Theory CZH_ECAT_Set
section‹‹Set››
theory CZH_ECAT_Set
imports
CZH_Foundations.CZH_SMC_Set
CZH_ECAT_Par
CZH_ECAT_Subcategory
CZH_ECAT_PCategory
begin
subsection‹Background›
text‹
The methodology chosen for the exposition of ‹Set› as a category is
analogous to the one used in \<^cite>‹"milehins_category_2021"›
for the exposition of ‹Set› as a semicategory.
›
named_theorems cat_Set_cs_simps
named_theorems cat_Set_cs_intros
lemmas (in arr_Set) [cat_Set_cs_simps] =
dg_Rel_shared_cs_simps
lemmas (in arr_Set) [cat_cs_intros, cat_Set_cs_intros] =
arr_Set_axioms'
lemmas [cat_Set_cs_simps] =
dg_Rel_shared_cs_simps
arr_Set.arr_Set_ArrVal_vdomain
arr_Set_comp_Set_id_Set_left
arr_Set_comp_Set_id_Set_right
lemmas [cat_Set_cs_intros] =
dg_Rel_shared_cs_intros
arr_Set_comp_Set
named_theorems cat_rel_par_Set_cs_intros
named_theorems cat_rel_par_Set_cs_simps
named_theorems cat_rel_Par_set_cs_intros
named_theorems cat_rel_Par_set_cs_simps
named_theorems cat_Rel_par_set_cs_intros
named_theorems cat_Rel_par_set_cs_simps
subsection‹‹Set› as a category›
subsubsection‹Definition and elementary properties›
definition cat_Set :: "V ⇒ V"
where "cat_Set α =
[
Vset α,
set {T. arr_Set α T},
(λT∈⇩∘set {T. arr_Set α T}. T⦇ArrDom⦈),
(λT∈⇩∘set {T. arr_Set α T}. T⦇ArrCod⦈),
(λST∈⇩∘composable_arrs (dg_Set α). ST⦇0⦈ ∘⇩R⇩e⇩l ST⦇1⇩ℕ⦈),
VLambda (Vset α) id_Set
]⇩∘"
text‹Components.›
lemma cat_Set_components:
shows "cat_Set α⦇Obj⦈ = Vset α"
and "cat_Set α⦇Arr⦈ = set {T. arr_Set α T}"
and "cat_Set α⦇Dom⦈ = (λT∈⇩∘set {T. arr_Set α T}. T⦇ArrDom⦈)"
and "cat_Set α⦇Cod⦈ = (λT∈⇩∘set {T. arr_Set α T}. T⦇ArrCod⦈)"
and "cat_Set α⦇Comp⦈ =
(λST∈⇩∘composable_arrs (dg_Set α). ST⦇0⦈ ∘⇩P⇩a⇩r ST⦇1⇩ℕ⦈)"
and "cat_Set α⦇CId⦈ = VLambda (Vset α) id_Set"
unfolding cat_Set_def dg_field_simps by (simp_all add: nat_omega_simps)
text‹Slicing.›
lemma cat_smc_cat_Set: "cat_smc (cat_Set α) = smc_Set α"
proof(rule vsv_eqI)
have dom_lhs: "𝒟⇩∘ (cat_smc (cat_Set α)) = 5⇩ℕ"
unfolding cat_smc_def by (simp add: nat_omega_simps)
have dom_rhs: "𝒟⇩∘ (smc_Set α) = 5⇩ℕ"
unfolding smc_Set_def by (simp add: nat_omega_simps)
show "𝒟⇩∘ (cat_smc (cat_Set α)) = 𝒟⇩∘ (smc_Set α)"
unfolding dom_lhs dom_rhs by simp
show "a ∈⇩∘ 𝒟⇩∘ (cat_smc (cat_Set α)) ⟹ cat_smc (cat_Set α)⦇a⦈ = smc_Set α⦇a⦈"
for a
by
(
unfold dom_lhs,
elim_in_numeral,
unfold cat_smc_def dg_field_simps cat_Set_def smc_Set_def
)
(auto simp: nat_omega_simps)
qed (auto simp: cat_smc_def smc_Set_def)
lemmas_with [folded cat_smc_cat_Set, unfolded slicing_simps]:
cat_Set_Obj_iff = smc_Set_Obj_iff
and cat_Set_Arr_iff[cat_Set_cs_simps] = smc_Set_Arr_iff
and cat_Set_Dom_vsv[intro] = smc_Set_Dom_vsv
and cat_Set_Dom_vdomain[simp] = smc_Set_Dom_vdomain
and cat_Set_Dom_vrange = smc_Set_Dom_vrange
and cat_Set_Dom_app = smc_Set_Dom_app
and cat_Set_Cod_vsv[intro] = smc_Set_Cod_vsv
and cat_Set_Cod_vdomain[simp] = smc_Set_Cod_vdomain
and cat_Set_Cod_vrange = smc_Set_Cod_vrange
and cat_Set_Cod_app[cat_Set_cs_simps] = smc_Set_Cod_app
and cat_Set_is_arrI = smc_Set_is_arrI
and cat_Set_is_arrD = smc_Set_is_arrD
and cat_Set_is_arrE = smc_Set_is_arrE
and cat_Set_ArrVal_vdomain[cat_cs_simps] = smc_Set_ArrVal_vdomain
and cat_Set_ArrVal_app_vrange[cat_Set_cs_intros] = smc_Set_ArrVal_app_vrange
lemmas [cat_cs_simps] = cat_Set_is_arrD(2,3)
lemmas [cat_Set_cs_intros] =
cat_Set_is_arrI
lemmas_with [folded cat_smc_cat_Set, unfolded slicing_simps]:
cat_Set_composable_arrs_dg_Set = smc_Set_composable_arrs_dg_Set
and cat_Set_Comp = smc_Set_Comp
and cat_Set_Comp_app[cat_Set_cs_simps] = smc_Set_Comp_app
and cat_Set_Comp_vdomain[cat_Set_cs_simps] = smc_Set_Comp_vdomain
and cat_Set_is_monic_arrI = smc_Set_is_monic_arrI
and cat_Set_is_monic_arrD = smc_Set_is_monic_arrD
and cat_Set_is_monic_arr = smc_Set_is_monic_arr
and cat_Set_is_epic_arrI = smc_Set_is_epic_arrI
and cat_Set_is_epic_arrD = smc_Set_is_epic_arrD
and cat_Set_is_epic_arr = smc_Set_is_epic_arr
lemmas_with (in 𝒵) [folded cat_smc_cat_Set, unfolded slicing_simps]:
cat_Set_Hom_vifunion_in_Vset = smc_Set_Hom_vifunion_in_Vset
and cat_Set_incl_Set_is_arr = smc_Set_incl_Set_is_arr
and cat_Set_Comp_ArrVal = smc_Set_Comp_ArrVal
and cat_Set_Comp_vrange = smc_Set_Comp_vrange
and cat_Set_obj_terminal = smc_Set_obj_terminal
and cat_Set_obj_initial = smc_Set_obj_initial
and cat_Set_obj_null = smc_Set_obj_null
and cat_Set_is_zero_arr = smc_Set_is_zero_arr
lemmas [cat_cs_simps] =
𝒵.cat_Set_Comp_ArrVal
lemma (in 𝒵) cat_Set_incl_Set_is_arr'[cat_cs_intros, cat_Set_cs_intros]:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈"
and "B ∈⇩∘ cat_Set α⦇Obj⦈"
and "A ⊆⇩∘ B"
and "A' = A"
and "B' = B"
and "ℭ' = cat_Set α"
shows "incl_Set A B : A' ↦⇘ℭ'⇙ B'"
using assms(1-3) unfolding assms(4-6) by (rule cat_Set_incl_Set_is_arr)
lemmas [cat_Set_cs_intros] = 𝒵.cat_Set_incl_Set_is_arr'
subsubsection‹Identity›
lemma cat_Set_CId_app[cat_Set_cs_simps]:
assumes "A ∈⇩∘ Vset α"
shows "cat_Set α⦇CId⦈⦇A⦈ = id_Set A"
using assms unfolding cat_Set_components by simp
lemma cat_Set_CId_app_app[cat_cs_simps]:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈" and "a ∈⇩∘ A"
shows "cat_Set α⦇CId⦈⦇A⦈⦇ArrVal⦈⦇a⦈ = a"
unfolding
cat_Set_CId_app[OF assms(1)[unfolded cat_Set_components(1)]]
id_Rel_ArrVal_app[OF assms(2)]
by simp
subsubsection‹‹Set› is a category›
lemma (in 𝒵) category_cat_Set: "category α (cat_Set α)"
proof(rule categoryI, unfold cat_smc_cat_Par cat_smc_cat_Set)
interpret Set: semicategory α ‹cat_smc (cat_Set α)›
unfolding cat_smc_cat_Set by (simp add: semicategory_smc_Set)
show "vfsequence (cat_Set α)" unfolding cat_Set_def by simp
show "vcard (cat_Set α) = 6⇩ℕ"
unfolding cat_Set_def by (simp add: nat_omega_simps)
show "semicategory α (smc_Set α)" by (simp add: semicategory_smc_Set)
show "cat_Set α⦇CId⦈⦇A⦈ : A ↦⇘cat_Set α⇙ A"
if "A ∈⇩∘ cat_Set α⦇Obj⦈" for A
using that
unfolding cat_Set_Obj_iff
by
(
cs_concl cs_shallow
cs_simp: cat_Set_cs_simps cs_intro: cat_Set_cs_intros arr_Set_id_SetI
)
show "cat_Set α⦇CId⦈⦇B⦈ ∘⇩A⇘cat_Set α⇙ F = F"
if "F : A ↦⇘cat_Set α⇙ B" for F A B
proof-
from that have "arr_Set α F" "B ∈⇩∘ Vset α" by (auto elim: cat_Set_is_arrE)
with that show ?thesis
by
(
cs_concl cs_shallow
cs_simp: cat_cs_simps cat_Set_cs_simps
cs_intro: cat_Set_cs_intros arr_Set_id_SetI
)
qed
show "F ∘⇩A⇘cat_Set α⇙ cat_Set α⦇CId⦈⦇B⦈ = F"
if "F : B ↦⇘cat_Set α⇙ C" for F B C
proof-
from that have "arr_Set α F" "B ∈⇩∘ Vset α" by (auto elim: cat_Set_is_arrE)
with that show ?thesis
by
(
cs_concl cs_shallow
cs_simp: cat_cs_simps cat_Set_cs_simps
cs_intro: cat_Set_cs_intros arr_Set_id_SetI
)
qed
qed (auto simp: cat_Set_components)
lemma (in 𝒵) category_cat_Set':
assumes "β = α"
shows "category β (cat_Set α)"
unfolding assms by (rule category_cat_Set)
lemmas [cat_cs_intros] = 𝒵.category_cat_Set'
subsubsection‹‹Set› is a wide replete subcategory of ‹Par››
lemma (in 𝒵) wide_replete_subcategory_cat_Set_cat_Par:
"cat_Set α ⊆⇩C⇩.⇩w⇩r⇘α⇙ cat_Par α"
proof(intro wide_replete_subcategoryI)
show wide_subcategory_cat_Set_cat_Par: "cat_Set α ⊆⇩C⇩.⇩w⇩i⇩d⇩e⇘α⇙ cat_Par α"
proof(intro wide_subcategoryI, unfold cat_smc_cat_Par cat_smc_cat_Set)
interpret Par: category α ‹cat_Par α› by (rule category_cat_Par)
interpret Set: category α ‹cat_Set α› by (rule category_cat_Set)
interpret wide_subsemicategory α ‹smc_Set α› ‹smc_Par α›
by (simp add: wide_subsemicategory_smc_Set_smc_Par)
show "cat_Set α ⊆⇩C⇘α⇙ cat_Par α"
proof(intro subcategoryI, unfold cat_smc_cat_Par cat_smc_cat_Set)
show "smc_Set α ⊆⇩S⇩M⇩C⇘α⇙ smc_Par α" by (simp add: subsemicategory_axioms)
fix A assume "A ∈⇩∘ cat_Set α⦇Obj⦈"
then show "cat_Set α⦇CId⦈⦇A⦈ = cat_Par α⦇CId⦈⦇A⦈"
unfolding cat_Set_components cat_Par_components by simp
qed
(
auto simp:
subsemicategory_axioms Par.category_axioms Set.category_axioms
)
qed (rule wide_subsemicategory_smc_Set_smc_Par)
show "cat_Set α ⊆⇩C⇩.⇩r⇩e⇩p⇘α⇙ cat_Par α"
proof(intro replete_subcategoryI)
interpret wide_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_subcategory_cat_Set_cat_Par)
show "cat_Set α ⊆⇩C⇘α⇙ cat_Par α" by (rule subcategory_axioms)
fix A B F assume "F : A ↦⇩i⇩s⇩o⇘cat_Par α⇙ B"
note arr_Par = cat_Par_is_iso_arrD[OF this]
from arr_Par show "F : A ↦⇘cat_Set α⇙ B"
by (intro cat_Set_is_arrI arr_Set_arr_ParI cat_Par_is_arrD[OF arr_Par(1)])
(auto simp: cat_Par_is_arrD(2))
qed
qed
subsubsection‹‹Set› is a subcategory of ‹Set››
lemma (in 𝒵) subcategory_cat_Set_cat_Set:
assumes "𝒵 β" and "α ∈⇩∘ β"
shows "cat_Set α ⊆⇩C⇘β⇙ cat_Set β"
proof-
interpret β: 𝒵 β by (rule assms(1))
show ?thesis
proof(intro subcategoryI')
show "category β (cat_Set α)"
by (rule category.cat_category_if_ge_Limit, insert assms(2))
(cs_concl cs_intro: cat_cs_intros cat_Rel_cs_intros)+
show "A ∈⇩∘ cat_Set β⦇Obj⦈" if "A ∈⇩∘ cat_Set α⦇Obj⦈" for A
using that
unfolding cat_Set_components(1)
by (meson assms(2) Vset_in_mono β.Axiom_of_Extensionality(3))
show is_arr_if_is_arr:
"F : A ↦⇘cat_Set β⇙ B" if "F : A ↦⇘cat_Set α⇙ B" for A B F
proof-
note f = cat_Set_is_arrD[OF that]
interpret f: arr_Set α F by (rule f(1))
show ?thesis
proof(intro cat_Set_is_arrI arr_SetI)
show "ℛ⇩∘ (F⦇ArrVal⦈) ⊆⇩∘ F⦇ArrCod⦈"
by (auto simp: f.arr_Set_ArrVal_vrange)
show "F⦇ArrDom⦈ ∈⇩∘ Vset β"
by (auto intro!: f.arr_Set_ArrDom_in_Vset Vset_in_mono assms(2))
show "F⦇ArrCod⦈ ∈⇩∘ Vset β"
by (auto intro!: f.arr_Set_ArrCod_in_Vset Vset_in_mono assms(2))
qed
(
auto simp:
f f.arr_Set_ArrVal_vdomain f.vfsequence_axioms f.arr_Set_length
)
qed
show "G ∘⇩A⇘cat_Set α⇙ F = G ∘⇩A⇘cat_Set β⇙ F"
if "G : B ↦⇘cat_Set α⇙ C" and "F : A ↦⇘cat_Set α⇙ B" for B C G A F
proof-
note g = cat_Set_is_arrD[OF that(1)] and f = cat_Set_is_arrD[OF that(2)]
from that have α_gf_is_arr: "G ∘⇩A⇘cat_Set α⇙ F : A ↦⇘cat_Set β⇙ C"
by (cs_concl cs_intro: cat_cs_intros is_arr_if_is_arr)
from that have β_gf_is_arr: "G ∘⇩A⇘cat_Set β⇙ F : A ↦⇘cat_Set β⇙ C"
