is_cat_coequalizerD(1)[OF assms]])
lemma (in is_cat_coequalizer) cat_coeq_unique':
assumes "ε' : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = f' ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
proof-
interpret ε': is_cat_coequalizer α 𝔞 𝔟 F F' ℭ E' ε' by (rule assms(1))
show ?thesis by (rule cat_coeq_unique_cocone[OF ε'.is_cat_cocone_axioms])
qed
lemma cat_equalizer_ex_is_iso_arr:
assumes "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
and "ε' : E' <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : E' ↦⇩i⇩s⇩o⇘ℭ⇙ E"
and "ε' = ε ∙⇩N⇩T⇩C⇩F ntcf_const (⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F) ℭ f"
proof-
interpret ε: is_cat_equalizer α 𝔞 𝔟 F F' ℭ E ε by (rule assms(1))
interpret ε': is_cat_equalizer α 𝔞 𝔟 F F' ℭ E' ε' by (rule assms(2))
from that show ?thesis
by
(
elim cat_lim_ex_is_iso_arr[
OF ε.is_cat_limit_axioms ε'.is_cat_limit_axioms
]
)
qed
lemma cat_equalizer_ex_is_iso_arr':
assumes "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
and "ε' : E' <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,F,F') : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : E' ↦⇩i⇩s⇩o⇘ℭ⇙ E"
and "ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f"
and "ε'⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f"
proof-
interpret ε: is_cat_equalizer α 𝔞 𝔟 F F' ℭ E ε by (rule assms(1))
interpret ε': is_cat_equalizer α 𝔞 𝔟 F F' ℭ E' ε' by (rule assms(2))
obtain f where f: "f : E' ↦⇩i⇩s⇩o⇘ℭ⇙ E"
and "j ∈⇩∘ ⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F⦇Obj⦈ ⟹ ε'⦇NTMap⦈⦇j⦈ = ε⦇NTMap⦈⦇j⦈ ∘⇩A⇘ℭ⇙ f" for j
by
(
elim cat_lim_ex_is_iso_arr'[
OF ε.is_cat_limit_axioms ε'.is_cat_limit_axioms
]
)
then have
"ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f"
"ε'⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f"
unfolding the_cat_parallel_components by auto
with f show ?thesis using that by simp
qed
lemma cat_coequalizer_ex_is_iso_arr:
assumes "ε : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
and "ε' : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : E ↦⇩i⇩s⇩o⇘ℭ⇙ E'"
and "ε' = ntcf_const (⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F) ℭ f ∙⇩N⇩T⇩C⇩F ε"
proof-
interpret ε: is_cat_coequalizer α 𝔞 𝔟 F F' ℭ E ε by (rule assms(1))
interpret ε': is_cat_coequalizer α 𝔞 𝔟 F F' ℭ E' ε' by (rule assms(2))
from that show ?thesis
by
(
elim cat_colim_ex_is_iso_arr[
OF ε.is_cat_colimit_axioms ε'.is_cat_colimit_axioms
]
)
qed
lemma cat_coequalizer_ex_is_iso_arr':
assumes "ε : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
and "ε' : (𝔞,𝔟,F,F') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : E ↦⇩i⇩s⇩o⇘ℭ⇙ E'"
and "ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = f ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
and "ε'⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ = f ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔟⇩P⇩L F⦈"
proof-
interpret ε: is_cat_coequalizer α 𝔞 𝔟 F F' ℭ E ε by (rule assms(1))
interpret ε': is_cat_coequalizer α 𝔞 𝔟 F F' ℭ E' ε' by (rule assms(2))
obtain f where f: "f : E ↦⇩i⇩s⇩o⇘ℭ⇙ E'"
and "j ∈⇩∘ ⇑⇩C (𝔟⇩P⇩L F) (𝔞⇩P⇩L F) F⦇Obj⦈ ⟹ ε'⦇NTMap⦈⦇j⦈ = f ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇j⦈" for j
by
(
elim cat_colim_ex_is_iso_arr'[
OF ε.is_cat_colimit_axioms ε'.is_cat_colimit_axioms
]
)
then have
"ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = f ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈"
"ε'⦇NTMap⦈⦇𝔟⇩P⇩L F⦈ = f ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔟⇩P⇩L F⦈"
unfolding the_cat_parallel_components by auto
with f show ?thesis using that by simp
qed
subsubsection‹Further properties›
lemma (in is_cat_equalizer) cat_eq_is_monic_arr:
"ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ : E ↦⇩m⇩o⇩n⇘ℭ⇙ 𝔞"
proof(intro is_monic_arrI)
show "ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ : E ↦⇘ℭ⇙ 𝔞"
by
(
cs_concl
cs_simp: cat_cs_simps cat_parallel_cs_simps
cs_intro: cat_cs_intros cat_parallel_cs_intros
)
fix f g a
assume prems:
"f : a ↦⇘ℭ⇙ E"
"g : a ↦⇘ℭ⇙ E"
"ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ g"
define ε' where "ε' = ε ∙⇩N⇩T⇩C⇩F ntcf_const (⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F) ℭ f"
from prems(1) have "ε' :
a <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ⇑→⇑⇩C⇩F ℭ (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F 𝔞 𝔟 F' :
⇑⇩C (𝔞⇩P⇩L F) (𝔟⇩P⇩L F) F ↦↦⇩C⇘α⇙ ℭ"
unfolding ε'_def
by (cs_concl cs_shallow cs_intro: is_cat_coneI cat_cs_intros)
from cat_eq_unique_cone[OF this] obtain f'
where f': "f' : a ↦⇘ℭ⇙ E"
and ε'_𝔞: "ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f'"
and unique_f': "⋀f''.