by (cs_concl cs_intro: cat_cs_intros is_arr_if_is_arr)
note α_gf = cat_Set_is_arrD[OF α_gf_is_arr]
and β_gf = cat_Set_is_arrD[OF β_gf_is_arr]
show ?thesis
proof(rule arr_Set_eqI)
show "arr_Set β (G ∘⇩A⇘cat_Set α⇙ F)" by (rule α_gf(1))
then interpret arr_Set_α_gf: arr_Set β ‹(G ∘⇩A⇘cat_Set α⇙ F)› by simp
from α_gf_is_arr have dom_lhs: "𝒟⇩∘ ((G ∘⇩A⇘cat_Set α⇙ F)⦇ArrVal⦈) = A"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)
show "arr_Set β (G ∘⇩A⇘cat_Set β⇙ F)" by (rule β_gf(1))
then interpret arr_Set_β_gf: arr_Set β ‹(G ∘⇩A⇘cat_Set β⇙ F)› by simp
from β_gf_is_arr have dom_rhs: "𝒟⇩∘ ((G ∘⇩A⇘cat_Set β⇙ F)⦇ArrVal⦈) = A"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)
show "(G ∘⇩A⇘cat_Set α⇙ F)⦇ArrVal⦈ = (G ∘⇩A⇘cat_Set β⇙ F)⦇ArrVal⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume "a ∈⇩∘ A"
from that this show
"(G ∘⇩A⇘cat_Set α⇙ F)⦇ArrVal⦈⦇a⦈ = (G ∘⇩A⇘cat_Set β⇙ F)⦇ArrVal⦈⦇a⦈"
by
(
cs_concl cs_shallow
cs_simp: cat_cs_simps cs_intro: cat_cs_intros is_arr_if_is_arr
)
qed auto
qed
(
use α_gf_is_arr β_gf_is_arr in
‹cs_concl cs_shallow cs_simp: cat_cs_simps›
)+
qed
qed
(
auto simp:
assms(2) cat_Set_components Vset_trans Vset_in_mono cat_cs_intros
)
qed
subsubsection‹Further properties›
lemma cat_Set_Comp_ArrVal_vrange:
assumes "S : B ↦⇘cat_Set α⇙ C" and "T : A ↦⇘cat_Set α⇙ B"
shows "ℛ⇩∘ ((S ∘⇩A⇘cat_Set α⇙ T)⦇ArrVal⦈) ⊆⇩∘ ℛ⇩∘ (S⦇ArrVal⦈)"
proof(intro vsubsetI)
note SD = cat_Set_is_arrD[OF assms(1)]
interpret S: arr_Set α S
rewrites "S⦇ArrDom⦈ = B" and "S⦇ArrCod⦈ = C"
by (intro SD)+
from assms(1,2) have "S ∘⇩A⇘cat_Set α⇙ T : A ↦⇘cat_Set α⇙ C"
by (cs_concl cs_intro: cat_cs_intros)
note ST = cat_Set_is_arrD[OF this]
interpret ST: arr_Set α ‹S ∘⇩A⇘cat_Set α⇙ T›
rewrites "(S ∘⇩A⇘cat_Set α⇙ T)⦇ArrDom⦈ = A"
and "(S ∘⇩A⇘cat_Set α⇙ T)⦇ArrCod⦈ = C"
by (intro ST)+
fix y assume prems: "y ∈⇩∘ ℛ⇩∘ ((S ∘⇩A⇘cat_Set α⇙ T)⦇ArrVal⦈)"
with ST.arr_Set_ArrVal_vdomain obtain x
where x: "x ∈⇩∘ A" and y_def: "y = (S ∘⇩A⇘cat_Set α⇙ T)⦇ArrVal⦈⦇x⦈"
by force
show "y ∈⇩∘ ℛ⇩∘ (S⦇ArrVal⦈)"
proof(intro S.ArrVal.vsv_vimageI2', unfold cat_Set_cs_simps)
from assms(1,2) x show "y = S⦇ArrVal⦈⦇T⦇ArrVal⦈⦇x⦈⦈"
unfolding y_def
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
from assms(2) x show "T⦇ArrVal⦈⦇x⦈ ∈⇩∘ B"
by (cs_concl cs_intro: cat_Set_cs_intros)
qed
qed
subsection‹Isomorphism›
lemma cat_Set_is_iso_arrI[intro]:
assumes "T : A ↦⇘cat_Set α⇙ B"
and "v11 (T⦇ArrVal⦈)"
and "𝒟⇩∘ (T⦇ArrVal⦈) = A"
and "ℛ⇩∘ (T⦇ArrVal⦈) = B"
shows "T : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
proof-
interpret T: arr_Set α T by (rule cat_Set_is_arrD(1)[OF assms(1)])
note [cat_cs_intros] = cat_Par_is_iso_arrI
from T.wide_replete_subcategory_cat_Set_cat_Par assms have
"T : A ↦⇩i⇩s⇩o⇘cat_Par α⇙ B"
by (cs_concl cs_intro: cat_cs_intros cat_sub_cs_intros cat_sub_fw_cs_intros)
with T.wide_replete_subcategory_cat_Set_cat_Par assms show
"T : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
by (cs_concl cs_shallow cs_simp: cat_sub_bw_cs_simps)
qed
lemma cat_Set_is_iso_arrD[dest]:
assumes "T : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
shows "T : A ↦⇘cat_Set α⇙ B"
and "v11 (T⦇ArrVal⦈)"
and "𝒟⇩∘ (T⦇ArrVal⦈) = A"
and "ℛ⇩∘ (T⦇ArrVal⦈) = B"
proof-
from assms have T: "T : A ↦⇘cat_Set α⇙ B" by auto
interpret T: arr_Set α T by (rule cat_Set_is_arrD(1)[OF T])
from T.wide_replete_subcategory_cat_Set_cat_Par assms have T:
"T : A ↦⇩i⇩s⇩o⇘cat_Par α⇙ B"
by (cs_concl cs_shallow cs_intro: cat_sub_cs_intros cat_sub_fw_cs_intros)
show "v11 (T⦇ArrVal⦈)" "𝒟⇩∘ (T⦇ArrVal⦈) = A" "ℛ⇩∘ (T⦇ArrVal⦈) = B"
by (intro cat_Par_is_iso_arrD[OF T])+
qed (rule is_iso_arrD(1)[OF assms])
lemma cat_Set_is_iso_arr:
"T : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B ⟷
T : A ↦⇘cat_Set α⇙ B ∧
v11 (T⦇ArrVal⦈) ∧
𝒟⇩∘ (T⦇ArrVal⦈) = A ∧
ℛ⇩∘ (T⦇ArrVal⦈) = B"
by auto
lemma (in 𝒵) cat_Set_is_iso_arr_if_monic_and_epic:
assumes "F : A ↦⇩m⇩o⇩n⇘cat_Set α⇙ B" and "F : A ↦⇩e⇩p⇩i⇘cat_Set α⇙ B"
shows "F : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
proof-
note cat_Set_is_monic_arrD[OF assms(1)] cat_Set_is_epic_arrD[OF assms(2)]
note FD = this(1,2,3,5) cat_Set_is_arrD[OF this(1)]
show ?thesis by (intro cat_Set_is_iso_arrI FD)
qed
subsection‹The inverse arrow›
lemma cat_Set_ArrVal_app_is_arr[cat_cs_intros]:
assumes "f : a ↦⇘𝔄⇙ b"
and "category α 𝔄"
and "F : Hom 𝔄 a b ↦⇘cat_Set α⇙ Hom 𝔅 c d"
shows "F⦇ArrVal⦈⦇f⦈ : c ↦⇘𝔅⇙ d"
proof-
interpret 𝔄: category α 𝔄 by (rule assms(2))
interpret F: arr_Set α F by (rule cat_Set_is_arrD[OF assms(3)])
from assms have "F⦇ArrVal⦈⦇f⦈ ∈⇩∘ Hom 𝔅 c d"
by (cs_concl cs_shallow cs_intro: cat_cs_intros cat_Set_cs_intros)
then show ?thesis unfolding in_Hom_iff by simp
qed
abbreviation (input) converse_Set :: "V ⇒ V" ("(_¯⇩S⇩e⇩t)" [1000] 999)
where "a¯⇩S⇩e⇩t ≡ a¯⇩R⇩e⇩l"
lemma cat_Set_the_inverse[cat_Set_cs_simps]:
assumes "T : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
shows "T¯⇩C⇘cat_Set α⇙ = T¯⇩S⇩e⇩t"
proof-
from assms have T: "T : A ↦⇘cat_Set α⇙ B" by auto
interpret arr_Set α T by (rule cat_Set_is_arrD(1)[OF T])
from wide_replete_subcategory_cat_Set_cat_Par assms have T:
"T : A ↦⇩i⇩s⇩o⇘cat_Par α⇙ B"
by (cs_concl cs_shallow cs_intro: cat_sub_cs_intros cat_sub_fw_cs_intros)
from wide_replete_subcategory_cat_Set_cat_Par assms
have [symmetric, cat_cs_simps]: "T¯⇩C⇘cat_Par α⇙ = T¯⇩C⇘cat_Set α⇙"
by
(
cs_concl cs_shallow
cs_simp: cat_sub_bw_cs_simps cs_intro: cat_sub_cs_intros
)
from T show "T¯⇩C⇘cat_Set α⇙ = T¯⇩S⇩e⇩t"
by (cs_concl cs_shallow cs_simp: cat_Par_cs_simps cat_cs_simps cs_intro: 𝒵_β)
qed
lemma cat_Set_the_inverse_app[cat_cs_intros]:
assumes "T : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
and "a ∈⇩∘ A"
and [cat_cs_simps]: "T⦇ArrVal⦈⦇a⦈ = b"
shows "(T¯⇩C⇘cat_Set α⇙)⦇ArrVal⦈⦇b⦈ = a"
proof-
from assms have T: "T : A ↦⇘cat_Set α⇙ B" by auto
interpret arr_Set α T by (rule cat_Set_is_arrD(1)[OF T])
note T = cat_Set_is_iso_arrD[OF assms(1)]
interpret T: v11 ‹T⦇ArrVal⦈› by (rule T(2))
from T.v11_axioms assms(1,2) show "T¯⇩C⇘cat_Set α⇙⦇ArrVal⦈⦇b⦈ = a"
by
(
cs_concl cs_shallow
cs_simp:
converse_Rel_components V_cs_simps cat_Set_cs_simps cat_cs_simps
cs_intro: cat_arrow_cs_intros cat_cs_intros
)
qed
lemma cat_Set_ArrVal_app_the_inverse_is_arr[cat_cs_intros]:
assumes "f : c ↦⇘𝔅⇙ d"
and "category α 𝔅"
and "F : Hom 𝔄 a b ↦⇩i⇩s⇩o⇘cat_Set α⇙ Hom 𝔅 c d"
shows "F¯⇩C⇘cat_Set α⇙⦇ArrVal⦈⦇f⦈ : a ↦⇘𝔄⇙ b"
proof-
interpret 𝔅: category α 𝔅 by (rule assms(2))
from cat_Set_is_iso_arrD[OF assms(3)] interpret F: arr_Set α F
by (simp add: cat_Set_is_arrD)
from assms have "F¯⇩C⇘cat_Set α⇙⦇ArrVal⦈⦇f⦈ ∈⇩∘ Hom 𝔄 a b"
by (cs_concl cs_intro: cat_cs_intros cat_arrow_cs_intros)
then show ?thesis unfolding in_Hom_iff by simp
qed
lemma cat_Set_app_the_inverse_app[cat_cs_simps]:
assumes "F : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B" and "b ∈⇩∘ B"
shows "F⦇ArrVal⦈⦇F¯⇩C⇘cat_Set α⇙⦇ArrVal⦈⦇b⦈⦈ = b"
proof-
note F = cat_Set_is_iso_arrD[OF assms(1)]
note F = F cat_Set_is_arrD[OF F(1)]
interpret F: arr_Set α F by (rule cat_Set_is_arrD[OF F(1)])
from assms have [cat_cs_simps]:
"F ∘⇩A⇘cat_Set α⇙ F¯⇩C⇘cat_Set α⇙ = cat_Set α⦇CId⦈⦇B⦈"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
from assms have [cat_cs_simps]:
"F⦇ArrVal⦈⦇F¯⇩C⇘cat_Set α⇙⦇ArrVal⦈⦇b⦈⦈ =
(F ∘⇩A⇘cat_Set α⇙ F¯⇩C⇘cat_Set α⇙)⦇ArrVal⦈⦇b⦈"
by
(
cs_concl
cs_simp: cat_cs_simps cs_intro: cat_arrow_cs_intros cat_cs_intros
)
from assms F(1) F.arr_Par_ArrCod_in_Vset[unfolded F] show ?thesis
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
qed
lemma cat_Set_the_inverse_app_app[cat_cs_simps]:
assumes "F : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B" and "a ∈⇩∘ A"
shows "F¯⇩C⇘cat_Set α⇙⦇ArrVal⦈⦇F⦇ArrVal⦈⦇a⦈⦈ = a"
proof-
note F = cat_Set_is_iso_arrD[OF assms(1)]
note F = F cat_Set_is_arrD[OF F(1)]
interpret F: arr_Set α F by (rule cat_Set_is_arrD[OF F(1)])
from assms have [cat_cs_simps]:
"F¯⇩C⇘cat_Set α⇙ ∘⇩A⇘cat_Set α⇙ F = cat_Set α⦇CId⦈⦇A⦈"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
from assms have [cat_cs_simps]:
"F¯⇩C⇘cat_Set α⇙⦇ArrVal⦈⦇F⦇ArrVal⦈⦇a⦈⦈ =
(F¯⇩C⇘cat_Set α⇙ ∘⇩A⇘cat_Set α⇙ F)⦇ArrVal⦈⦇a⦈"
by
(
cs_concl
cs_simp: cat_cs_simps cs_intro: cat_arrow_cs_intros cat_cs_intros
)
from assms F(1) F.arr_Par_ArrDom_in_Vset[unfolded F] show ?thesis
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
qed
subsection‹Conversion of a single-valued relation to an arrow in ‹Set››
subsubsection‹Definition and elementary properties›
definition cat_Set_arr_of_vsv :: "V ⇒ V ⇒ V"
where "cat_Set_arr_of_vsv f B = [f, 𝒟⇩∘ f, B]⇩∘"
text‹Components.›
lemma cat_Set_arr_of_vsv_components:
shows [cat_Set_cs_simps]: "cat_Set_arr_of_vsv f B⦇ArrVal⦈ = f"
and [cat_Set_cs_simps]: "cat_Set_arr_of_vsv f B⦇ArrDom⦈ = 𝒟⇩∘ f"
and [cat_cs_simps, cat_Set_cs_simps]: "cat_Set_arr_of_vsv f B⦇ArrCod⦈ = B"
unfolding cat_Set_arr_of_vsv_def arr_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹
Conversion of a single-valued relation to an arrow in ‹Set› is an arrow in ‹Set›
›
lemma (in 𝒵) cat_Set_arr_of_vsv_is_arr:
assumes "vsv r"
and "ℛ⇩∘ r ⊆⇩∘ B"
and "𝒟⇩∘ r ∈⇩∘ cat_Set α⦇Obj⦈"
and "B ∈⇩∘ cat_Set α⦇Obj⦈"
shows "cat_Set_arr_of_vsv r B : 𝒟⇩∘ r ↦⇘cat_Set α⇙ B"
proof-
interpret r: vsv r by (rule assms)
show ?thesis
proof(intro cat_Set_is_arrI arr_SetI, unfold cat_Set_arr_of_vsv_components)
show "vfsequence (cat_Set_arr_of_vsv r B)"
unfolding cat_Set_arr_of_vsv_def by auto
show "vcard (cat_Set_arr_of_vsv r B) = 3⇩ℕ"
unfolding cat_Set_arr_of_vsv_def by (auto simp: nat_omega_simps)
qed (use assms in ‹auto simp: cat_Set_components›)
qed
subsection‹Left restriction for ‹Set››
subsubsection‹Definition and elementary properties›
definition vlrestriction_Set :: "V ⇒ V ⇒ V" (infixr ‹↾⇧l⇩S⇩e⇩t› 80)
where "T ↾⇧l⇩S⇩e⇩t C = [T⦇ArrVal⦈ ↾⇧l⇩∘ C, C, T⦇ArrCod⦈]⇩∘"
text‹Components.›
lemma vlrestriction_Set_components:
shows [cat_Set_cs_simps]: "(T ↾⇧l⇩S⇩e⇩t C)⦇ArrVal⦈ = T⦇ArrVal⦈ ↾⇧l⇩∘ C"