⟦ f'' : a ↦⇘ℭ⇙ E; ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f'' ⟧ ⟹
f'' = f'"
by meson
from prems(1) have unique_f: "ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ f"
unfolding ε'_def
by
(
cs_concl
cs_simp: cat_cs_simps cs_intro: cat_cs_intros cat_parallel_cs_intros
)
from prems(1) have unique_g: "ε'⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ ∘⇩A⇘ℭ⇙ g"
unfolding ε'_def
by
(
cs_concl
cs_simp: prems(3) cat_cs_simps
cs_intro: cat_cs_intros cat_parallel_cs_intros
)
show "f = g"
by
(
rule unique_f'
[
OF prems(1) unique_f,
unfolded unique_f'[OF prems(2) unique_g, symmetric]
]
)
qed
lemma (in is_cat_coequalizer) cat_coeq_is_epic_arr:
"ε⦇NTMap⦈⦇𝔞⇩P⇩L F⦈ : 𝔞 ↦⇩e⇩p⇩i⇘ℭ⇙ E"
by
(
rule is_cat_equalizer.cat_eq_is_monic_arr[
OF is_cat_equalizer_op, unfolded cat_op_simps
]
)
subsection‹Equalizer and coequalizer for two arrows›
subsubsection‹Definition and elementary properties›
text‹
See \<^cite>‹"noauthor_wikipedia_2001"›\footnote{
\url{https://en.wikipedia.org/wiki/Equaliser_(mathematics)}
}.
›
locale is_cat_equalizer_2 =
is_cat_limit α ‹↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L› ℭ ‹↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣› E ε
for α 𝔞 𝔟 𝔤 𝔣 ℭ E ε +
assumes cat_eq_𝔤[cat_lim_cs_intros]: "𝔤 : 𝔞 ↦⇘ℭ⇙ 𝔟"
and cat_eq_𝔣[cat_lim_cs_intros]: "𝔣 : 𝔞 ↦⇘ℭ⇙ 𝔟"
syntax "_is_cat_equalizer_2" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ _ <⇩C⇩F⇩.⇩e⇩q '(_,_,_,_') :/ ↑↑⇩C ↦↦⇩Cı _)› [51, 51, 51, 51, 51, 51] 51)
translations "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_equalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E ε"
locale is_cat_coequalizer_2 =
is_cat_colimit
α ‹↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L› ℭ ‹↑↑→↑↑⇩C⇩F ℭ 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤› E ε
for α 𝔞 𝔟 𝔤 𝔣 ℭ E ε +
assumes cat_coeq_𝔤[cat_lim_cs_intros]: "𝔤 : 𝔟 ↦⇘ℭ⇙ 𝔞"
and cat_coeq_𝔣[cat_lim_cs_intros]: "𝔣 : 𝔟 ↦⇘ℭ⇙ 𝔞"
syntax "_is_cat_coequalizer_2" :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ bool"
(‹(_ :/ '(_,_,_,_') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q _ :/ ↑↑⇩C ↦↦⇩Cı _)› [51, 51, 51, 51, 51, 51] 51)
translations "ε : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ" ⇌
"CONST is_cat_coequalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E ε"
text‹Rules.›
lemma (in is_cat_equalizer_2) is_cat_equalizer_2_axioms'[cat_lim_cs_intros]:
assumes "α' = α"
and "E' = E"
and "𝔞' = 𝔞"
and "𝔟' = 𝔟"
and "𝔤' = 𝔤"
and "𝔣' = 𝔣"
and "ℭ' = ℭ"
shows "ε : E' <⇩C⇩F⇩.⇩e⇩q (𝔞',𝔟',𝔤',𝔣') : ↑↑⇩C ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_equalizer_2_axioms)
mk_ide rf is_cat_equalizer_2_def[unfolded is_cat_equalizer_2_axioms_def]
|intro is_cat_equalizer_2I|
|dest is_cat_equalizer_2D[dest]|
|elim is_cat_equalizer_2E[elim]|
lemmas [cat_lim_cs_intros] = is_cat_equalizer_2D(1)
lemma (in is_cat_coequalizer_2) is_cat_coequalizer_2_axioms'[cat_lim_cs_intros]:
assumes "α' = α"
and "E' = E"
and "𝔞' = 𝔞"
and "𝔟' = 𝔟"
and "𝔤' = 𝔤"
and "𝔣' = 𝔣"
and "ℭ' = ℭ"
shows "ε : (𝔞',𝔟',𝔤',𝔣') >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ↑↑⇩C ↦↦⇩C⇘α'⇙ ℭ'"
unfolding assms by (rule is_cat_coequalizer_2_axioms)
mk_ide rf is_cat_coequalizer_2_def[unfolded is_cat_coequalizer_2_axioms_def]
|intro is_cat_coequalizer_2I|
|dest is_cat_coequalizer_2D[dest]|
|elim is_cat_coequalizer_2E[elim]|
lemmas [cat_lim_cs_intros] = is_cat_coequalizer_2D(1)
text‹Helper lemmas.›
lemma cat_eq_F'_helper:
"(λf∈⇩∘set {𝔣⇩P⇩L, 𝔤⇩P⇩L}. (f = 𝔤⇩P⇩L ? 𝔤 : 𝔣)) =
(λf∈⇩∘set {𝔣⇩P⇩L, 𝔤⇩P⇩L}. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))"
using cat_PL2_𝔤𝔣 by (simp add: VLambda_vdoubleton)
text‹Elementary properties.›
sublocale is_cat_equalizer_2 ⊆ cf_parallel_2 α 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 ℭ
by (intro cf_parallel_2I cat_parallel_2I)
(simp_all add: cat_parallel_cs_intros cat_lim_cs_intros cat_cs_intros)