and [cat_cs_simps, cat_Set_cs_simps]: "(T ↾⇧l⇩S⇩e⇩t C)⦇ArrDom⦈ = C"
and [cat_cs_simps, cat_Set_cs_simps]: "(T ↾⇧l⇩S⇩e⇩t C)⦇ArrCod⦈ = T⦇ArrCod⦈"
unfolding vlrestriction_Set_def arr_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹Arrow value›
lemma vlrestriction_Set_ArrVal_vdomain[cat_cs_simps]:
assumes "T : A ↦⇘cat_Set α⇙ B" and "C ⊆⇩∘ A"
shows "𝒟⇩∘ ((T ↾⇧l⇩S⇩e⇩t C)⦇ArrVal⦈) = C"
proof-
note TD = cat_Set_is_arrD[OF assms(1)]
interpret T: arr_Set α T
rewrites "T⦇ArrDom⦈ = A" and "T⦇ArrCod⦈ = B"
by (intro TD)+
from assms show ?thesis
unfolding vlrestriction_Set_components
by (cs_concl cs_simp: V_cs_simps cat_cs_simps cs_intro: V_cs_intros)
qed
lemma vlrestriction_Set_ArrVal_app[cat_cs_simps]:
assumes "T : A ↦⇘cat_Set α⇙ B" and "C ⊆⇩∘ A" and "x ∈⇩∘ C"
shows "(T ↾⇧l⇩S⇩e⇩t C)⦇ArrVal⦈⦇x⦈ = T⦇ArrVal⦈⦇x⦈"
proof-
interpret T: arr_Set α T
rewrites "T⦇ArrDom⦈ = A" and "T⦇ArrCod⦈ = B"
by (intro cat_Set_is_arrD[OF assms(1)])+
from assms have x: "x ∈⇩∘ A" by auto
with assms show ?thesis
unfolding vlrestriction_Set_components
by (cs_concl cs_simp: V_cs_simps cat_cs_simps cs_intro: V_cs_intros)
qed
subsubsection‹Left restriction for ‹Set› is an arrow in ‹Set››
lemma vlrestriction_Set_is_arr:
assumes "T : A ↦⇘cat_Set α⇙ B" and "C ⊆⇩∘ A"
shows "T ↾⇧l⇩S⇩e⇩t C : C ↦⇘cat_Set α⇙ B"
proof-
note TD = cat_Set_is_arrD[OF assms(1)]
interpret T: arr_Set α T
rewrites "T⦇ArrDom⦈ = A" and "T⦇ArrCod⦈ = B"
by (intro TD)+
show ?thesis
proof(intro cat_Set_is_arrI arr_SetI, unfold cat_Set_cs_simps TD(2,3))
show "vfsequence (T ↾⇧l⇩S⇩e⇩t C)"
unfolding vlrestriction_Set_def by auto
show "vcard (T ↾⇧l⇩S⇩e⇩t C) = 3⇩ℕ"
unfolding vlrestriction_Set_def by (simp add: nat_omega_simps)
from assms show "𝒟⇩∘ (T⦇ArrVal⦈ ↾⇧l⇩∘ C) = C"
by (cs_concl cs_simp: V_cs_simps cat_cs_simps cs_intro: cat_cs_intros)
show "ℛ⇩∘ (T⦇ArrVal⦈ ↾⇧l⇩∘ C) ⊆⇩∘ B"
unfolding app_vimage_def[symmetric]
proof(intro vsubsetI)
fix x assume prems: "x ∈⇩∘ T⦇ArrVal⦈ `⇩∘ C"
then obtain c where "c ∈⇩∘ C" and x_def: "x = T⦇ArrVal⦈⦇c⦈" by auto
with assms(2) have c: "c ∈⇩∘ A" by auto
from c assms show "x ∈⇩∘ B"
unfolding x_def by (cs_concl cs_intro: cat_Set_cs_intros)
qed
from assms(2) show "C ∈⇩∘ Vset α"
using vsubset_in_VsetI by (auto simp: T.arr_Set_ArrDom_in_Vset)
qed (auto simp: T.arr_Set_ArrCod_in_Vset)
qed
lemma (in 𝒵) vlrestriction_Set_is_monic_arr:
assumes "T : A ↦⇩m⇩o⇩n⇘cat_Set α⇙ B" and "C ⊆⇩∘ A"
shows "T ↾⇧l⇩S⇩e⇩t C : C ↦⇩m⇩o⇩n⇘cat_Set α⇙ B"
proof-
note cat_Set_is_monic_arrD[OF assms(1)]
note TD = this cat_Set_is_arrD[OF this(1)]
interpret F: arr_Set α T by (intro TD)+
interpret ArrVal: v11 ‹T⦇ArrVal⦈› by (rule TD(2))
show ?thesis
proof
(
intro
cat_Set_is_monic_arrI
vlrestriction_Set_is_arr[OF TD(1) assms(2)],
unfold cat_Set_cs_simps
)
from TD(1) assms(2) show "𝒟⇩∘ (T⦇ArrVal⦈ ↾⇧l⇩∘ C) = C"
by (cs_concl cs_simp: V_cs_simps cat_cs_simps)
qed auto
qed
subsection‹Right restriction for ‹Set››
subsubsection‹Definition and elementary properties›
definition vrrestriction_Set :: "V ⇒ V ⇒ V" (infixr ‹↾⇧r⇩S⇩e⇩t› 80)
where "T ↾⇧r⇩S⇩e⇩t C = [T⦇ArrVal⦈ ↾⇧r⇩∘ C, T⦇ArrDom⦈, C]⇩∘"
text‹Components.›
lemma vrrestriction_Set_components:
shows [cat_Set_cs_simps]: "(T ↾⇧r⇩S⇩e⇩t C)⦇ArrVal⦈ = T⦇ArrVal⦈ ↾⇧r⇩∘ C"
and [cat_cs_simps, cat_Set_cs_simps]: "(T ↾⇧r⇩S⇩e⇩t C)⦇ArrDom⦈ = T⦇ArrDom⦈"
and [cat_cs_simps, cat_Set_cs_simps]: "(T ↾⇧r⇩S⇩e⇩t C)⦇ArrCod⦈ = C"
unfolding vrrestriction_Set_def arr_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹Arrow value›
lemma vrrestriction_Set_ArrVal_app[cat_cs_simps]:
assumes "T : A ↦⇘cat_Set α⇙ B" and "ℛ⇩∘ (T⦇ArrVal⦈) ⊆⇩∘ C"
shows "(T ↾⇧r⇩S⇩e⇩t C)⦇ArrVal⦈ = T⦇ArrVal⦈"
proof-
interpret T: arr_Set α T
rewrites "T⦇ArrDom⦈ = A" and "T⦇ArrCod⦈ = B"
by (intro cat_Set_is_arrD[OF assms(1)])+
from assms show ?thesis unfolding cat_Set_cs_simps by simp
qed
subsubsection‹Right restriction for ‹Set› is an arrow in ‹Set››
lemma vrrestriction_Set_is_arr:
assumes "T : A ↦⇘cat_Set α⇙ B"
and "ℛ⇩∘ (T⦇ArrVal⦈) ⊆⇩∘ C"
and "C ∈⇩∘ cat_Set α⦇Obj⦈"
shows "T ↾⇧r⇩S⇩e⇩t C : A ↦⇘cat_Set α⇙ C"
proof-
note TD = cat_Set_is_arrD[OF assms(1)]
interpret T: arr_Set α T
rewrites "T⦇ArrDom⦈ = A" and "T⦇ArrCod⦈ = B"
by (intro TD)+
show ?thesis
proof(intro cat_Set_is_arrI arr_SetI, unfold cat_Set_cs_simps)
show "vfsequence (T ↾⇧r⇩S⇩e⇩t C)" unfolding vrrestriction_Set_def by auto
show "vcard (T ↾⇧r⇩S⇩e⇩t C) = 3⇩ℕ"
unfolding vrrestriction_Set_def by (simp add: nat_omega_simps)
qed
(
use assms(2,3) in
‹
auto simp:
TD(2)
cat_Set_components
T.arr_Set_ArrVal_vdomain
T.arr_Set_ArrDom_in_Vset
›
)
qed
lemma vrrestriction_Set_is_arr'[cat_cs_intros]:
assumes "T : A ↦⇘cat_Set α⇙ B"
and "ℛ⇩∘ (T⦇ArrVal⦈) ⊆⇩∘ C"
and "C ∈⇩∘ cat_Set α⦇Obj⦈"
and "C' = C"
and "ℭ' = cat_Set α"
shows "T ↾⇧r⇩S⇩e⇩t C : A ↦⇘ℭ'⇙ C'"
using assms(1-3) unfolding assms(4,5) by (rule vrrestriction_Set_is_arr)
subsubsection‹Further properties›
lemma
assumes "T : A ↦⇘cat_Set α⇙ B"
shows vrrestriction_Set_vrange_is_arr:
"T ↾⇧r⇩S⇩e⇩t ℛ⇩∘ (T⦇ArrVal⦈) : A ↦⇘cat_Set α⇙ ℛ⇩∘ (T⦇ArrVal⦈)"
and vrrestriction_Set_vrange_ArrVal_app[cat_cs_simps, cat_Set_cs_simps]:
"(T ↾⇧r⇩S⇩e⇩t ℛ⇩∘ (T⦇ArrVal⦈))⦇ArrVal⦈ = T⦇ArrVal⦈"
proof(intro vrrestriction_Set_is_arr, rule assms)
note TD = cat_Set_is_arrD[OF assms(1)]
interpret T: arr_Set α T
rewrites "T⦇ArrDom⦈ = A" and "T⦇ArrCod⦈ = B"
by (intro TD)+
show "ℛ⇩∘ (T⦇ArrVal⦈) ∈⇩∘ cat_Set α⦇Obj⦈"
by (auto simp: cat_Set_components T.arr_Rel_ArrVal_in_Vset vrange_in_VsetI)
qed (auto intro: vrrestriction_Set_ArrVal_app[OF assms])
lemma (in 𝒵) vrrestriction_Set_vrange_is_iso_arr:
assumes "T : A ↦⇩m⇩o⇩n⇘cat_Set α⇙ B"
shows "T ↾⇧r⇩S⇩e⇩t ℛ⇩∘ (T⦇ArrVal⦈) : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ ℛ⇩∘ (T⦇ArrVal⦈)"
proof-
note cat_Set_is_monic_arrD[OF assms]
note TD = this cat_Set_is_arrD[OF this(1)]
interpret T: arr_Set α T by (intro TD)+
show ?thesis
by
(
intro cat_Set_is_iso_arrI vrrestriction_Set_vrange_is_arr[OF TD(1)],
unfold cat_Set_cs_simps
)
(simp_all add: TD(2,3))
qed
subsubsection‹Connections›
lemma cat_Set_Comp_vrrestriction_Set:
assumes "S : B ↦⇘cat_Set α⇙ C"
and "T : A ↦⇘cat_Set α⇙ B"
and "ℛ⇩∘ (S⦇ArrVal⦈) ⊆⇩∘ D"
and "D ∈⇩∘ cat_Set α⦇Obj⦈"
shows "S ↾⇧r⇩S⇩e⇩t D ∘⇩A⇘cat_Set α⇙ T = (S ∘⇩A⇘cat_Set α⇙ T) ↾⇧r⇩S⇩e⇩t D"
proof-
note SD = cat_Set_is_arrD[OF assms(1)]
interpret S: arr_Set α S
rewrites [cat_cs_simps]: "S⦇ArrDom⦈ = B" and [cat_cs_simps]: "S⦇ArrCod⦈ = C"
by (intro SD)+
note TD = cat_Set_is_arrD[OF assms(2)]
interpret T: arr_Set α T
rewrites [cat_cs_simps]: "T⦇ArrDom⦈ = A" and [cat_cs_simps]: "T⦇ArrCod⦈ = B"
by (intro TD)+
from assms(3) S.arr_Par_ArrVal_vrange have RS_D: "ℛ⇩∘ (S⦇ArrVal⦈) ⊆⇩∘ D" by auto
from assms(1,2) have "S ∘⇩A⇘cat_Set α⇙ T : A ↦⇘cat_Set α⇙ C"
by (cs_concl cs_intro: cat_cs_intros)
from assms(1,2) have "ℛ⇩∘ ((S ∘⇩A⇘cat_Set α⇙ T)⦇ArrVal⦈) ⊆⇩∘ ℛ⇩∘ (S⦇ArrVal⦈)"
by (intro cat_Set_Comp_ArrVal_vrange)
with assms(3) have RST: "ℛ⇩∘ ((S ∘⇩A⇘cat_Set α⇙ T)⦇ArrVal⦈) ⊆⇩∘ D" by auto
from assms(1,2,4) RS_D have SD_T:
"S ↾⇧r⇩S⇩e⇩t D ∘⇩A⇘cat_Set α⇙ T : A ↦⇘cat_Set α⇙ D"
by (cs_concl cs_intro: cat_cs_intros)
then have dom_lhs: "𝒟⇩∘ ((S ↾⇧r⇩S⇩e⇩t D ∘⇩A⇘cat_Set α⇙ T)⦇ArrVal⦈) = A"
by (simp add: cat_cs_simps)
from assms(1,2,4) RST have ST_D:
"(S ∘⇩A⇘cat_Set α⇙ T) ↾⇧r⇩S⇩e⇩t D : A ↦⇘cat_Set α⇙ D"
by (cs_concl cs_intro: cat_cs_intros)
then have dom_rhs: "𝒟⇩∘ (((S ∘⇩A⇘cat_Set α⇙ T) ↾⇧r⇩S⇩e⇩t D)⦇ArrVal⦈) = A"
by (simp add: cat_cs_simps)
show "S ↾⇧r⇩S⇩e⇩t D ∘⇩A⇘cat_Set α⇙ T = (S ∘⇩A⇘cat_Set α⇙ T) ↾⇧r⇩S⇩e⇩t D"
proof(rule arr_Set_eqI[of α])
show
"(S ↾⇧r⇩S⇩e⇩t D ∘⇩A⇘cat_Set α⇙ T)⦇ArrVal⦈ =
((S ∘⇩A⇘cat_Set α⇙ T) ↾⇧r⇩S⇩e⇩t D)⦇ArrVal⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume "a ∈⇩∘ A"
with assms(1,2,4) RST RS_D show
"(S ↾⇧r⇩S⇩e⇩t D ∘⇩A⇘cat_Set α⇙ T)⦇ArrVal⦈⦇a⦈ =
((S ∘⇩A⇘cat_Set α⇙ T) ↾⇧r⇩S⇩e⇩t D)⦇ArrVal⦈⦇a⦈"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
qed (use SD_T ST_D in ‹auto dest: cat_Set_is_arrD›)
qed (use SD_T ST_D in ‹auto simp: cat_Set_is_arrD›)
qed
lemma (in 𝒵) cat_Set_CId_vrrestriction_Set[cat_cs_simps]:
assumes "A ⊆⇩∘ B" and "B ∈⇩∘ cat_Set α⦇Obj⦈"
shows "cat_Set α⦇CId⦈⦇A⦈ ↾⇧r⇩S⇩e⇩t B = incl_Set A B"
proof-
from assms have A: "A ∈⇩∘ cat_Set α⦇Obj⦈"
unfolding cat_Set_components by auto
from A have CId_A: "cat_Set α⦇CId⦈⦇A⦈ : A ↦⇘cat_Set α⇙ A"
by (cs_concl cs_intro: cat_cs_intros)
with cat_Set_is_arrD[OF CId_A] assms(1) have RA_B:
"ℛ⇩∘ (cat_Set α⦇CId⦈⦇A⦈⦇ArrVal⦈) ⊆⇩∘ B"
by (auto intro: arr_Set.arr_Set_ArrVal_vrange)
with assms A assms(1,2) have lhs_is_arr:
"cat_Set α⦇CId⦈⦇A⦈ ↾⇧r⇩S⇩e⇩t B : A ↦⇘cat_Set α⇙ B"
by (cs_concl cs_intro: cat_cs_intros)
then have dom_lhs: "𝒟⇩∘ ((cat_Set α⦇CId⦈⦇A⦈ ↾⇧r⇩S⇩e⇩t B)⦇ArrVal⦈) = A"
by (simp add: cat_cs_simps)
from A assms(1,2) have rhs_is_arr: "incl_Set A B : A ↦⇘cat_Set α⇙ B"
by (cs_concl cs_intro: cat_cs_intros)
then have dom_rhs: "𝒟⇩∘ ((incl_Set A B)⦇ArrVal⦈) = A"
by (simp add: cat_cs_simps)
show ?thesis
proof(rule arr_Set_eqI[of α])
show "(cat_Set α⦇CId⦈⦇A⦈ ↾⇧r⇩S⇩e⇩t B)⦇ArrVal⦈ = incl_Rel A B⦇ArrVal⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume "a ∈⇩∘ A"
with A RA_B show
"(cat_Set α⦇CId⦈⦇A⦈ ↾⇧r⇩S⇩e⇩t B)⦇ArrVal⦈⦇a⦈ = incl_Rel A B⦇ArrVal⦈⦇a⦈"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
qed (use lhs_is_arr rhs_is_arr in ‹auto dest: cat_Set_is_arrD›)
qed (use lhs_is_arr rhs_is_arr in ‹auto simp: cat_Set_is_arrD›)
qed
lemma cat_Set_Comp_incl_Rel_vrrestriction_Set[cat_cs_simps]:
assumes "F : A ↦⇘cat_Set α⇙ B" and "C ⊆⇩∘ B" and "ℛ⇩∘ (F⦇ArrVal⦈) ⊆⇩∘ C"
shows "incl_Rel C B ∘⇩A⇘cat_Set α⇙ F ↾⇧r⇩S⇩e⇩t C = F"
proof-
note FD = cat_Set_is_arrD[OF assms(1)]
interpret F: arr_Set α F
rewrites [cat_cs_simps]: "F⦇ArrDom⦈ = A" and [cat_cs_simps]: "F⦇ArrCod⦈ = B"
by (intro FD)+
from assms(2) have C: "C ∈⇩∘ cat_Set α⦇Obj⦈"
unfolding cat_Set_components(1) by (auto intro: F.arr_Par_ArrCod_in_Vset)
from assms C have lhs_is_arr:
"incl_Rel C B ∘⇩A⇘cat_Set α⇙ F ↾⇧r⇩S⇩e⇩t C : A ↦⇘cat_Set α⇙ B"
by (cs_concl cs_intro: cat_cs_intros)
then have dom_lhs: "𝒟⇩∘ ((incl_Rel C B ∘⇩A⇘cat_Set α⇙ F ↾⇧r⇩S⇩e⇩t C)⦇ArrVal⦈) = A"
by (cs_concl cs_simp: cat_cs_simps)
from assms(1) have dom_rhs: "𝒟⇩∘ (F⦇ArrVal⦈) = A"
by (cs_concl cs_simp: cat_cs_simps)
show ?thesis
proof(rule arr_Set_eqI[of α])
show "(incl_Rel C B ∘⇩A⇘cat_Set α⇙ F ↾⇧r⇩S⇩e⇩t C)⦇ArrVal⦈ = F⦇ArrVal⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume prems: "a ∈⇩∘ A"
with assms F.ArrVal.vsv_vimageI2 have "F⦇ArrVal⦈⦇a⦈ ∈⇩∘ C"
by (auto simp: F.arr_Set_ArrVal_vdomain)
with prems assms C show
"(incl_Rel C B ∘⇩A⇘cat_Set α⇙ F ↾⇧r⇩S⇩e⇩t C)⦇ArrVal⦈⦇a⦈ = F⦇ArrVal⦈⦇a⦈"
by (cs_concl cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
qed (use assms(1) lhs_is_arr in ‹auto dest: cat_Set_is_arrD›)
qed (use assms(1) lhs_is_arr in ‹auto dest: cat_Set_is_arrD›)
qed
subsection‹Projection arrows for ‹vtimes››
subsubsection‹Definition and elementary properties›
definition vfst_arrow :: "V ⇒ V ⇒ V"
where "vfst_arrow A B = [(λab∈⇩∘A ×⇩∘ B. vfst ab), A ×⇩∘ B, A]⇩∘"
definition vsnd_arrow :: "V ⇒ V ⇒ V"
where "vsnd_arrow A B = [(λab∈⇩∘A ×⇩∘ B. vsnd ab), A ×⇩∘ B, B]⇩∘"
text‹Components.›
lemma vfst_arrow_components:
shows "vfst_arrow A B⦇ArrVal⦈ = (λab∈⇩∘A ×⇩∘ B. vfst ab)"
and [cat_cs_simps]: "vfst_arrow A B⦇ArrDom⦈ = A ×⇩∘ B"
and [cat_cs_simps]: "vfst_arrow A B⦇ArrCod⦈ = A"
unfolding vfst_arrow_def arr_field_simps by (simp_all add: nat_omega_simps)
lemma vsnd_arrow_components:
shows "vsnd_arrow A B⦇ArrVal⦈ = (λab∈⇩∘A ×⇩∘ B. vsnd ab)"
and [cat_cs_simps]: "vsnd_arrow A B⦇ArrDom⦈ = A ×⇩∘ B"
and [cat_cs_simps]: "vsnd_arrow A B⦇ArrCod⦈ = B"
unfolding vsnd_arrow_def arr_field_simps by (simp_all add: nat_omega_simps)
subsubsection‹Arrow value›
mk_VLambda vfst_arrow_components(1)
|vsv vfst_arrow_ArrVal_vsv[cat_cs_intros]|
|vdomain vfst_arrow_ArrVal_vdomain[cat_cs_simps]|
|app vfst_arrow_ArrVal_app'|
mk_VLambda vsnd_arrow_components(1)
|vsv vsnd_arrow_ArrVal_vsv[cat_cs_intros]|
|vdomain vsnd_arrow_ArrVal_vdomain[cat_cs_simps]|
|app vsnd_arrow_ArrVal_app'|
lemma vfst_arrow_ArrVal_app[cat_cs_simps]:
assumes "ab = ⟨a, b⟩" and "ab ∈⇩∘ A ×⇩∘ B"
shows "vfst_arrow A B⦇ArrVal⦈⦇ab⦈ = a"
using assms(2) unfolding assms(1) by (simp add: vfst_arrow_ArrVal_app')
lemma vfst_arrow_vrange: "ℛ⇩∘ (vfst_arrow A B⦇ArrVal⦈) ⊆⇩∘ A"
unfolding vfst_arrow_components
proof(intro vrange_VLambda_vsubset)
fix ab assume "ab ∈⇩∘ A ×⇩∘ B"
then obtain a b where ab_def: "ab = ⟨a, b⟩" and a: "a ∈⇩∘ A" by clarsimp
from a show "vfst ab ∈⇩∘ A" unfolding ab_def by simp
qed
lemma vsnd_arrow_ArrVal_app[cat_cs_simps]:
assumes "ab = ⟨a, b⟩" and "ab ∈⇩∘ A ×⇩∘ B"
shows "vsnd_arrow A B⦇ArrVal⦈⦇ab⦈ = b"
using assms(2) unfolding assms(1) by (simp add: vsnd_arrow_ArrVal_app')
lemma vsnd_arrow_vrange: "ℛ⇩∘ (vsnd_arrow A B⦇ArrVal⦈) ⊆⇩∘ B"
unfolding vsnd_arrow_components
proof(intro vrange_VLambda_vsubset)
fix ab assume "ab ∈⇩∘ A ×⇩∘ B"
then obtain a b where ab_def: "ab = ⟨a, b⟩" and b: "b ∈⇩∘ B" by clarsimp
from b show "vsnd ab ∈⇩∘ B" unfolding ab_def by simp
qed
subsubsection‹Projection arrows are arrows in the category ‹Set››
lemma (in 𝒵) vfst_arrow_is_cat_Set_arr_Vset:
assumes "A ∈⇩∘ Vset α" and "B ∈⇩∘ Vset α"
shows "vfst_arrow A B : A ×⇩∘ B ↦⇘cat_Set α⇙ A"
proof(intro cat_Set_is_arrI arr_SetI, unfold cat_cs_simps)
show "vfsequence (vfst_arrow A B)" unfolding vfst_arrow_def by simp
show "vcard (vfst_arrow A B) = 3⇩ℕ"
unfolding vfst_arrow_def by (simp add: nat_omega_simps)
show "ℛ⇩∘ (vfst_arrow A B⦇ArrVal⦈) ⊆⇩∘ A" by (rule vfst_arrow_vrange)
qed (use assms in ‹cs_concl cs_shallow cs_intro: V_cs_intros cat_cs_intros›)+
lemma (in 𝒵) vfst_arrow_is_cat_Set_arr:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈" and "B ∈⇩∘ cat_Set α⦇Obj⦈"
shows "vfst_arrow A B : A ×⇩∘ B ↦⇘cat_Set α⇙ A"
using assms
unfolding cat_Set_components
by (rule vfst_arrow_is_cat_Set_arr_Vset)
lemma (in 𝒵) vfst_arrow_is_cat_Set_arr'[cat_rel_par_Set_cs_intros]:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈"
and "B ∈⇩∘ cat_Set α⦇Obj⦈"
and "AB = A ×⇩∘ B"
and "A' = A"
and "ℭ' = cat_Set α"
shows "vfst_arrow A B : AB ↦⇘ℭ'⇙ A'"
using assms(1-2) unfolding assms(3-5) by (rule vfst_arrow_is_cat_Set_arr)
lemmas [cat_rel_par_Set_cs_intros] = 𝒵.vfst_arrow_is_cat_Set_arr'
lemma (in 𝒵) vsnd_arrow_is_cat_Set_arr_Vset:
assumes "A ∈⇩∘ Vset α" and "B ∈⇩∘ Vset α"
shows "vsnd_arrow A B : A ×⇩∘ B ↦⇘cat_Set α⇙ B"
proof(intro cat_Set_is_arrI arr_SetI , unfold cat_cs_simps)
show "vfsequence (vsnd_arrow A B)" unfolding vsnd_arrow_def by simp
show "vcard (vsnd_arrow A B) = 3⇩ℕ"
unfolding vsnd_arrow_def by (simp add: nat_omega_simps)
show "ℛ⇩∘ (vsnd_arrow A B⦇ArrVal⦈) ⊆⇩∘ B" by (rule vsnd_arrow_vrange)
qed (use assms in ‹cs_concl cs_shallow cs_intro: V_cs_intros cat_cs_intros›)+
lemma (in 𝒵) vsnd_arrow_is_cat_Set_arr:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈" and "B ∈⇩∘ cat_Set α⦇Obj⦈"
shows "vsnd_arrow A B : A ×⇩∘ B ↦⇘cat_Set α⇙ B"
using assms
unfolding cat_Set_components
by (rule vsnd_arrow_is_cat_Set_arr_Vset)
lemma (in 𝒵) vsnd_arrow_is_cat_Set_arr'[cat_rel_par_Set_cs_intros]:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈"
and "B ∈⇩∘ cat_Set α⦇Obj⦈"
and "AB = A ×⇩∘ B"
and "B' = B"
and "ℭ' = cat_Set α"
shows "vsnd_arrow A B : AB ↦⇘ℭ'⇙ B'"
using assms(1-2) unfolding assms(3-5) by (rule vsnd_arrow_is_cat_Set_arr)
lemmas [cat_rel_par_Set_cs_intros] = 𝒵.vsnd_arrow_is_cat_Set_arr'
subsubsection‹Projection arrows are arrows in the category ‹Par››
lemma (in 𝒵) vfst_arrow_is_cat_Par_arr:
assumes "A ∈⇩∘ cat_Par α⦇Obj⦈" and "B ∈⇩∘ cat_Par α⦇Obj⦈"
shows "vfst_arrow A B : A ×⇩∘ B ↦⇘cat_Par α⇙ A"
proof-
interpret Set_Par: wide_replete_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_replete_subcategory_cat_Set_cat_Par)
from assms show ?thesis
unfolding cat_Par_components(1)
by (intro Set_Par.subcat_is_arrD vfst_arrow_is_cat_Set_arr_Vset) auto
qed
lemma (in 𝒵) vfst_arrow_is_cat_Par_arr'[cat_rel_Par_set_cs_intros]:
assumes "A ∈⇩∘ cat_Par α⦇Obj⦈"
and "B ∈⇩∘ cat_Par α⦇Obj⦈"
and "AB = A ×⇩∘ B"
and "A' = A"
and "ℭ' = cat_Par α"
shows "vfst_arrow A B : AB ↦⇘ℭ'⇙ A'"
using assms(1-2) unfolding assms(3-5) by (rule vfst_arrow_is_cat_Par_arr)
lemmas [cat_rel_Par_set_cs_intros] = 𝒵.vfst_arrow_is_cat_Par_arr'
lemma (in 𝒵) vsnd_arrow_is_cat_Par_arr:
assumes "A ∈⇩∘ cat_Par α⦇Obj⦈" and "B ∈⇩∘ cat_Par α⦇Obj⦈"
shows "vsnd_arrow A B : A ×⇩∘ B ↦⇘cat_Par α⇙ B"
proof-
interpret Set_Par: wide_replete_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_replete_subcategory_cat_Set_cat_Par)
from assms show ?thesis
unfolding cat_Par_components(1)
by (intro Set_Par.subcat_is_arrD vsnd_arrow_is_cat_Set_arr_Vset) auto
qed
lemma (in 𝒵) vsnd_arrow_is_cat_Par_arr'[cat_rel_Par_set_cs_intros]:
assumes "A ∈⇩∘ cat_Par α⦇Obj⦈"
and "B ∈⇩∘ cat_Par α⦇Obj⦈"
and "AB = A ×⇩∘ B"
and "B' = B"
and "ℭ' = cat_Par α"
shows "vsnd_arrow A B : AB ↦⇘ℭ'⇙ B'"
using assms(1-2) unfolding assms(3-5) by (rule vsnd_arrow_is_cat_Par_arr)
lemmas [cat_rel_Par_set_cs_intros] = 𝒵.vsnd_arrow_is_cat_Par_arr'
subsubsection‹Projection arrows are arrows in the category ‹Rel››
lemma (in 𝒵) vfst_arrow_is_cat_Rel_arr:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈" and "B ∈⇩∘ cat_Rel α⦇Obj⦈"
shows "vfst_arrow A B : A ×⇩∘ B ↦⇘cat_Rel α⇙ A"
proof-
interpret Set_Par: wide_replete_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_replete_subcategory_cat_Set_cat_Par)
interpret Par_Rel: wide_replete_subcategory α ‹cat_Par α› ‹cat_Rel α›
by (rule wide_replete_subcategory_cat_Par_cat_Rel)
interpret Set_Rel: subcategory α ‹cat_Set α› ‹cat_Rel α›
by
(
rule subcat_trans[
OF Set_Par.subcategory_axioms Par_Rel.subcategory_axioms
]
)
from assms show ?thesis
unfolding cat_Rel_components(1)
by (intro Set_Rel.subcat_is_arrD vfst_arrow_is_cat_Set_arr_Vset) auto
qed
lemma (in 𝒵) vfst_arrow_is_cat_Rel_arr'[cat_Rel_par_set_cs_intros]:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈"
and "B ∈⇩∘ cat_Rel α⦇Obj⦈"
and "AB = A ×⇩∘ B"
and "A' = A"
and "ℭ' = cat_Rel α"
shows "vfst_arrow A B : AB ↦⇘ℭ'⇙ A'"
using assms(1-2) unfolding assms(3-5) by (rule vfst_arrow_is_cat_Rel_arr)
lemmas [cat_Rel_par_set_cs_intros] = 𝒵.vfst_arrow_is_cat_Rel_arr'
lemma (in 𝒵) vsnd_arrow_is_cat_Rel_arr:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈" and "B ∈⇩∘ cat_Rel α⦇Obj⦈"
shows "vsnd_arrow A B : A ×⇩∘ B ↦⇘cat_Rel α⇙ B"
proof-
interpret Set_Par: wide_replete_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_replete_subcategory_cat_Set_cat_Par)
interpret Par_Rel: wide_replete_subcategory α ‹cat_Par α› ‹cat_Rel α›
by (rule wide_replete_subcategory_cat_Par_cat_Rel)
interpret Set_Rel: subcategory α ‹cat_Set α› ‹cat_Rel α›
by
(
rule subcat_trans[
OF Set_Par.subcategory_axioms Par_Rel.subcategory_axioms
]
)
from assms show ?thesis
unfolding cat_Rel_components(1)
by (intro Set_Rel.subcat_is_arrD vsnd_arrow_is_cat_Set_arr_Vset) auto
qed
lemma (in 𝒵) vsnd_arrow_is_cat_Rel_arr'[cat_Rel_par_set_cs_intros]:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈"
and "B ∈⇩∘ cat_Rel α⦇Obj⦈"
and "AB = A ×⇩∘ B"
and "B' = B"
and "ℭ' = cat_Rel α"
shows "vsnd_arrow A B : AB ↦⇘ℭ'⇙ B'"
using assms(1-2) unfolding assms(3-5) by (rule vsnd_arrow_is_cat_Rel_arr)
lemmas [cat_Rel_par_set_cs_intros] = 𝒵.vsnd_arrow_is_cat_Rel_arr'
subsubsection‹Projection arrows are isomorphisms in the category ‹Set››
lemma (in 𝒵) vfst_arrow_is_cat_Set_iso_arr_Vset:
assumes "A ∈⇩∘ Vset α" and "b ∈⇩∘ Vset α"
shows "vfst_arrow A (set {b}) : A ×⇩∘ set {b} ↦⇩i⇩s⇩o⇘cat_Set α⇙ A"
proof
(
intro
cat_Set_is_iso_arrI
arr_SetI
vfst_arrow_is_cat_Set_arr_Vset
assms,
unfold cat_cs_simps
)
show "v11 (vfst_arrow A (set {b})⦇ArrVal⦈)"
proof(rule vsv.vsv_valeq_v11I, unfold cat_cs_simps)
fix ab ab' assume prems:
"ab ∈⇩∘ A ×⇩∘ set {b}"
"ab' ∈⇩∘ A ×⇩∘ set {b}"
"vfst_arrow A (set {b})⦇ArrVal⦈⦇ab⦈ = vfst_arrow A (set {b})⦇ArrVal⦈⦇ab'⦈"
from prems obtain a where ab_def: "ab = ⟨a, b⟩" and a: "a ∈⇩∘ A"
by clarsimp
from prems obtain a' where ab'_def: "ab' = ⟨a', b⟩" and a': "a' ∈⇩∘ A"
by clarsimp
from prems(3) a a' have "a = a'"
unfolding ab_def ab'_def
by (cs_prems cs_shallow cs_simp: cat_cs_simps cs_intro: V_cs_intros)
then show "ab = ab'" unfolding ab_def ab'_def by simp
qed (cs_concl cs_shallow cs_intro: cat_cs_intros)
show "ℛ⇩∘ (vfst_arrow A (set {b})⦇ArrVal⦈) = A"
proof(intro vsubset_antisym)
show "A ⊆⇩∘ ℛ⇩∘ (vfst_arrow A (set {b})⦇ArrVal⦈)"
proof(intro vsubsetI)
fix a assume a: "a ∈⇩∘ A"
then have a_def: "a = vfst_arrow A (set {b})⦇ArrVal⦈⦇⟨a, b⟩⦈"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: V_cs_intros)
from a assms show "a ∈⇩∘ ℛ⇩∘ (vfst_arrow A (set {b})⦇ArrVal⦈)"
by (subst a_def, use nothing in ‹intro vsv.vsv_vimageI2›)
(auto simp: cat_cs_simps cat_cs_intros)
qed
qed (rule vfst_arrow_vrange)
qed (use assms in auto)
lemma (in 𝒵) vfst_arrow_is_cat_Set_iso_arr:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈" and "b ∈⇩∘ cat_Set α⦇Obj⦈"
shows "vfst_arrow A (set {b}) : A ×⇩∘ set {b} ↦⇩i⇩s⇩o⇘cat_Set α⇙ A"
using assms
unfolding cat_Set_components
by (rule vfst_arrow_is_cat_Set_iso_arr_Vset)
lemma (in 𝒵) vfst_arrow_is_cat_Set_iso_arr'[cat_rel_par_Set_cs_intros]:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈"
and "b ∈⇩∘ cat_Set α⦇Obj⦈"
and "AB = A ×⇩∘ set {b}"
and "A' = A"
and "ℭ' = cat_Set α"
shows "vfst_arrow A (set {b}) : AB ↦⇩i⇩s⇩o⇘ℭ'⇙ A"
using assms(1-2)
unfolding assms(3-5)
by (rule vfst_arrow_is_cat_Set_iso_arr)
lemmas [cat_rel_par_Set_cs_intros] = 𝒵.vfst_arrow_is_cat_Set_iso_arr'
lemma (in 𝒵) vsnd_arrow_is_cat_Set_iso_arr_Vset:
assumes "a ∈⇩∘ Vset α" and "B ∈⇩∘ Vset α"
shows "vsnd_arrow (set {a}) B : set {a} ×⇩∘ B ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
proof
(
intro
cat_Set_is_iso_arrI
arr_SetI
vsnd_arrow_is_cat_Set_arr_Vset
assms,
unfold cat_cs_simps
)
show "v11 (vsnd_arrow (set {a}) B⦇ArrVal⦈)"
proof(rule vsv.vsv_valeq_v11I, unfold cat_cs_simps)
fix ab ab' assume prems:
"ab ∈⇩∘ set {a} ×⇩∘ B"
"ab' ∈⇩∘ set {a} ×⇩∘ B"
"vsnd_arrow (set {a}) B⦇ArrVal⦈⦇ab⦈ = vsnd_arrow (set {a}) B⦇ArrVal⦈⦇ab'⦈"
from prems obtain b where ab_def: "ab = ⟨a, b⟩" and b: "b ∈⇩∘ B"
by clarsimp
from prems obtain b' where ab'_def: "ab' = ⟨a, b'⟩" and b': "b' ∈⇩∘ B"
by clarsimp
from prems(3) b b' have "b = b'"
unfolding ab_def ab'_def
by (cs_prems cs_shallow cs_simp: cat_cs_simps cs_intro: V_cs_intros)
then show "ab = ab'" unfolding ab_def ab'_def by simp
qed (cs_concl cs_shallow cs_intro: cat_cs_intros)
show "ℛ⇩∘ (vsnd_arrow (set {a}) B⦇ArrVal⦈) = B"
proof(intro vsubset_antisym)
show "B ⊆⇩∘ ℛ⇩∘ (vsnd_arrow (set {a}) B⦇ArrVal⦈)"
proof(intro vsubsetI)
fix b assume b: "b ∈⇩∘ B"
then have b_def: "b = vsnd_arrow (set {a}) B⦇ArrVal⦈⦇⟨a, b⟩⦈"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: V_cs_intros)
from b assms show "b ∈⇩∘ ℛ⇩∘ (vsnd_arrow (set {a}) B⦇ArrVal⦈)"
by (subst b_def, use nothing in ‹intro vsv.vsv_vimageI2›)
(auto simp: cat_cs_simps cat_cs_intros)
qed
qed (rule vsnd_arrow_vrange)
qed (use assms in auto)
lemma (in 𝒵) vsnd_arrow_is_cat_Set_iso_arr:
assumes "a ∈⇩∘ cat_Set α⦇Obj⦈" and "B ∈⇩∘ cat_Set α⦇Obj⦈"
shows "vsnd_arrow (set {a}) B : set {a} ×⇩∘ B ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
using assms
unfolding cat_Set_components
by (rule vsnd_arrow_is_cat_Set_iso_arr_Vset)
lemma (in 𝒵) vsnd_arrow_is_cat_Set_iso_arr'[cat_rel_par_Set_cs_intros]:
assumes "a ∈⇩∘ cat_Set α⦇Obj⦈"
and "B ∈⇩∘ cat_Set α⦇Obj⦈"
and "AB = set {a} ×⇩∘ B"
and "A' = A"
and "ℭ' = cat_Set α"
shows "vsnd_arrow (set {a}) B : AB ↦⇩i⇩s⇩o⇘ℭ'⇙ B"
using assms(1-2)
unfolding assms(3-5)
by (rule vsnd_arrow_is_cat_Set_iso_arr)
lemmas [cat_rel_par_Set_cs_intros] = 𝒵.vsnd_arrow_is_cat_Set_iso_arr'
subsubsection‹Projection arrows are isomorphisms in the category ‹Par››
lemma (in 𝒵) vfst_arrow_is_cat_Par_iso_arr:
assumes "A ∈⇩∘ cat_Par α⦇Obj⦈" and "b ∈⇩∘ cat_Par α⦇Obj⦈"
shows "vfst_arrow A (set {b}) : A ×⇩∘ set {b} ↦⇩i⇩s⇩o⇘cat_Par α⇙ A"
proof-
interpret Set_Par: wide_replete_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_replete_subcategory_cat_Set_cat_Par)
show "vfst_arrow A (set {b}) : A ×⇩∘ set {b} ↦⇩i⇩s⇩o⇘cat_Par α⇙ A"
by
(
rule Set_Par.wr_subcat_is_iso_arr_is_iso_arr
[
THEN iffD1,
OF vfst_arrow_is_cat_Set_iso_arr_Vset[
OF assms[unfolded cat_Par_components]
]
]
)
qed
lemma (in 𝒵) vfst_arrow_is_cat_Par_iso_arr'[cat_rel_Par_set_cs_intros]:
assumes "A ∈⇩∘ cat_Par α⦇Obj⦈"
and "b ∈⇩∘ cat_Par α⦇Obj⦈"
and "AB = A ×⇩∘ set {b}"
and "A' = A"
and "ℭ' = cat_Par α"
shows "vfst_arrow A (set {b}) : AB ↦⇩i⇩s⇩o⇘ℭ'⇙ A"
using assms(1-2)
unfolding assms(3-5)
by (rule vfst_arrow_is_cat_Par_iso_arr)
lemmas [cat_rel_Par_set_cs_intros] = 𝒵.vfst_arrow_is_cat_Par_iso_arr'
lemma (in 𝒵) vsnd_arrow_is_cat_Par_iso_arr:
assumes "a ∈⇩∘ cat_Par α⦇Obj⦈" and "B ∈⇩∘ cat_Par α⦇Obj⦈"
shows "vsnd_arrow (set {a}) B : set {a} ×⇩∘ B ↦⇩i⇩s⇩o⇘cat_Par α⇙ B"
proof-
interpret Set_Par: wide_replete_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_replete_subcategory_cat_Set_cat_Par)
show "vsnd_arrow (set {a}) B : set {a} ×⇩∘ B ↦⇩i⇩s⇩o⇘cat_Par α⇙ B"
by
(
rule Set_Par.wr_subcat_is_iso_arr_is_iso_arr
[
THEN iffD1,
OF vsnd_arrow_is_cat_Set_iso_arr_Vset[
OF assms[unfolded cat_Par_components]
]
]
)
qed
lemma (in 𝒵) vsnd_arrow_is_cat_Par_iso_arr'[cat_rel_Par_set_cs_intros]:
assumes "a ∈⇩∘ cat_Par α⦇Obj⦈"
and "B ∈⇩∘ cat_Par α⦇Obj⦈"
and "AB = set {a} ×⇩∘ B"
and "A' = A"
and "ℭ' = cat_Par α"
shows "vsnd_arrow (set {a}) B : AB ↦⇩i⇩s⇩o⇘ℭ'⇙ B"
using assms(1-2)
unfolding assms(3-5)
by (rule vsnd_arrow_is_cat_Par_iso_arr)
lemmas [cat_rel_Par_set_cs_intros] = 𝒵.vsnd_arrow_is_cat_Par_iso_arr'
subsubsection‹Projection arrows are isomorphisms in the category ‹Rel››
lemma (in 𝒵) vfst_arrow_is_cat_Rel_iso_arr:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈" and "b ∈⇩∘ cat_Rel α⦇Obj⦈"
shows "vfst_arrow A (set {b}) : A ×⇩∘ set {b} ↦⇩i⇩s⇩o⇘cat_Rel α⇙ A"
proof-
interpret Set_Par: wide_replete_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_replete_subcategory_cat_Set_cat_Par)
interpret Par_Rel: wide_replete_subcategory α ‹cat_Par α› ‹cat_Rel α›
by (rule wide_replete_subcategory_cat_Par_cat_Rel)
interpret Set_Rel: wide_replete_subcategory α ‹cat_Set α› ‹cat_Rel α›
by
(
rule wr_subcat_trans
[
OF
Set_Par.wide_replete_subcategory_axioms
Par_Rel.wide_replete_subcategory_axioms
]
)
show ?thesis
by
(
rule Set_Rel.wr_subcat_is_iso_arr_is_iso_arr
[
THEN iffD1,
OF vfst_arrow_is_cat_Set_iso_arr_Vset[
OF assms[unfolded cat_Rel_components]
]
]
)
qed
lemma (in 𝒵) vfst_arrow_is_cat_Rel_iso_arr'[cat_Rel_par_set_cs_intros]:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈"
and "b ∈⇩∘ cat_Rel α⦇Obj⦈"
and "AB = A ×⇩∘ set {b}"
and "A' = A"
and "ℭ' = cat_Rel α"
shows "vfst_arrow A (set {b}) : AB ↦⇩i⇩s⇩o⇘ℭ'⇙ A"
using assms(1-2)
unfolding assms(3-5)
by (rule vfst_arrow_is_cat_Rel_iso_arr)
lemmas [cat_Rel_par_set_cs_intros] = 𝒵.vfst_arrow_is_cat_Rel_iso_arr'
lemma (in 𝒵) vsnd_arrow_is_cat_Rel_iso_arr:
assumes "a ∈⇩∘ cat_Rel α⦇Obj⦈" and "B ∈⇩∘ cat_Rel α⦇Obj⦈"
shows "vsnd_arrow (set {a}) B : set {a} ×⇩∘ B ↦⇩i⇩s⇩o⇘cat_Rel α⇙ B"
proof-
interpret Set_Par: wide_replete_subcategory α ‹cat_Set α› ‹cat_Par α›
by (rule wide_replete_subcategory_cat_Set_cat_Par)
interpret Par_Rel: wide_replete_subcategory α ‹cat_Par α› ‹cat_Rel α›
by (rule wide_replete_subcategory_cat_Par_cat_Rel)
interpret Set_Rel: wide_replete_subcategory α ‹cat_Set α› ‹cat_Rel α›
by
(
rule wr_subcat_trans
[
OF
Set_Par.wide_replete_subcategory_axioms
Par_Rel.wide_replete_subcategory_axioms
]
)
show ?thesis
by
(
rule Set_Rel.wr_subcat_is_iso_arr_is_iso_arr
[
THEN iffD1,
OF vsnd_arrow_is_cat_Set_iso_arr_Vset[
OF assms[unfolded cat_Rel_components]
]
]
)
qed
lemma (in 𝒵) vsnd_arrow_is_cat_Rel_iso_arr'[cat_Rel_par_set_cs_intros]:
assumes "a ∈⇩∘ cat_Rel α⦇Obj⦈"
and "B ∈⇩∘ cat_Rel α⦇Obj⦈"
and "AB = set {a} ×⇩∘ B"
and "A' = A"
and "ℭ' = cat_Rel α"
shows "vsnd_arrow (set {a}) B : AB ↦⇩i⇩s⇩o⇘ℭ'⇙ B"
using assms(1-2)
unfolding assms(3-5)
by (rule vsnd_arrow_is_cat_Rel_iso_arr)
lemmas [cat_Rel_par_set_cs_intros] = 𝒵.vsnd_arrow_is_cat_Rel_iso_arr'
subsection‹Projection arrow for ‹vproduct››
definition vprojection_arrow :: "V ⇒ (V ⇒ V) ⇒ V ⇒ V"
where "vprojection_arrow I A i = [vprojection I A i, (∏⇩∘i∈⇩∘I. A i), A i]⇩∘"
text‹Components.›
lemma vprojection_arrow_components:
shows "vprojection_arrow I A i⦇ArrVal⦈ = vprojection I A i"
and "vprojection_arrow I A i⦇ArrDom⦈ = (∏⇩∘i∈⇩∘I. A i)"
and "vprojection_arrow I A i⦇ArrCod⦈ = A i"
unfolding vprojection_arrow_def arr_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹Projection arrow value›
mk_VLambda vprojection_arrow_components(1)[unfolded vprojection_def]
|vsv vprojection_arrow_ArrVal_vsv[cat_Set_cs_intros]|
|vdomain vprojection_arrow_ArrVal_vdomain[cat_Set_cs_simps]|
|app vprojection_arrow_ArrVal_app[cat_Set_cs_simps]|
subsubsection‹Projection arrow is an arrow in the category ‹Set››
lemma (in 𝒵) arr_Set_vprojection_arrow:
assumes "i ∈⇩∘ I" and "VLambda I A ∈⇩∘ Vset α"
shows "arr_Set α (vprojection_arrow I A i)"
proof(intro arr_SetI)
show "vfsequence (vprojection_arrow I A i)"
unfolding vprojection_arrow_def by auto
show "vcard (vprojection_arrow I A i) = 3⇩ℕ"
unfolding vprojection_arrow_def by (simp add: nat_omega_simps)
show "vprojection_arrow I A i⦇ArrCod⦈ ∈⇩∘ Vset α"
unfolding vprojection_arrow_components
proof-
from assms(1) have "i ∈⇩∘ I" by simp
then have "A i ∈⇩∘ ℛ⇩∘ (VLambda I A)" by auto
moreover from assms(2) have "ℛ⇩∘ (VLambda I A) ∈⇩∘ Vset α"
by (meson vrange_in_VsetI)
ultimately show "A i ∈⇩∘ Vset α" by auto
qed
qed
(
auto
simp: vprojection_arrow_components
intro!:
assms
vprojection_vrange_vsubset
Limit_vproduct_in_Vset_if_VLambda_in_VsetI
)