sublocale is_cat_coequalizer_2 ⊆ cf_parallel_2 α 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤 ℭ
by (intro cf_parallel_2I cat_parallel_2I)
(
auto simp:
cat_parallel_cs_intros cat_lim_cs_intros cat_cs_intros
cat_PL2_ineq[symmetric]
)
lemma (in is_cat_equalizer_2) cat_equalizer_2_is_cat_equalizer:
"ε :
E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,set {𝔤⇩P⇩L, 𝔣⇩P⇩L},(λf∈⇩∘set {𝔤⇩P⇩L, 𝔣⇩P⇩L}. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))) :
⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
by
(
intro is_cat_equalizerI,
rule is_cat_limit_axioms[
unfolded the_cf_parallel_2_def the_cat_parallel_2_def 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
]
)
(auto simp: Limit_vdoubleton_in_VsetI cat_parallel_cs_intros)
lemma (in is_cat_coequalizer_2) cat_coequalizer_2_is_cat_coequalizer:
"ε :
(𝔞,𝔟,set {𝔤⇩P⇩L, 𝔣⇩P⇩L},(λf∈⇩∘set {𝔤⇩P⇩L, 𝔣⇩P⇩L}. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E :
⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
proof
(
intro is_cat_coequalizerI,
fold the_cf_parallel_2_def the_cat_parallel_2_def 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
)
show "ε :
↑↑→↑↑⇩C⇩F ℭ 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔟 𝔞 𝔤 𝔣 >⇩C⇩F⇩.⇩c⇩o⇩l⇩i⇩m E :
↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
by
(
subst the_cat_parallel_2_commute,
subst cf_parallel_2_the_cf_parallel_2_commute[symmetric]
)
(intro is_cat_colimit_axioms)
qed (auto simp: Limit_vdoubleton_in_VsetI cat_parallel_cs_intros)
lemma cat_equalizer_is_cat_equalizer_2:
assumes "ε :
E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,set {𝔤⇩P⇩L, 𝔣⇩P⇩L},(λf∈⇩∘set {𝔤⇩P⇩L, 𝔣⇩P⇩L}. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))) :
⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
proof-
interpret ε: is_cat_equalizer
α 𝔞 𝔟 ‹set {𝔤⇩P⇩L, 𝔣⇩P⇩L}› ‹(λf∈⇩∘set {𝔤⇩P⇩L, 𝔣⇩P⇩L}. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))› ℭ E ε
by (rule assms)
have 𝔣⇩P⇩L: "𝔣⇩P⇩L ∈⇩∘ set {𝔤⇩P⇩L, 𝔣⇩P⇩L}" and 𝔤⇩P⇩L: "𝔤⇩P⇩L ∈⇩∘ set {𝔤⇩P⇩L, 𝔣⇩P⇩L}" by auto
show ?thesis
using ε.cat_eq_F'_app_is_arr[OF 𝔤⇩P⇩L] ε.cat_eq_F'_app_is_arr[OF 𝔣⇩P⇩L]
by
(
intro
is_cat_equalizer_2I
ε.is_cat_limit_axioms
[
folded
the_cf_parallel_2_def the_cat_parallel_2_def 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
]
)
(auto simp: cat_PL2_𝔤𝔣)
qed
lemma cat_coequalizer_is_cat_coequalizer_2:
assumes "ε :
(𝔞,𝔟,set {𝔤⇩P⇩L, 𝔣⇩P⇩L},(λf∈⇩∘set {𝔤⇩P⇩L, 𝔣⇩P⇩L}. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E :
⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "ε : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
proof-
interpret is_cat_coequalizer
α 𝔞 𝔟 ‹set {𝔤⇩P⇩L, 𝔣⇩P⇩L}› ‹(λf∈⇩∘set {𝔤⇩P⇩L, 𝔣⇩P⇩L}. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))› ℭ E ε
by (rule assms)
interpret cf_parallel_2 α 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔟 𝔞 𝔤 𝔣 ℭ
by
(
rule cf_parallel_is_cf_parallel_2[
OF cf_parallel_axioms cat_PL2_𝔤𝔣, folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
]
)
show "ε : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
by
(
intro is_cat_coequalizer_2I,
subst the_cat_parallel_2_commute,
subst cf_parallel_2_the_cf_parallel_2_commute[symmetric],
rule is_cat_colimit_axioms[
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def the_cat_parallel_2_def the_cf_parallel_2_def
]
)
(simp_all add: cf_parallel_𝔣' cf_parallel_𝔤')
qed
text‹Duality.›
lemma (in is_cat_equalizer_2) is_cat_coequalizer_2_op:
"op_ntcf ε : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ↑↑⇩C ↦↦⇩C⇘α⇙ op_cat ℭ"
unfolding is_cat_equalizer_def
by
(
rule cat_coequalizer_is_cat_coequalizer_2
[
OF is_cat_equalizer.is_cat_coequalizer_op[
OF cat_equalizer_2_is_cat_equalizer
]
]
)
lemma (in is_cat_equalizer_2) is_cat_coequalizer_2_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf ε : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_coequalizer_2_op)
lemmas [cat_op_intros] = is_cat_equalizer_2.is_cat_coequalizer_2_op'
lemma (in is_cat_coequalizer_2) is_cat_equalizer_2_op:
"op_ntcf ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ op_cat ℭ"
unfolding is_cat_coequalizer_def
by
(
rule cat_equalizer_is_cat_equalizer_2
[
OF is_cat_coequalizer.is_cat_equalizer_op[
OF cat_coequalizer_2_is_cat_coequalizer
]
]
)
lemma (in is_cat_coequalizer_2) is_cat_equalizer_2_op'[cat_op_intros]:
assumes "ℭ' = op_cat ℭ"
shows "op_ntcf ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ'"
unfolding assms by (rule is_cat_equalizer_2_op)
lemmas [cat_op_intros] = is_cat_coequalizer_2.is_cat_equalizer_2_op'
text‹Further properties.›
lemma (in category) cat_cf_parallel_2_cat_equalizer:
assumes "𝔤 : 𝔞 ↦⇘ℭ⇙ 𝔟" and "𝔣 : 𝔞 ↦⇘ℭ⇙ 𝔟"
shows "cf_parallel_2 α 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 ℭ"
using assms
by (intro cf_parallel_2I cat_parallel_2I)
(auto simp: cat_parallel_cs_intros cat_cs_intros)
lemma (in category) cat_cf_parallel_2_cat_coequalizer:
assumes "𝔤 : 𝔟 ↦⇘ℭ⇙ 𝔞" and "𝔣 : 𝔟 ↦⇘ℭ⇙ 𝔞"
shows "cf_parallel_2 α 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤 ℭ"
using assms
by (intro cf_parallel_2I cat_parallel_2I)
(simp_all add: cat_parallel_cs_intros cat_cs_intros cat_PL2_ineq[symmetric])
lemma cat_cone_cf_par_2_eps_NTMap_app:
assumes "ε :
E <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 : ↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
and "𝔤 : 𝔞 ↦⇘ℭ⇙ 𝔟"
and "𝔣 : 𝔞 ↦⇘ℭ⇙ 𝔟"
shows
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = 𝔤 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = 𝔣 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
proof-
let ?II = ‹↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L›
and ?II_II = ‹↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣›
and ?F = ‹set {𝔤⇩P⇩L, 𝔣⇩P⇩L}›
interpret ε: is_cat_cone α E ?II ℭ ?II_II ε by (rule assms(1))
from ε.cat_PL2_𝔣 ε.cat_PL2_𝔤 have 𝔤𝔣: "?F ∈⇩∘ Vset α"
by (intro Limit_vdoubleton_in_VsetI) auto
from assms(2,3) have
"(⋀𝔣'. 𝔣' ∈⇩∘ ?F ⟹ (λf∈⇩∘?F. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))⦇𝔣'⦈ : 𝔞 ↦⇘ℭ⇙ 𝔟)"
by auto
note cat_cone_cf_par_eps_NTMap_app = cat_cone_cf_par_eps_NTMap_app
[
OF
assms(1)[
unfolded
the_cat_parallel_2_def the_cf_parallel_2_def 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
],
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def, OF _ 𝔤𝔣 _ this,
simplified
]
from
cat_cone_cf_par_eps_NTMap_app[of 𝔤⇩P⇩L, simplified]
cat_cone_cf_par_eps_NTMap_app[of 𝔣⇩P⇩L, simplified]
cat_PL2_𝔤𝔣
show
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = 𝔤 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = 𝔣 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
by fastforce+
qed
lemma cat_cocone_cf_par_2_eps_NTMap_app:
assumes "ε :
↑↑→↑↑⇩C⇩F ℭ 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤 >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E :
↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
and "𝔤 : 𝔟 ↦⇘ℭ⇙ 𝔞"
and "𝔣 : 𝔟 ↦⇘ℭ⇙ 𝔞"
shows
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔤"
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔣"
proof-
let ?II = ‹↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L›
and ?II_II = ‹↑↑→↑↑⇩C⇩F ℭ 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤›
and ?F = ‹set {𝔤⇩P⇩L, 𝔣⇩P⇩L}›
have 𝔣𝔤_𝔤𝔣: "{𝔣⇩P⇩L, 𝔤⇩P⇩L} = {𝔤⇩P⇩L, 𝔣⇩P⇩L}" by auto
interpret ε: is_cat_cocone α E ?II ℭ ?II_II ε by (rule assms(1))
from ε.cat_PL2_𝔣 ε.cat_PL2_𝔤 have 𝔤𝔣: "?F ∈⇩∘ Vset α"
by (intro Limit_vdoubleton_in_VsetI) auto
from assms(2,3) have
"(⋀𝔣'. 𝔣' ∈⇩∘ ?F ⟹ (λf∈⇩∘?F. (f = 𝔤⇩P⇩L ? 𝔤 : 𝔣))⦇𝔣'⦈ : 𝔟 ↦⇘ℭ⇙ 𝔞)"
by auto
note cat_cocone_cf_par_eps_NTMap_app = cat_cocone_cf_par_eps_NTMap_app
[
OF assms(1)
[
unfolded
the_cat_parallel_2_def
the_cf_parallel_2_def
𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
insert_commute,
unfolded 𝔣𝔤_𝔤𝔣
],
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def,
OF _ 𝔤𝔣 _ this,
simplified