lemma (in 𝒵) vprojection_arrow_is_arr:
assumes "i ∈⇩∘ I" and "VLambda I A ∈⇩∘ Vset α"
shows "vprojection_arrow I A i : (∏⇩∘i∈⇩∘I. A i) ↦⇘cat_Set α⇙ A i"
proof(intro cat_Set_is_arrI)
from assms show "arr_Set α (vprojection_arrow I A i)"
by (rule arr_Set_vprojection_arrow)
qed (simp_all add: vprojection_arrow_components)
subsection‹Canonical injection arrow for ‹vdunion››
definition vcinjection_arrow :: "V ⇒ (V ⇒ V) ⇒ V ⇒ V"
where "vcinjection_arrow I A i = [vcinjection A i, A i, (∐⇩∘i∈⇩∘I. A i)]⇩∘"
text‹Components.›
lemma vcinjection_arrow_components:
shows "vcinjection_arrow I A i⦇ArrVal⦈ = vcinjection A i"
and "vcinjection_arrow I A i⦇ArrDom⦈ = A i"
and "vcinjection_arrow I A i⦇ArrCod⦈ = (∐⇩∘i∈⇩∘I. A i)"
unfolding vcinjection_arrow_def arr_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹Canonical injection arrow value›
mk_VLambda vcinjection_arrow_components(1)[unfolded vcinjection_def]
|vsv vcinjection_arrow_ArrVal_vsv[cat_Set_cs_intros]|
|vdomain vcinjection_arrow_ArrVal_vdomain[cat_Set_cs_simps]|
|app vcinjection_arrow_ArrVal_app[cat_Set_cs_simps]|
subsubsection‹Canonical injection arrow is an arrow in the category ‹Set››
lemma (in 𝒵) arr_Set_vcinjection_arrow:
assumes "i ∈⇩∘ I" and "VLambda I A ∈⇩∘ Vset α"
shows "arr_Set α (vcinjection_arrow I A i)"
proof(intro arr_SetI)
show "vfsequence (vcinjection_arrow I A i)"
unfolding vcinjection_arrow_def by auto
show "vcard (vcinjection_arrow I A i) = 3⇩ℕ"
unfolding vcinjection_arrow_def by (simp add: nat_omega_simps)
show "vcinjection_arrow I A i⦇ArrDom⦈ ∈⇩∘ Vset α"
unfolding vcinjection_arrow_components
proof-
from assms(1) have Ai_def: "A i = VLambda I A⦇i⦈" by simp
with assms(1) have "A i ∈⇩∘ ℛ⇩∘ (VLambda I A)" by auto
with assms(2) Limit_α show "A i ∈⇩∘ Vset α"
unfolding Ai_def by (auto intro: vrange_in_VsetI)
qed
show "vcinjection_arrow I A i⦇ArrCod⦈ ∈⇩∘ Vset α"
unfolding vcinjection_arrow_components
by (intro Limit_vdunion_in_Vset_if_VLambda_in_VsetI Limit_α assms)
qed
(
auto
simp: vcinjection_arrow_components
intro!: assms vcinjection_vrange_vsubset
)
lemma (in 𝒵) vcinjection_arrow_is_arr:
assumes "i ∈⇩∘ I" and "VLambda I A ∈⇩∘ Vset α"
shows "vcinjection_arrow I A i : A i ↦⇘cat_Set α⇙ (∐⇩∘i∈⇩∘I. A i)"
proof(intro cat_Set_is_arrI)
from assms show "arr_Set α (vcinjection_arrow I A i)"
by (rule arr_Set_vcinjection_arrow)
qed (simp_all add: vcinjection_arrow_components)
lemma (in 𝒵) vcinjection_arrow_is_arr'[cat_cs_intros]:
assumes "i ∈⇩∘ I"
and "VLambda I A ∈⇩∘ Vset α"
and "A' = A i"
and "ℭ' = cat_Set α"
and "P' = (∐⇩∘i∈⇩∘I. A i)"
shows "vcinjection_arrow I A i : A' ↦⇘ℭ'⇙ P'"
using assms(1,2) unfolding assms(3-5) by (rule vcinjection_arrow_is_arr)
subsection‹Product arrow value for ‹Rel››
subsubsection‹Definition and elementary properties›
definition prod_2_Rel_ArrVal :: "V ⇒ V ⇒ V"
where "prod_2_Rel_ArrVal S T =
set {⟨⟨a, b⟩, ⟨c, d⟩⟩ | a b c d. ⟨a, c⟩ ∈⇩∘ S ∧ ⟨b, d⟩ ∈⇩∘ T}"
lemma small_prod_2_Rel_ArrVal[simp]:
"small {⟨⟨a, b⟩, ⟨c, d⟩⟩ | a b c d. ⟨a, c⟩ ∈⇩∘ S ∧ ⟨b, d⟩ ∈⇩∘ T}"
(is ‹small ?S›)
proof(rule down)
show "?S ⊆ elts ((𝒟⇩∘ S ×⇩∘ 𝒟⇩∘ T) ×⇩∘ (ℛ⇩∘ S ×⇩∘ ℛ⇩∘ T))" by auto
qed
text‹Rules.›
lemma prod_2_Rel_ArrValI:
assumes "ab_cd = ⟨⟨a, b⟩, ⟨c, d⟩⟩"
and "⟨a, c⟩ ∈⇩∘ S"
and "⟨b, d⟩ ∈⇩∘ T"
shows "ab_cd ∈⇩∘ prod_2_Rel_ArrVal S T"
using assms unfolding prod_2_Rel_ArrVal_def by simp
lemma prod_2_Rel_ArrValD[dest]:
assumes "⟨⟨a, b⟩, ⟨c, d⟩⟩ ∈⇩∘ prod_2_Rel_ArrVal S T"
shows "⟨a, c⟩ ∈⇩∘ S" and "⟨b, d⟩ ∈⇩∘ T"
using assms unfolding prod_2_Rel_ArrVal_def by auto
lemma prod_2_Rel_ArrValE[elim!]:
assumes "ab_cd ∈⇩∘ prod_2_Rel_ArrVal S T"
obtains a b c d where "ab_cd = ⟨⟨a, b⟩, ⟨c, d⟩⟩"
and "⟨a, c⟩ ∈⇩∘ S"
and "⟨b, d⟩ ∈⇩∘ T"
using assms unfolding prod_2_Rel_ArrVal_def by auto
text‹Elementary properties›
lemma prod_2_Rel_ArrVal_vsubset_vprod:
"prod_2_Rel_ArrVal S T ⊆⇩∘ ((𝒟⇩∘ S ×⇩∘ 𝒟⇩∘ T) ×⇩∘ (ℛ⇩∘ S ×⇩∘ ℛ⇩∘ T))"
by (intro vsubsetI) auto
lemma prod_2_Rel_ArrVal_vbrelation: "vbrelation (prod_2_Rel_ArrVal S T)"
using prod_2_Rel_ArrVal_vsubset_vprod by auto
lemma prod_2_Rel_ArrVal_vdomain: "𝒟⇩∘ (prod_2_Rel_ArrVal S T) = 𝒟⇩∘ S ×⇩∘ 𝒟⇩∘ T"
proof(intro vsubset_antisym)
show "𝒟⇩∘ S ×⇩∘ 𝒟⇩∘ T ⊆⇩∘ 𝒟⇩∘ (prod_2_Rel_ArrVal S T)"
proof(intro vsubsetI)
fix ab assume "ab ∈⇩∘ 𝒟⇩∘ S ×⇩∘ 𝒟⇩∘ T"
then obtain a b
where ab_def: "ab = ⟨a, b⟩"
and "a ∈⇩∘ 𝒟⇩∘ S"
and "b ∈⇩∘ 𝒟⇩∘ T"
by auto
then obtain c d where "⟨a, c⟩ ∈⇩∘ S" and "⟨b, d⟩ ∈⇩∘ T" by force
then have "⟨⟨a, b⟩, ⟨c, d⟩⟩ ∈⇩∘ prod_2_Rel_ArrVal S T"
by (intro prod_2_Rel_ArrValI) auto
then show "ab ∈⇩∘ 𝒟⇩∘ (prod_2_Rel_ArrVal S T)"
unfolding ab_def by (simp add: app_vdomainI)
qed
qed (use prod_2_Rel_ArrVal_vsubset_vprod in blast)
lemma prod_2_Rel_ArrVal_vrange: "ℛ⇩∘ (prod_2_Rel_ArrVal S T) = ℛ⇩∘ S ×⇩∘ ℛ⇩∘ T"
proof(intro vsubset_antisym)
show "ℛ⇩∘ S ×⇩∘ ℛ⇩∘ T ⊆⇩∘ ℛ⇩∘ (prod_2_Rel_ArrVal S T)"
proof(intro vsubsetI)
fix cd assume "cd ∈⇩∘ ℛ⇩∘ S ×⇩∘ ℛ⇩∘ T"
then obtain c d
where cd_def: "cd = ⟨c, d⟩"
and "c ∈⇩∘ ℛ⇩∘ S"
and "d ∈⇩∘ ℛ⇩∘ T"
by auto
then obtain a b where "⟨a, c⟩ ∈⇩∘ S" and "⟨b, d⟩ ∈⇩∘ T" by force
then have "⟨⟨a, b⟩, ⟨c, d⟩⟩ ∈⇩∘ prod_2_Rel_ArrVal S T"
by (intro prod_2_Rel_ArrValI) auto
then show "cd ∈⇩∘ ℛ⇩∘ (prod_2_Rel_ArrVal S T)"
unfolding cd_def by (simp add: app_vrangeI)
qed
qed (use prod_2_Rel_ArrVal_vsubset_vprod in blast)
subsubsection‹Further properties›
lemma
assumes "vsv g" and "vsv f"
shows prod_2_Rel_ArrVal_vsv: "vsv (prod_2_Rel_ArrVal g f)"
and prod_2_Rel_ArrVal_app:
"⋀a b. ⟦ a ∈⇩∘ 𝒟⇩∘ g; b ∈⇩∘ 𝒟⇩∘ f ⟧ ⟹
prod_2_Rel_ArrVal g f⦇⟨a,b⟩⦈ = ⟨g⦇a⦈, f⦇b⦈⟩"
proof-
interpret g: vsv g by (rule assms(1))
interpret f: vsv f by (rule assms(2))
show vsv_gf: "vsv (prod_2_Rel_ArrVal g f)"
by (intro vsvI; (elim prod_2_Rel_ArrValE)?; (unfold prod_2_Rel_ArrVal_def)?)
(auto simp: g.vsv f.vsv)
fix a b assume "a ∈⇩∘ 𝒟⇩∘ g" "b ∈⇩∘ 𝒟⇩∘ f"
then have a_ga: "⟨a, g⦇a⦈⟩ ∈⇩∘ g" and b_fb: "⟨b, f⦇b⦈⟩ ∈⇩∘ f" by auto
from a_ga b_fb show "prod_2_Rel_ArrVal g f⦇⟨a, b⟩⦈ = ⟨g⦇a⦈, f⦇b⦈⟩"
by
(
cs_concl cs_shallow
cs_simp: vsv.vsv_appI[OF vsv_gf] cs_intro: prod_2_Rel_ArrValI
)
qed
lemma prod_2_Rel_ArrVal_v11:
assumes "v11 g" and "v11 f"
shows "v11 (prod_2_Rel_ArrVal g f)"
proof-
interpret g: v11 g by (rule assms(1))
interpret f: v11 f by (rule assms(2))
show ?thesis
proof
(
intro vsv.vsv_valeq_v11I prod_2_Rel_ArrVal_vsv g.vsv_axioms f.vsv_axioms,
unfold prod_2_Rel_ArrVal_vdomain
)
fix ab cd
assume prems:
"ab ∈⇩∘ 𝒟⇩∘ g ×⇩∘ 𝒟⇩∘ f"
"cd ∈⇩∘ 𝒟⇩∘ g ×⇩∘ 𝒟⇩∘ f"
"prod_2_Rel_ArrVal g f⦇ab⦈ = prod_2_Rel_ArrVal g f⦇cd⦈"
from prems(1) obtain a b
where ab_def: "ab = ⟨a, b⟩" and a: "a ∈⇩∘ 𝒟⇩∘ g" and b: "b ∈⇩∘ 𝒟⇩∘ f"
by auto
from prems(2) obtain c d
where cd_def: "cd = ⟨c, d⟩" and c: "c ∈⇩∘ 𝒟⇩∘ g" and d: "d ∈⇩∘ 𝒟⇩∘ f"
by auto
from prems(3) a b c d have "⟨g⦇a⦈, f⦇b⦈⟩ = ⟨g⦇c⦈, f⦇d⦈⟩"
unfolding ab_def cd_def
by
(
cs_prems cs_shallow
cs_simp: prod_2_Rel_ArrVal_app cs_intro: V_cs_intros
)
then have "g⦇a⦈ = g⦇c⦈" and "f⦇b⦈ = f⦇d⦈" by simp_all
then show "ab = cd"
by (auto simp: ab_def cd_def a b c d f.v11_injective g.v11_injective)
qed
qed
lemma prod_2_Rel_ArrVal_vcomp:
"prod_2_Rel_ArrVal S' T' ∘⇩∘ prod_2_Rel_ArrVal S T =
prod_2_Rel_ArrVal (S' ∘⇩∘ S) (T' ∘⇩∘ T)"
proof-
interpret ST': vbrelation ‹prod_2_Rel_ArrVal S' T'›
by (rule prod_2_Rel_ArrVal_vbrelation)
interpret ST: vbrelation ‹prod_2_Rel_ArrVal S T›
by (rule prod_2_Rel_ArrVal_vbrelation)
show ?thesis
proof(intro vsubset_antisym vsubsetI)
fix aa'_cc' assume
"aa'_cc' ∈⇩∘ prod_2_Rel_ArrVal S' T' ∘⇩∘ prod_2_Rel_ArrVal S T"
then obtain aa' bb' cc' where ac_def: "aa'_cc' = ⟨aa', cc'⟩"
and bc: "⟨bb', cc'⟩ ∈⇩∘ prod_2_Rel_ArrVal S' T'"
and ab: "⟨aa', bb'⟩ ∈⇩∘ prod_2_Rel_ArrVal S T"
by (elim vcompE)
from bc obtain b b' c c'
where bb'_cc'_def: "⟨bb', cc'⟩ = ⟨⟨b, b'⟩, ⟨c, c'⟩⟩"
and bc: "⟨b, c⟩ ∈⇩∘ S'"
and bc': "⟨b', c'⟩ ∈⇩∘ T'"
by auto
with ab obtain a a'
where aa'_bb'_def: "⟨aa', bb'⟩ = ⟨⟨a, a'⟩, ⟨b, b'⟩⟩"
and ab: "⟨a, b⟩ ∈⇩∘ S"
and ab': "⟨a', b'⟩ ∈⇩∘ T"
by auto
from bb'_cc'_def have bb'_def: "bb' = ⟨b, b'⟩" and cc'_def: "cc' = ⟨c, c'⟩"
by simp_all
from aa'_bb'_def have aa'_def: "aa' = ⟨a, a'⟩" and bb'_def: "bb' = ⟨b, b'⟩"
by simp_all
from bc bc' ab ab' show "aa'_cc' ∈⇩∘ prod_2_Rel_ArrVal (S' ∘⇩∘ S) (T' ∘⇩∘ T)"
unfolding ac_def aa'_def cc'_def
by (intro prod_2_Rel_ArrValI)
(cs_concl cs_shallow cs_intro: prod_2_Rel_ArrValI vcompI)+
next
fix aa'_cc' assume "aa'_cc' ∈⇩∘ prod_2_Rel_ArrVal (S' ∘⇩∘ S) (T' ∘⇩∘ T)"
then obtain a a' c c'
where aa'_cc'_def: "aa'_cc' = ⟨⟨a, a'⟩, ⟨c, c'⟩⟩"
and ac: "⟨a, c⟩ ∈⇩∘ S' ∘⇩∘ S"
and ac': "⟨a', c'⟩ ∈⇩∘ T' ∘⇩∘ T"
by blast
from ac obtain b where ab: "⟨a, b⟩ ∈⇩∘ S" and bc: "⟨b, c⟩ ∈⇩∘ S'"
by auto
from ac' obtain b' where ab': "⟨a', b'⟩ ∈⇩∘ T" and bc': "⟨b', c'⟩ ∈⇩∘ T'"
by auto
from ab bc ab' bc' show
"aa'_cc' ∈⇩∘ prod_2_Rel_ArrVal S' T' ∘⇩∘ prod_2_Rel_ArrVal S T"
unfolding aa'_cc'_def
by (cs_concl cs_shallow cs_intro: vcompI prod_2_Rel_ArrValI)
qed
qed
lemma prod_2_Rel_ArrVal_vid_on[cat_cs_simps]:
"prod_2_Rel_ArrVal (vid_on A) (vid_on B) = vid_on (A ×⇩∘ B)"
unfolding prod_2_Rel_ArrVal_def by auto
subsection‹Product arrow for ‹Rel››
subsubsection‹Definition and elementary properties›
definition prod_2_Rel :: "V ⇒ V ⇒ V" (infixr ‹⇩A×⇩R⇩e⇩l› 80)
where "prod_2_Rel S T =
[
prod_2_Rel_ArrVal (S⦇ArrVal⦈) (T⦇ArrVal⦈),
S⦇ArrDom⦈ ×⇩∘ T⦇ArrDom⦈,
S⦇ArrCod⦈ ×⇩∘ T⦇ArrCod⦈
]⇩∘"
abbreviation (input) prod_2_Par :: "V ⇒ V ⇒ V" (infixr ‹⇩A×⇩P⇩a⇩r› 80)
where "prod_2_Par ≡ prod_2_Rel"
abbreviation (input) prod_2_Set :: "V ⇒ V ⇒ V" (infixr ‹⇩A×⇩S⇩e⇩t› 80)
where "prod_2_Set ≡ prod_2_Rel"
text‹Components.›
lemma prod_2_Rel_components:
shows "(S ⇩A×⇩R⇩e⇩l T)⦇ArrVal⦈ = prod_2_Rel_ArrVal (S⦇ArrVal⦈) (T⦇ArrVal⦈)"
and [cat_cs_simps]: "(S ⇩A×⇩R⇩e⇩l T)⦇ArrDom⦈ = S⦇ArrDom⦈ ×⇩∘ T⦇ArrDom⦈"
and [cat_cs_simps]: "(S ⇩A×⇩R⇩e⇩l T)⦇ArrCod⦈ = S⦇ArrCod⦈ ×⇩∘ T⦇ArrCod⦈"
unfolding prod_2_Rel_def arr_field_simps by (simp_all add: nat_omega_simps)
subsubsection‹Product arrow for ‹Rel› is an arrow in ‹Rel››