]
from
cat_cocone_cf_par_eps_NTMap_app[of 𝔤⇩P⇩L, simplified]
cat_cocone_cf_par_eps_NTMap_app[of 𝔣⇩P⇩L, simplified]
cat_PL2_𝔤𝔣
show
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔤"
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔣"
by fastforce+
qed
lemma (in is_cat_equalizer_2) cat_eq_2_eps_NTMap_app:
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = 𝔤 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = 𝔣 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
proof-
have 𝔤⇩P⇩L: "𝔤⇩P⇩L ∈⇩∘ set {𝔤⇩P⇩L, 𝔣⇩P⇩L}" and 𝔣⇩P⇩L: "𝔣⇩P⇩L ∈⇩∘ set {𝔤⇩P⇩L, 𝔣⇩P⇩L}" by auto
note cat_eq_eps_NTMap_app = is_cat_equalizer.cat_eq_eps_NTMap_app
[
OF cat_equalizer_2_is_cat_equalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
]
from cat_eq_eps_NTMap_app[OF 𝔤⇩P⇩L] cat_eq_eps_NTMap_app[OF 𝔣⇩P⇩L] cat_PL2_𝔤𝔣 show
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = 𝔤 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = 𝔣 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
by auto
qed
lemma (in is_cat_coequalizer_2) cat_coeq_2_eps_NTMap_app:
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔤"
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔣"
proof-
have 𝔤⇩P⇩L: "𝔤⇩P⇩L ∈⇩∘ set {𝔤⇩P⇩L, 𝔣⇩P⇩L}" and 𝔣⇩P⇩L: "𝔣⇩P⇩L ∈⇩∘ set {𝔤⇩P⇩L, 𝔣⇩P⇩L}" by auto
note cat_eq_eps_NTMap_app = is_cat_coequalizer.cat_coeq_eps_NTMap_app
[
OF cat_coequalizer_2_is_cat_coequalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
]
from cat_eq_eps_NTMap_app[OF 𝔤⇩P⇩L] cat_eq_eps_NTMap_app[OF 𝔣⇩P⇩L] cat_PL2_𝔤𝔣 show
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔤"
"ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔣"
by auto
qed
lemma (in is_cat_equalizer_2) cat_eq_2_Comp_eq:
"𝔤 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = 𝔣 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
"𝔣 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = 𝔤 ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
unfolding cat_eq_2_eps_NTMap_app[symmetric] by simp_all
lemma (in is_cat_coequalizer_2) cat_coeq_2_Comp_eq:
"ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔤 = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔣"
"ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔣 = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ 𝔤"
unfolding cat_coeq_2_eps_NTMap_app[symmetric] by simp_all
subsubsection‹Universal property›
lemma is_cat_equalizer_2I':
assumes "ε :
E <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 : ↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
and "𝔤 : 𝔞 ↦⇘ℭ⇙ 𝔟"
and "𝔣 : 𝔞 ↦⇘ℭ⇙ 𝔟"
and "⋀ε' E'. ε' :
E' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 :
↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L ↦↦⇩C⇘α⇙ ℭ ⟹
∃!f'. f' : E' ↦⇘ℭ⇙ E ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ f'"
shows "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
proof-
let ?II = ‹↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L›
and ?II_II = ‹↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣›
and ?F = ‹set {𝔤⇩P⇩L, 𝔣⇩P⇩L}›
interpret ε: is_cat_cone α E ?II ℭ ?II_II ε by (rule assms(1))
from ε.cat_PL2_𝔣 ε.cat_PL2_𝔤 have 𝔤𝔣: "?F ∈⇩∘ Vset α"
by (intro Limit_vdoubleton_in_VsetI) auto
from assms(2,3) have "(λf∈⇩∘?F. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))⦇𝔣'⦈ : 𝔞 ↦⇘ℭ⇙ 𝔟"
if "𝔣' ∈⇩∘ ?F" for 𝔣'
using that by simp
note is_cat_equalizerI' = is_cat_equalizerI'
[
OF
assms(1)[
unfolded
the_cat_parallel_2_def the_cf_parallel_2_def 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def
],
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def,
OF
_
𝔤𝔣
_
this
_
assms(4)[unfolded the_cf_parallel_2_def the_cat_parallel_2_def],
of 𝔤⇩P⇩L,
simplified
]
show ?thesis by (rule cat_equalizer_is_cat_equalizer_2[OF is_cat_equalizerI'])
qed
lemma is_cat_coequalizer_2I':
assumes "ε :
↑↑→↑↑⇩C⇩F ℭ 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤 >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E :
↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
and "𝔤 : 𝔟 ↦⇘ℭ⇙ 𝔞"
and "𝔣 : 𝔟 ↦⇘ℭ⇙ 𝔞"
and "⋀ε' E'. ε' :
↑↑→↑↑⇩C⇩F ℭ 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤 >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E' :
↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L ↦↦⇩C⇘α⇙ ℭ ⟹
∃!f'. f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = f' ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
shows "ε : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
proof-
let ?II = ‹↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L›
and ?II_II = ‹↑↑→↑↑⇩C⇩F ℭ 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤›
and ?F = ‹set {𝔤⇩P⇩L, 𝔣⇩P⇩L}›
have 𝔣𝔤_𝔤𝔣: "{𝔣⇩P⇩L, 𝔤⇩P⇩L} = {𝔤⇩P⇩L, 𝔣⇩P⇩L}" by auto
interpret ε: is_cat_cocone α E ?II ℭ ?II_II ε by (rule assms(1))
from ε.cat_PL2_𝔣 ε.cat_PL2_𝔤 have 𝔤𝔣: "?F ∈⇩∘ Vset α"
by (intro Limit_vdoubleton_in_VsetI) auto
from assms(2,3) have "(λf∈⇩∘set {𝔤⇩P⇩L, 𝔣⇩P⇩L}. (f = 𝔤⇩P⇩L ? 𝔤 : 𝔣))⦇𝔣'⦈ : 𝔟 ↦⇘ℭ⇙ 𝔞"
if "𝔣' ∈⇩∘ set {𝔤⇩P⇩L, 𝔣⇩P⇩L}" for 𝔣'
using that by simp
note is_cat_coequalizerI'
[
OF assms(1)[
unfolded
the_cat_parallel_2_def the_cf_parallel_2_def 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def 𝔣𝔤_𝔤𝔣
],
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def,
OF
_
𝔤𝔣
_
this
_
assms(4)[unfolded the_cf_parallel_2_def the_cat_parallel_2_def 𝔣𝔤_𝔤𝔣],
of 𝔤⇩P⇩L,
simplified
]
with cat_PL2_𝔤𝔣 have
"ε : (𝔞,𝔟,?F,(λf∈⇩∘?F. (f = 𝔣⇩P⇩L ? 𝔣 : 𝔤))) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ⇑⇩C ↦↦⇩C⇘α⇙ ℭ"
by (auto simp: VLambda_vdoubleton)
from cat_coequalizer_is_cat_coequalizer_2[OF this] show ?thesis by simp
qed
lemma (in is_cat_equalizer_2) cat_eq_2_unique_cone:
assumes "ε' :
E' <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 :
↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : E' ↦⇘ℭ⇙ E ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ f'"
by
(
rule is_cat_equalizer.cat_eq_unique_cone
[
OF cat_equalizer_2_is_cat_equalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def,
OF assms[unfolded the_cf_parallel_2_def the_cat_parallel_2_def]
]
)
lemma (in is_cat_equalizer_2) cat_eq_2_unique:
assumes "ε' : E' <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows
"∃!f'. f' : E' ↦⇘ℭ⇙ E ∧ ε' = ε ∙⇩N⇩T⇩C⇩F ntcf_const (↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L) ℭ f'"
proof-
interpret ε': is_cat_equalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E' ε' by (rule assms)
show ?thesis
by
(
rule is_cat_equalizer.cat_eq_unique
[
OF cat_equalizer_2_is_cat_equalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def,
OF ε'.cat_equalizer_2_is_cat_equalizer,
folded the_cat_parallel_2_def
]
)
qed
lemma (in is_cat_equalizer_2) cat_eq_2_unique':
assumes "ε' : E' <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : E' ↦⇘ℭ⇙ E ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ f'"
proof-
interpret ε': is_cat_equalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E' ε' by (rule assms)
show ?thesis
by
(
rule is_cat_equalizer.cat_eq_unique'
[
OF cat_equalizer_2_is_cat_equalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def,
OF ε'.cat_equalizer_2_is_cat_equalizer,
folded the_cat_parallel_2_def
]
)
qed
lemma (in is_cat_coequalizer_2) cat_coeq_2_unique_cocone:
assumes "ε' :
↑↑→↑↑⇩C⇩F ℭ 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L 𝔟 𝔞 𝔣 𝔤 >⇩C⇩F⇩.⇩c⇩o⇩c⇩o⇩n⇩e E' :
↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = f' ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
by
(
rule is_cat_coequalizer.cat_coeq_unique_cocone
[
OF cat_coequalizer_2_is_cat_coequalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def insert_commute,
OF assms[
unfolded
the_cf_parallel_2_def the_cat_parallel_2_def cat_eq_F'_helper
]
]
)
lemma (in is_cat_coequalizer_2) cat_coeq_2_unique:
assumes "ε' : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'.