lemma prod_2_Rel_is_cat_Rel_arr:
assumes "S : A ↦⇘cat_Rel α⇙ B" and "T : C ↦⇘cat_Rel α⇙ D"
shows "S ⇩A×⇩R⇩e⇩l T : A ×⇩∘ C ↦⇘cat_Rel α⇙ B ×⇩∘ D"
proof-
note S = cat_Rel_is_arrD[OF assms(1)]
note T = cat_Rel_is_arrD[OF assms(2)]
interpret S: arr_Rel α S
rewrites [simp]: "S⦇ArrDom⦈ = A" and [simp]: "S⦇ArrCod⦈ = B"
by (simp_all add: S)
interpret T: arr_Rel α T
rewrites [simp]: "T⦇ArrDom⦈ = C" and [simp]: "T⦇ArrCod⦈ = D"
by (simp_all add: T)
show ?thesis
proof(intro cat_Rel_is_arrI arr_RelI)
show "vfsequence (S ⇩A×⇩R⇩e⇩l T)"
unfolding prod_2_Rel_def by simp
show "vcard (S ⇩A×⇩R⇩e⇩l T) = 3⇩ℕ"
unfolding prod_2_Rel_def by (simp add: nat_omega_simps)
from S have "𝒟⇩∘ (S⦇ArrVal⦈) ⊆⇩∘ A" and "ℛ⇩∘ (S⦇ArrVal⦈) ⊆⇩∘ B" by auto
moreover from T have "𝒟⇩∘ (T⦇ArrVal⦈) ⊆⇩∘ C" and "ℛ⇩∘ (T⦇ArrVal⦈) ⊆⇩∘ D"
by auto
ultimately have
"𝒟⇩∘ (S⦇ArrVal⦈) ×⇩∘ 𝒟⇩∘ (T⦇ArrVal⦈) ⊆⇩∘ A ×⇩∘ C"
"ℛ⇩∘ (S⦇ArrVal⦈) ×⇩∘ ℛ⇩∘ (T⦇ArrVal⦈) ⊆⇩∘ B ×⇩∘ D"
by auto
then show
"𝒟⇩∘ ((S ⇩A×⇩R⇩e⇩l T)⦇ArrVal⦈) ⊆⇩∘ (S ⇩A×⇩R⇩e⇩l T)⦇ArrDom⦈"
"ℛ⇩∘ ((S ⇩A×⇩R⇩e⇩l T)⦇ArrVal⦈) ⊆⇩∘ (S ⇩A×⇩R⇩e⇩l T)⦇ArrCod⦈"
unfolding
prod_2_Rel_components prod_2_Rel_ArrVal_vdomain prod_2_Rel_ArrVal_vrange
by (force simp: prod_2_Rel_components)+
from
S.arr_Rel_ArrDom_in_Vset T.arr_Rel_ArrDom_in_Vset
S.arr_Rel_ArrCod_in_Vset T.arr_Rel_ArrCod_in_Vset
show "(S ⇩A×⇩R⇩e⇩l T)⦇ArrDom⦈ ∈⇩∘ Vset α" "(S ⇩A×⇩R⇩e⇩l T)⦇ArrCod⦈ ∈⇩∘ Vset α"
unfolding prod_2_Rel_components
by (all‹intro Limit_vtimes_in_VsetI›) auto
qed (auto simp: prod_2_Rel_components intro: prod_2_Rel_ArrVal_vbrelation)
qed
lemma prod_2_Rel_is_cat_Rel_arr'[cat_Rel_par_set_cs_intros]:
assumes "S : A ↦⇘cat_Rel α⇙ B"
and "T : C ↦⇘cat_Rel α⇙ D"
and "A' = A ×⇩∘ C"
and "B' = B ×⇩∘ D"
and "ℭ' = cat_Rel α"
shows "S ⇩A×⇩R⇩e⇩l T : A' ↦⇘ℭ'⇙ B'"
using assms(1,2) unfolding assms(3-5) by (rule prod_2_Rel_is_cat_Rel_arr)
subsubsection‹Product arrow for ‹Rel› is an arrow in ‹Set››
lemma prod_2_Rel_app[cat_rel_par_Set_cs_simps]:
assumes "S : A ↦⇘cat_Set α⇙ B"
and "T : C ↦⇘cat_Set α⇙ D"
and "a ∈⇩∘ A"
and "c ∈⇩∘ C"
and "ac = ⟨a, c⟩"
shows "(S ⇩A×⇩S⇩e⇩t T)⦇ArrVal⦈⦇ac⦈ = ⟨S⦇ArrVal⦈⦇a⦈, T⦇ArrVal⦈⦇c⦈⟩"
proof-
note S = cat_Set_is_arrD[OF assms(1)]
note T = cat_Set_is_arrD[OF assms(2)]
interpret S: arr_Set α S
rewrites [simp]: "S⦇ArrDom⦈ = A" and [simp]: "S⦇ArrCod⦈ = B"
by (simp_all add: S)
interpret T: arr_Set α T
rewrites [simp]: "T⦇ArrDom⦈ = C" and [simp]: "T⦇ArrCod⦈ = D"
by (simp_all add: T)
from assms(3,4) show ?thesis
unfolding prod_2_Rel_components(1) assms(5)
by
(
cs_concl cs_shallow
cs_simp:
S.arr_Set_ArrVal_vdomain
T.arr_Set_ArrVal_vdomain
prod_2_Rel_ArrVal_app
cs_intro: V_cs_intros
)
qed
lemma prod_2_Rel_is_cat_Set_arr:
assumes "S : A ↦⇘cat_Set α⇙ B" and "T : C ↦⇘cat_Set α⇙ D"
shows "S ⇩A×⇩S⇩e⇩t T : A ×⇩∘ C ↦⇘cat_Set α⇙ B ×⇩∘ D"
proof-
note S = cat_Set_is_arrD[OF assms(1)]
note T = cat_Set_is_arrD[OF assms(2)]
interpret S: arr_Set α S
rewrites [simp]: "S⦇ArrDom⦈ = A" and [simp]: "S⦇ArrCod⦈ = B"
by (simp_all add: S)
interpret T: arr_Set α T
rewrites [simp]: "T⦇ArrDom⦈ = C" and [simp]: "T⦇ArrCod⦈ = D"
by (simp_all add: T)
show ?thesis
proof(intro cat_Set_is_arrI arr_SetI)
show "vfsequence (S ⇩A×⇩S⇩e⇩t T)"
unfolding prod_2_Rel_def by simp
show "vcard (S ⇩A×⇩S⇩e⇩t T) = 3⇩ℕ"
unfolding prod_2_Rel_def by (simp add: nat_omega_simps)
from S.arr_Set_ArrVal_vrange T.arr_Set_ArrVal_vrange show
"ℛ⇩∘ ((S ⇩A×⇩S⇩e⇩t T)⦇ArrVal⦈) ⊆⇩∘ (S ⇩A×⇩S⇩e⇩t T)⦇ArrCod⦈"
unfolding
prod_2_Rel_components prod_2_Rel_ArrVal_vdomain prod_2_Rel_ArrVal_vrange
by auto
from assms S.arr_Par_ArrDom_in_Vset T.arr_Par_ArrDom_in_Vset show
"(S ⇩A×⇩S⇩e⇩t T)⦇ArrDom⦈ ∈⇩∘ Vset α"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: V_cs_intros)
from assms S.arr_Par_ArrCod_in_Vset T.arr_Par_ArrCod_in_Vset show
"(S ⇩A×⇩S⇩e⇩t T)⦇ArrCod⦈ ∈⇩∘ Vset α"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: V_cs_intros)
from assms show "(S ⇩A×⇩S⇩e⇩t T)⦇ArrDom⦈ = A ×⇩∘ C"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)
from assms show "(S ⇩A×⇩S⇩e⇩t T)⦇ArrCod⦈ = B ×⇩∘ D"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)
show "vsv ((S ⇩A×⇩S⇩e⇩t T)⦇ArrVal⦈)"
unfolding prod_2_Rel_components
by (intro prod_2_Rel_ArrVal_vsv S.ArrVal.vsv_axioms T.ArrVal.vsv_axioms)
qed
(
auto simp:
cat_cs_simps cat_Set_cs_simps
prod_2_Rel_ArrVal_vdomain prod_2_Rel_components(1)
)
qed
lemma prod_2_Rel_is_cat_Set_arr'[cat_rel_par_Set_cs_intros]:
assumes "S : A ↦⇘cat_Set α⇙ B"
and "T : C ↦⇘cat_Set α⇙ D"
and "AC = A ×⇩∘ C"
and "BD = B ×⇩∘ D"
and "ℭ' = cat_Set α"
shows "S ⇩A×⇩S⇩e⇩t T : AC ↦⇘ℭ'⇙ BD"
using assms(1,2) unfolding assms(3-5) by (rule prod_2_Rel_is_cat_Set_arr)
subsubsection‹Product arrow for ‹Rel› is an isomorphism in ‹Set››
lemma prod_2_Rel_is_cat_Set_iso_arr:
assumes "S : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B" and "T : C ↦⇩i⇩s⇩o⇘cat_Set α⇙ D"
shows "S ⇩A×⇩S⇩e⇩t T : A ×⇩∘ C ↦⇩i⇩s⇩o⇘cat_Set α⇙ B ×⇩∘ D"
proof-
note S = cat_Set_is_iso_arrD[OF assms(1)]
note T = cat_Set_is_iso_arrD[OF assms(2)]
show ?thesis
proof
(
intro cat_Set_is_iso_arrI prod_2_Rel_is_cat_Set_arr[OF S(1) T(1)],
unfold prod_2_Rel_components
)
show "𝒟⇩∘ (prod_2_Rel_ArrVal (S⦇ArrVal⦈) (T⦇ArrVal⦈)) = A ×⇩∘ C"
unfolding prod_2_Rel_ArrVal_vdomain
by (cs_concl cs_shallow cs_simp: S(3) T(3) cs_intro: cat_cs_intros)
show "ℛ⇩∘ (prod_2_Rel_ArrVal (S⦇ArrVal⦈) (T⦇ArrVal⦈)) = B ×⇩∘ D"
unfolding prod_2_Rel_ArrVal_vrange
by (cs_concl cs_shallow cs_simp: S(4) T(4) cs_intro: cat_cs_intros)
qed (use S(2) T(2) in ‹cs_concl cs_shallow cs_intro: prod_2_Rel_ArrVal_v11›)
qed
lemma prod_2_Rel_is_cat_Set_iso_arr'[cat_rel_par_Set_cs_intros]:
assumes "S : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
and "T : C ↦⇩i⇩s⇩o⇘cat_Set α⇙ D"
and "AC = A ×⇩∘ C"
and "BD = B ×⇩∘ D"
and "ℭ' = cat_Set α"
shows "S ⇩A×⇩S⇩e⇩t T : AC ↦⇩i⇩s⇩o⇘ℭ'⇙ BD"
using assms(1,2)
unfolding assms(3-5)
by (rule prod_2_Rel_is_cat_Set_iso_arr)
subsubsection‹Further elementary properties›
lemma prod_2_Rel_Comp:
assumes "G' : B' ↦⇘cat_Rel α⇙ B''"
and "F' : A' ↦⇘cat_Rel α⇙ A''"
and "G : B ↦⇘cat_Rel α⇙ B'"
and "F : A ↦⇘cat_Rel α⇙ A'"
shows
"G' ⇩A×⇩R⇩e⇩l F' ∘⇩A⇘cat_Rel α⇙ G ⇩A×⇩R⇩e⇩l F =
(G' ∘⇩A⇘cat_Rel α⇙ G) ⇩A×⇩R⇩e⇩l (F' ∘⇩A⇘cat_Rel α⇙ F)"
proof-
from cat_Rel_is_arrD(1)[OF assms(1)] interpret 𝒵 α by auto
interpret Rel: category α ‹cat_Rel α› by (rule category_cat_Rel)
note [cat_cs_simps] = cat_Rel_is_arrD(2,3)
from assms have GF'_GF:
"G' ⇩A×⇩R⇩e⇩l F' ∘⇩A⇘cat_Rel α⇙ G ⇩A×⇩R⇩e⇩l F :
B ×⇩∘ A ↦⇘cat_Rel α⇙ B'' ×⇩∘ A''"
by (cs_concl cs_shallow cs_intro: cat_Rel_par_set_cs_intros cat_cs_intros)
from assms Rel.category_axioms have GG'_FF':
"(G' ∘⇩A⇘cat_Rel α⇙ G) ⇩A×⇩R⇩e⇩l (F' ∘⇩A⇘cat_Rel α⇙ F) :
B ×⇩∘ A ↦⇘cat_Rel α⇙ B'' ×⇩∘ A''"
by (cs_concl cs_shallow cs_intro: cat_Rel_par_set_cs_intros cat_cs_intros)
show ?thesis
proof(rule arr_Rel_eqI[of α])
from GF'_GF show arr_Rel_GF'_GF:
"arr_Rel α (G' ⇩A×⇩R⇩e⇩l F' ∘⇩A⇘cat_Rel α⇙ G ⇩A×⇩R⇩e⇩l F)"
by (auto dest: cat_Rel_is_arrD(1))
from GG'_FF' show arr_Rel_GG'_FF':
"arr_Rel α ((G' ∘⇩A⇘cat_Rel α⇙ G) ⇩A×⇩R⇩e⇩l (F' ∘⇩A⇘cat_Rel α⇙ F))"
by (auto dest: cat_Rel_is_arrD(1))
show "(G' ⇩A×⇩R⇩e⇩l F' ∘⇩A⇘cat_Rel α⇙ G ⇩A×⇩R⇩e⇩l F)⦇ArrVal⦈ =
((G' ∘⇩A⇘cat_Rel α⇙ G) ⇩A×⇩R⇩e⇩l (F' ∘⇩A⇘cat_Rel α⇙ F))⦇ArrVal⦈"
proof(intro vsubset_antisym vsubsetI)
fix R assume
"R ∈⇩∘ (G' ⇩A×⇩R⇩e⇩l F' ∘⇩A⇘cat_Rel α⇙ G ⇩A×⇩R⇩e⇩l F)⦇ArrVal⦈"
from this assms have "R ∈⇩∘
prod_2_Rel_ArrVal (G'⦇ArrVal⦈) (F'⦇ArrVal⦈) ∘⇩∘
prod_2_Rel_ArrVal (G⦇ArrVal⦈) (F⦇ArrVal⦈)"
by
(
cs_prems cs_shallow
cs_simp:
prod_2_Rel_components(1)
comp_Rel_components(1)
cat_Rel_cs_simps
cs_intro: cat_Rel_par_set_cs_intros
)
from this[unfolded prod_2_Rel_ArrVal_vcomp] assms show
"R ∈⇩∘ ((G' ∘⇩A⇘cat_Rel α⇙ G) ⇩A×⇩R⇩e⇩l (F' ∘⇩A⇘cat_Rel α⇙ F))⦇ArrVal⦈"
by
(
cs_concl cs_shallow cs_simp:
prod_2_Rel_components comp_Rel_components(1) cat_Rel_cs_simps
)
next
fix R assume
"R ∈⇩∘ ((G' ∘⇩A⇘cat_Rel α⇙ G) ⇩A×⇩R⇩e⇩l (F' ∘⇩A⇘cat_Rel α⇙ F))⦇ArrVal⦈"
from this assms have
"R ∈⇩∘ prod_2_Rel_ArrVal (G'⦇ArrVal⦈ ∘⇩∘ G⦇ArrVal⦈) (F'⦇ArrVal⦈ ∘⇩∘ F⦇ArrVal⦈)"
by
(
cs_prems cs_shallow cs_simp:
comp_Rel_components prod_2_Rel_components cat_Rel_cs_simps
)
from this[folded prod_2_Rel_ArrVal_vcomp] assms show
"R ∈⇩∘ ((G' ⇩A×⇩R⇩e⇩l F') ∘⇩A⇘cat_Rel α⇙ (G ⇩A×⇩R⇩e⇩l F))⦇ArrVal⦈"
by
(
cs_concl cs_shallow
cs_simp:
prod_2_Rel_components comp_Rel_components(1) cat_Rel_cs_simps
cs_intro: cat_Rel_par_set_cs_intros
)
qed
qed
(
use GF'_GF assms in
‹
cs_concl
cs_simp: cat_cs_simps
cs_intro: cat_cs_intros cat_Rel_cs_intros
›
)+
qed
lemma (in 𝒵) prod_2_Rel_CId[cat_cs_simps]:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈" and "B ∈⇩∘ cat_Rel α⦇Obj⦈"
shows
"(cat_Rel α⦇CId⦈⦇A⦈) ⇩A×⇩R⇩e⇩l (cat_Rel α⦇CId⦈⦇B⦈) = cat_Rel α⦇CId⦈⦇A ×⇩∘ B⦈"
proof-
interpret Rel: category α ‹cat_Rel α› by (rule category_cat_Rel)
from assms have A_B:
"(cat_Rel α⦇CId⦈⦇A⦈) ⇩A×⇩R⇩e⇩l (cat_Rel α⦇CId⦈⦇B⦈) :
A ×⇩∘ B ↦⇘cat_Rel α⇙ A ×⇩∘ B"
by (cs_concl cs_intro: cat_Rel_par_set_cs_intros cat_cs_intros)
from assms Rel.category_axioms have AB:
"cat_Rel α⦇CId⦈⦇A ×⇩∘ B⦈ : A ×⇩∘ B ↦⇘cat_Rel α⇙ A ×⇩∘ B"
by
(
cs_concl
cs_simp: cat_Rel_components(1) cs_intro: V_cs_intros cat_cs_intros
)
show ?thesis
proof(rule arr_Rel_eqI)
from A_B show arr_Rel_GF'_GF:
"arr_Rel α ((cat_Rel α⦇CId⦈⦇A⦈) ⇩A×⇩R⇩e⇩l (cat_Rel α⦇CId⦈⦇B⦈))"
by (auto dest: cat_Rel_is_arrD(1))
from AB show arr_Rel_GG'_FF': "arr_Rel α (cat_Rel α⦇CId⦈⦇A ×⇩∘ B⦈)"
by (auto dest: cat_Rel_is_arrD(1))
from assms show
"((cat_Rel α⦇CId⦈⦇A⦈) ⇩A×⇩R⇩e⇩l (cat_Rel α⦇CId⦈⦇B⦈))⦇ArrVal⦈ =
cat_Rel α⦇CId⦈⦇A ×⇩∘ B⦈⦇ArrVal⦈"
by
(
cs_concl
cs_simp:
id_Rel_components prod_2_Rel_components
cat_cs_simps cat_Rel_cs_simps
cs_intro: V_cs_intros cat_cs_intros
)
qed
(
use A_B assms in
‹
cs_concl
cs_simp: prod_2_Rel_components cat_Rel_cs_simps
cs_intro: cat_cs_intros
›
)+
qed
lemma cf_dag_Rel_ArrMap_app_prod_2_Rel:
assumes "S : A ↦⇘cat_Rel α⇙ B" and "T : C ↦⇘cat_Rel α⇙ D"