f' : E ↦⇘ℭ⇙ E' ∧
ε' = ntcf_const (↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L) ℭ f' ∙⇩N⇩T⇩C⇩F ε"
proof-
interpret ε': is_cat_coequalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E' ε' by (rule assms)
show ?thesis
by
(
rule is_cat_coequalizer.cat_coeq_unique
[
OF cat_coequalizer_2_is_cat_coequalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def,
OF ε'.cat_coequalizer_2_is_cat_coequalizer,
folded the_cat_parallel_2_def the_cat_parallel_2_commute
]
)
qed
lemma (in is_cat_coequalizer_2) cat_coeq_2_unique':
assumes "ε' : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
shows "∃!f'. f' : E ↦⇘ℭ⇙ E' ∧ ε'⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = f' ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
proof-
interpret ε': is_cat_coequalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E' ε' by (rule assms)
show ?thesis
by
(
rule is_cat_coequalizer.cat_coeq_unique'
[
OF cat_coequalizer_2_is_cat_coequalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def,
OF ε'.cat_coequalizer_2_is_cat_coequalizer,
folded the_cat_parallel_2_def
]
)
qed
lemma cat_equalizer_2_ex_is_iso_arr:
assumes "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
and "ε' : E' <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : E' ↦⇩i⇩s⇩o⇘ℭ⇙ E"
and "ε' = ε ∙⇩N⇩T⇩C⇩F ntcf_const (↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L) ℭ f"
proof-
interpret ε: is_cat_equalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E ε by (rule assms(1))
interpret ε': is_cat_equalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E' ε' by (rule assms(2))
show ?thesis
using that
by
(
rule cat_equalizer_ex_is_iso_arr
[
OF
ε.cat_equalizer_2_is_cat_equalizer
ε'.cat_equalizer_2_is_cat_equalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def the_cat_parallel_2_def
]
)
qed
lemma cat_equalizer_2_ex_is_iso_arr':
assumes "ε : E <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
and "ε' : E' <⇩C⇩F⇩.⇩e⇩q (𝔞,𝔟,𝔤,𝔣) : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : E' ↦⇩i⇩s⇩o⇘ℭ⇙ E"
and "ε'⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ f"
and "ε'⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ ∘⇩A⇘ℭ⇙ f"
proof-
interpret ε: is_cat_equalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E ε by (rule assms(1))
interpret ε': is_cat_equalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E' ε' by (rule assms(2))
show ?thesis
using that
by
(
rule cat_equalizer_ex_is_iso_arr'
[
OF
ε.cat_equalizer_2_is_cat_equalizer
ε'.cat_equalizer_2_is_cat_equalizer,
folded 𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def the_cat_parallel_2_def
]
)
qed
lemma cat_coequalizer_2_ex_is_iso_arr:
assumes "ε : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
and "ε' : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : E ↦⇩i⇩s⇩o⇘ℭ⇙ E'"
and "ε' = ntcf_const (↑↑⇩C 𝔟⇩P⇩L⇩2 𝔞⇩P⇩L⇩2 𝔣⇩P⇩L 𝔤⇩P⇩L) ℭ f ∙⇩N⇩T⇩C⇩F ε"
proof-
interpret ε: is_cat_coequalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E ε by (rule assms(1))
interpret ε': is_cat_coequalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E' ε' by (rule assms(2))
show ?thesis
using that
by
(
rule cat_coequalizer_ex_is_iso_arr
[
OF
ε.cat_coequalizer_2_is_cat_coequalizer
ε'.cat_coequalizer_2_is_cat_coequalizer,
folded
𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def the_cat_parallel_2_def the_cat_parallel_2_commute
]
)
qed
lemma cat_coequalizer_2_ex_is_iso_arr':
assumes "ε : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
and "ε' : (𝔞,𝔟,𝔤,𝔣) >⇩C⇩F⇩.⇩c⇩o⇩e⇩q E' : ↑↑⇩C ↦↦⇩C⇘α⇙ ℭ"
obtains f where "f : E ↦⇩i⇩s⇩o⇘ℭ⇙ E'"
and "ε'⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ = f ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈"
and "ε'⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈ = f ∘⇩A⇘ℭ⇙ ε⦇NTMap⦈⦇𝔟⇩P⇩L⇩2⦈"
proof-
interpret ε: is_cat_coequalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E ε by (rule assms(1))
interpret ε': is_cat_coequalizer_2 α 𝔞 𝔟 𝔤 𝔣 ℭ E' ε' by (rule assms(2))
show ?thesis
using that
by
(
rule cat_coequalizer_ex_is_iso_arr'
[
OF
ε.cat_coequalizer_2_is_cat_coequalizer
ε'.cat_coequalizer_2_is_cat_coequalizer,
folded
𝔞⇩P⇩L⇩2_def 𝔟⇩P⇩L⇩2_def the_cat_parallel_2_def the_cat_parallel_2_commute
]
)
qed
subsubsection‹Further properties›
lemma (in is_cat_equalizer_2) cat_eq_2_is_monic_arr:
"ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ : E ↦⇩m⇩o⇩n⇘ℭ⇙ 𝔞"
by
(
rule is_cat_equalizer.cat_eq_is_monic_arr[
OF cat_equalizer_2_is_cat_equalizer, folded 𝔞⇩P⇩L⇩2_def
]
)
lemma (in is_cat_coequalizer_2) cat_coeq_2_is_epic_arr:
"ε⦇NTMap⦈⦇𝔞⇩P⇩L⇩2⦈ : 𝔞 ↦⇩e⇩p⇩i⇘ℭ⇙ E"
by
(
rule is_cat_coequalizer.cat_coeq_is_epic_arr[
OF cat_coequalizer_2_is_cat_coequalizer, folded 𝔞⇩P⇩L⇩2_def
]
)
subsection‹Equalizer cone›
subsubsection‹Definition and elementary properties›
definition ntcf_equalizer_base :: "V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ V ⇒ (V ⇒ V) ⇒ V"
where "ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e =
[
(λx∈⇩∘↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L⦇Obj⦈. e x),
cf_const (↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L) ℭ E,
↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣,
↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L,
ℭ
]⇩∘"
text‹Components.›
lemma ntcf_equalizer_base_components:
shows "ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e⦇NTMap⦈ =
(λx∈⇩∘↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L⦇Obj⦈. e x)"
and [cat_lim_cs_simps]: "ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e⦇NTDom⦈ =
cf_const (↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L) ℭ E"
and [cat_lim_cs_simps]: "ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e⦇NTCod⦈ =
↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣"
and [cat_lim_cs_simps]:
"ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e⦇NTDGDom⦈ = ↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L"
and [cat_lim_cs_simps]:
"ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e⦇NTDGCod⦈ = ℭ"
unfolding ntcf_equalizer_base_def nt_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹Natural transformation map›
mk_VLambda ntcf_equalizer_base_components(1)
|vsv ntcf_equalizer_base_NTMap_vsv[cat_lim_cs_intros]|
|vdomain ntcf_equalizer_base_NTMap_vdomain[cat_lim_cs_simps]|
|app ntcf_equalizer_base_NTMap_app[cat_lim_cs_simps]|
subsubsection‹Equalizer cone is a cone›
lemma (in category) cat_ntcf_equalizer_base_is_cat_cone:
assumes "e 𝔞⇩P⇩L⇩2 : E ↦⇘ℭ⇙ 𝔞"
and "e 𝔟⇩P⇩L⇩2 : E ↦⇘ℭ⇙ 𝔟"
and "e 𝔟⇩P⇩L⇩2 = 𝔤 ∘⇩A⇘ℭ⇙ e 𝔞⇩P⇩L⇩2"
and "e 𝔟⇩P⇩L⇩2 = 𝔣 ∘⇩A⇘ℭ⇙ e 𝔞⇩P⇩L⇩2"
and "𝔤 : 𝔞 ↦⇘ℭ⇙ 𝔟"
and "𝔣 : 𝔞 ↦⇘ℭ⇙ 𝔟"
shows "ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e :
E <⇩C⇩F⇩.⇩c⇩o⇩n⇩e ↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 :
↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
proof-
interpret par: cf_parallel_2 α 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 ℭ
by (intro cf_parallel_2I cat_parallel_2I assms(5,6))
(simp_all add: cat_parallel_cs_intros cat_cs_intros)
show ?thesis
proof(intro is_cat_coneI is_tm_ntcfI' is_ntcfI')
show "vfsequence (ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e)"
unfolding ntcf_equalizer_base_def by auto
show "vcard (ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e) = 5⇩ℕ"
unfolding ntcf_equalizer_base_def by (simp add: nat_omega_simps)
from assms(2) show
"cf_const (↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L) ℭ E : ↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
by
(
cs_concl
cs_simp: cat_cs_simps
cs_intro: cat_small_cs_intros cat_parallel_cs_intros cat_cs_intros
)
from assms show
"↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣 : ↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L ↦↦⇩C⇘α⇙ ℭ"
by (cs_concl cs_intro: cat_parallel_cs_intros cat_small_cs_intros)
show
"ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e⦇NTMap⦈⦇i⦈ :
cf_const (↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L) ℭ E⦇ObjMap⦈⦇i⦈ ↦⇘ℭ⇙
↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣⦇ObjMap⦈⦇i⦈"
if "i ∈⇩∘ ↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L⦇Obj⦈" for i
proof-
from that assms(1,2,5,6) show ?thesis
by (elim the_cat_parallel_2_ObjE; simp only:)
(
cs_concl
cs_simp: cat_lim_cs_simps cat_cs_simps cat_parallel_cs_simps
cs_intro: cat_cs_intros cat_parallel_cs_intros
)
qed
show
"ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e⦇NTMap⦈⦇b'⦈ ∘⇩A⇘ℭ⇙
cf_const (↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L) ℭ E⦇ArrMap⦈⦇f'⦈ =
↑↑→↑↑⇩C⇩F ℭ 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L 𝔞 𝔟 𝔤 𝔣⦇ArrMap⦈⦇f'⦈ ∘⇩A⇘ℭ⇙
ntcf_equalizer_base ℭ 𝔞 𝔟 𝔤 𝔣 E e⦇NTMap⦈⦇a'⦈"
if "f' : a' ↦⇘↑↑⇩C 𝔞⇩P⇩L⇩2 𝔟⇩P⇩L⇩2 𝔤⇩P⇩L 𝔣⇩P⇩L⇙ b'" for a' b' f'
using that assms(1,2,5,6)
by (elim par.the_cat_parallel_2_is_arrE; simp only:)
(
cs_concl
cs_simp:
cat_cs_simps
cat_lim_cs_simps
cat_parallel_cs_simps
assms(3,4)[symmetric]
cs_intro: cat_parallel_cs_intros
)+
qed
(
use assms(2) in
‹
cs_concl
cs_intro: cat_lim_cs_intros cat_cs_intros
cs_simp: cat_lim_cs_simps
›
)+
qed
text‹\newpage›
end