shows
"†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈ =
(†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈) ⇩A×⇩R⇩e⇩l (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈)"
proof-
interpret S: arr_Rel α S by (intro cat_Rel_is_arrD[OF assms(1)])
interpret Rel: category α ‹cat_Rel α› by (rule S.category_cat_Rel)
interpret dag_Rel: is_iso_functor α ‹op_cat (cat_Rel α)› ‹cat_Rel α› ‹†⇩C⇩.⇩R⇩e⇩l α›
by (rule S.cf_dag_Rel_is_iso_functor)
note ST = prod_2_Rel_is_cat_Rel_arr[OF assms]
from assms have dag_S: "†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈ : B ↦⇘cat_Rel α⇙ A"
and dag_T: "†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈ : D ↦⇘cat_Rel α⇙ C"
by
(
cs_concl
cs_simp: cat_Rel_cs_simps cat_op_simps cs_intro: cat_cs_intros
)+
from assms have dag_prod:
"†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈ : B ×⇩∘ D ↦⇘cat_Rel α⇙ A ×⇩∘ C"
by
(
cs_concl
cs_simp: cat_Rel_cs_simps cat_op_simps
cs_intro: V_cs_intros cat_cs_intros cat_Rel_par_set_cs_intros
)
from dag_S dag_T have prod_dag:
"(†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈) ⇩A×⇩R⇩e⇩l (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈) :
B ×⇩∘ D ↦⇘cat_Rel α⇙ A ×⇩∘ C"
by (cs_concl cs_shallow cs_intro: cat_Rel_par_set_cs_intros)
note [cat_cs_simps] =
prod_2_Rel_ArrVal_vdomain prod_2_Rel_ArrVal_vrange prod_2_Rel_components
from dag_prod ST have [cat_cs_simps]:
"𝒟⇩∘ (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈⦇ArrVal⦈) = ℛ⇩∘ (S⦇ArrVal⦈) ×⇩∘ ℛ⇩∘ (T⦇ArrVal⦈)"
"ℛ⇩∘ (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈⦇ArrVal⦈) = 𝒟⇩∘ (S⦇ArrVal⦈) ×⇩∘ 𝒟⇩∘ (T⦇ArrVal⦈)"
by (cs_concl cs_simp: cat_cs_simps)+
show
"†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈ =
(†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈) ⇩A×⇩R⇩e⇩l (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈)"
proof(rule arr_Rel_eqI)
from dag_prod show arr_Rel_dag_prod:
"arr_Rel α (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈)"
by (auto dest: cat_Rel_is_arrD)
then interpret dag_prod: arr_Rel α ‹†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈› by simp
from prod_dag show arr_Rel_prod_dag:
"arr_Rel α ((†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈) ⇩A×⇩R⇩e⇩l (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈))"
by (auto dest: cat_Rel_is_arrD)
then interpret prod_dag:
arr_Rel α ‹(†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈) ⇩A×⇩R⇩e⇩l (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈)›
by simp
from ST have arr_Rel_ST: "arr_Rel α (S ⇩A×⇩R⇩e⇩l T)"
by (auto dest: cat_Rel_is_arrD)
show
"†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈⦇ArrVal⦈ =
((†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈) ⇩A×⇩R⇩e⇩l (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈))⦇ArrVal⦈"
proof(intro vsubset_antisym vsubsetI)
fix bd_ac assume prems: "bd_ac ∈⇩∘ †⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈⦇ArrVal⦈"
then obtain bd ac
where bd_ac_def: "bd_ac = ⟨bd, ac⟩"
and bd: "bd ∈⇩∘ ℛ⇩∘ (S⦇ArrVal⦈) ×⇩∘ ℛ⇩∘ (T⦇ArrVal⦈)"
and ac: "ac ∈⇩∘ 𝒟⇩∘ (S⦇ArrVal⦈) ×⇩∘ 𝒟⇩∘ (T⦇ArrVal⦈)"
by (elim cat_Rel_is_arr_ArrValE[OF dag_prod prems, unfolded cat_cs_simps])
have "⟨ac, bd⟩ ∈⇩∘ prod_2_Rel_ArrVal (S⦇ArrVal⦈) (T⦇ArrVal⦈)"
by
(
rule prems[
unfolded
bd_ac_def
cf_dag_Rel_ArrMap_app_iff[OF ST]
prod_2_Rel_components
]
)
then obtain a b c d
where ab: "⟨a, b⟩ ∈⇩∘ S⦇ArrVal⦈"
and cd: "⟨c, d⟩ ∈⇩∘ T⦇ArrVal⦈"
and bd_def: "bd = ⟨b, d⟩"
and ac_def: "ac = ⟨a, c⟩"
by auto
show "bd_ac ∈⇩∘ ((†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈) ⇩A×⇩R⇩e⇩l (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈))⦇ArrVal⦈"
unfolding prod_2_Rel_components
proof(intro prod_2_Rel_ArrValI)
show "bd_ac = ⟨⟨b, d⟩, ⟨a, c⟩⟩" unfolding bd_ac_def bd_def ac_def by simp
from assms ab cd show
"⟨b, a⟩ ∈⇩∘ †⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈⦇ArrVal⦈"
"⟨d, c⟩ ∈⇩∘ †⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈⦇ArrVal⦈"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)+
qed
next
fix bd_ac assume prems:
"bd_ac ∈⇩∘ ((†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈) ⇩A×⇩R⇩e⇩l (†⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈))⦇ArrVal⦈"
then obtain a b c d
where bd_ac_def: "bd_ac = ⟨⟨b, d⟩, a, c⟩"
and ba: "⟨b, a⟩ ∈⇩∘ †⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S⦈⦇ArrVal⦈"
and dc: "⟨d, c⟩ ∈⇩∘ †⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇T⦈⦇ArrVal⦈"
by (elim prod_2_Rel_ArrValE[OF prems[unfolded prod_2_Rel_components]])
then have ab: "⟨a, b⟩ ∈⇩∘ S⦇ArrVal⦈" and cd: "⟨c, d⟩ ∈⇩∘ T⦇ArrVal⦈"
unfolding assms[THEN cf_dag_Rel_ArrMap_app_iff] by simp_all
from ST ab cd show "bd_ac ∈⇩∘ †⇩C⇩.⇩R⇩e⇩l α⦇ArrMap⦈⦇S ⇩A×⇩R⇩e⇩l T⦈⦇ArrVal⦈"
unfolding bd_ac_def
by
(
cs_concl cs_shallow
cs_simp: prod_2_Rel_components cat_cs_simps
cs_intro: prod_2_Rel_ArrValI cat_cs_intros
)
qed
qed (use dag_prod prod_dag in ‹cs_concl cs_simp: cat_cs_simps›)+
qed
subsection‹Product functor for ‹Rel››
definition cf_prod_2_Rel :: "V ⇒ V"
where "cf_prod_2_Rel 𝔄 =
[
(λAB∈⇩∘(𝔄 ×⇩C 𝔄)⦇Obj⦈. AB⦇0⦈ ×⇩∘ AB⦇1⇩ℕ⦈),
(λST∈⇩∘(𝔄 ×⇩C 𝔄)⦇Arr⦈. (ST⦇0⦈) ⇩A×⇩R⇩e⇩l (ST⦇1⇩ℕ⦈)),
𝔄 ×⇩C 𝔄,
𝔄
]⇩∘"
text‹Components.›
lemma cf_prod_2_Rel_components:
shows "cf_prod_2_Rel 𝔄⦇ObjMap⦈ = (λAB∈⇩∘(𝔄 ×⇩C 𝔄)⦇Obj⦈. AB⦇0⦈ ×⇩∘ AB⦇1⇩ℕ⦈)"
and "cf_prod_2_Rel 𝔄⦇ArrMap⦈ =
(λST∈⇩∘(𝔄 ×⇩C 𝔄)⦇Arr⦈. (ST⦇0⦈) ⇩A×⇩R⇩e⇩l (ST⦇1⇩ℕ⦈))"
and [cat_cs_simps]: "cf_prod_2_Rel 𝔄⦇HomDom⦈ = 𝔄 ×⇩C 𝔄"
and [cat_cs_simps]: "cf_prod_2_Rel 𝔄⦇HomCod⦈ = 𝔄"
unfolding cf_prod_2_Rel_def dghm_field_simps by (simp_all add: nat_omega_simps)
subsubsection‹Object map›
mk_VLambda cf_prod_2_Rel_components(1)
|vsv cf_prod_2_Rel_ObjMap_vsv[cat_cs_intros]|
|vdomain cf_prod_2_Rel_ObjMap_vdomain[cat_cs_simps]|
lemma cf_prod_2_Rel_ObjMap_app[cat_cs_simps]:
assumes "AB = [A, B]⇩∘" and "AB ∈⇩∘ (𝔄 ×⇩C 𝔄)⦇Obj⦈"
shows "A ⊗⇩H⇩M⇩.⇩O⇘cf_prod_2_Rel 𝔄⇙ B = A ×⇩∘ B"
using assms(2)
unfolding assms(1) cf_prod_2_Rel_components
by (simp add: nat_omega_simps)
lemma (in 𝒵) cf_prod_2_Rel_ObjMap_vrange:
"ℛ⇩∘ (cf_prod_2_Rel (cat_Rel α)⦇ObjMap⦈) ⊆⇩∘ cat_Rel α⦇Obj⦈"
proof-
interpret Rel: category α ‹cat_Rel α›
by (cs_concl cs_shallow cs_intro: cat_cs_intros cat_Rel_cs_intros)
show ?thesis
proof(rule vsv.vsv_vrange_vsubset, unfold cat_cs_simps)
fix AB assume prems: "AB ∈⇩∘ (cat_Rel α ×⇩C cat_Rel α)⦇Obj⦈"
with Rel.category_axioms obtain A B where AB_def: "AB = [A, B]⇩∘"
and A: "A ∈⇩∘ cat_Rel α⦇Obj⦈"
and B: "B ∈⇩∘ cat_Rel α⦇Obj⦈"
by (elim cat_prod_2_ObjE[rotated 2])
from prems A B show "cf_prod_2_Rel (cat_Rel α)⦇ObjMap⦈⦇AB⦈ ∈⇩∘ cat_Rel α⦇Obj⦈"
unfolding AB_def cat_Rel_components(1)
by
(
cs_concl cs_shallow
cs_simp: cat_cs_simps cat_Rel_cs_simps cs_intro: V_cs_intros
)
qed (cs_concl cs_shallow cs_intro: cat_cs_intros)
qed
subsubsection‹Arrow map›
mk_VLambda cf_prod_2_Rel_components(2)
|vsv cf_prod_2_Rel_ArrMap_vsv[cat_cs_intros]|
|vdomain cf_prod_2_Rel_ArrMap_vdomain[cat_cs_simps]|
lemma cf_prod_2_Rel_ArrMap_app[cat_cs_simps]:
assumes "GF = [G, F]⇩∘" and "GF ∈⇩∘ (𝔄 ×⇩C 𝔄)⦇Arr⦈"
shows "G ⊗⇩H⇩M⇩.⇩A⇘cf_prod_2_Rel 𝔄⇙ F = G ⇩A×⇩R⇩e⇩l F"
using assms(2)
unfolding assms(1) cf_prod_2_Rel_components
by (simp add: nat_omega_simps)
subsubsection‹Product functor for ‹Rel› is a functor›
lemma (in 𝒵) cf_prod_2_Rel_is_functor:
"cf_prod_2_Rel (cat_Rel α) : cat_Rel α ×⇩C cat_Rel α ↦↦⇩C⇘α⇙ cat_Rel α"
proof-
interpret Rel: category α ‹cat_Rel α›
by (cs_concl cs_shallow cs_intro: cat_cs_intros cat_Rel_cs_intros)
show ?thesis
proof(rule is_functorI')
show "vfsequence (cf_prod_2_Rel (cat_Rel α))"
unfolding cf_prod_2_Rel_def by auto
show "vcard (cf_prod_2_Rel (cat_Rel α)) = 4⇩ℕ"
unfolding cf_prod_2_Rel_def by (simp add: nat_omega_simps)
show "ℛ⇩∘ (cf_prod_2_Rel (cat_Rel α)⦇ObjMap⦈) ⊆⇩∘ cat_Rel α⦇Obj⦈"
by (rule cf_prod_2_Rel_ObjMap_vrange)
show "cf_prod_2_Rel (cat_Rel α)⦇ArrMap⦈⦇GF⦈ :
cf_prod_2_Rel (cat_Rel α)⦇ObjMap⦈⦇AB⦈ ↦⇘cat_Rel α⇙
cf_prod_2_Rel (cat_Rel α)⦇ObjMap⦈⦇CD⦈"
if "GF : AB ↦⇘cat_Rel α ×⇩C cat_Rel α⇙ CD" for AB CD GF
proof-
from that obtain G F A B C D
where GF_def: "GF = [G, F]⇩∘"
and AB_def: "AB = [A, B]⇩∘"
and CD_def: "CD = [C, D]⇩∘"
and G: "G : A ↦⇘cat_Rel α⇙ C"
and F: "F : B ↦⇘cat_Rel α⇙ D"
by (elim cat_prod_2_is_arrE[OF Rel.category_axioms Rel.category_axioms])
from that G F show ?thesis
unfolding GF_def AB_def CD_def
by
(
cs_concl
cs_simp: cat_cs_simps
cs_intro:
cat_Rel_par_set_cs_intros cat_cs_intros cat_prod_cs_intros
)
qed
show
"cf_prod_2_Rel (cat_Rel α)⦇ArrMap⦈⦇GF' ∘⇩A⇘cat_Rel α ×⇩C cat_Rel α⇙ GF⦈ =
cf_prod_2_Rel (cat_Rel α)⦇ArrMap⦈⦇GF'⦈ ∘⇩A⇘cat_Rel α⇙
cf_prod_2_Rel (cat_Rel α)⦇ArrMap⦈⦇GF⦈"
if "GF' : AB' ↦⇘cat_Rel α ×⇩C cat_Rel α⇙ AB''"
and "GF : AB ↦⇘cat_Rel α ×⇩C cat_Rel α⇙ AB'"
for AB' AB'' GF' AB GF
proof-
from that(2) obtain G F A A' B B'
where GF_def: "GF = [G, F]⇩∘"
and AB_def: "AB = [A, B]⇩∘"
and AB'_def: "AB' = [A', B']⇩∘"
and G: "G : A ↦⇘cat_Rel α⇙ A'"
and F: "F : B ↦⇘cat_Rel α⇙ B'"
by (elim cat_prod_2_is_arrE[OF Rel.category_axioms Rel.category_axioms])
with that(1) obtain G' F' A'' B''
where GF'_def: "GF' = [G', F']⇩∘"
and AB''_def: "AB'' = [A'', B'']⇩∘"
and G': "G' : A' ↦⇘cat_Rel α⇙ A''"
and F': "F' : B' ↦⇘cat_Rel α⇙ B''"
by
(
auto elim:
cat_prod_2_is_arrE[OF Rel.category_axioms Rel.category_axioms]
)
from that G F G' F' show ?thesis
unfolding GF_def AB_def AB'_def GF'_def AB''_def
by
(
cs_concl cs_shallow
cs_simp: cat_cs_simps cat_prod_cs_simps prod_2_Rel_Comp
cs_intro: cat_cs_intros cat_prod_cs_intros
)
qed
show
"cf_prod_2_Rel (cat_Rel α)⦇ArrMap⦈⦇(cat_Rel α ×⇩C cat_Rel α)⦇CId⦈⦇AB⦈⦈ =
cat_Rel α⦇CId⦈⦇cf_prod_2_Rel (cat_Rel α)⦇ObjMap⦈⦇AB⦈⦈"
if "AB ∈⇩∘ (cat_Rel α ×⇩C cat_Rel α)⦇Obj⦈" for AB
proof-
from that obtain A B
where AB_def: "AB = [A, B]⇩∘"
and A: "A ∈⇩∘ cat_Rel α⦇Obj⦈"
and B: "B ∈⇩∘ cat_Rel α⦇Obj⦈"
by (elim cat_prod_2_ObjE[OF Rel.category_axioms Rel.category_axioms])
from A B show ?thesis
unfolding AB_def
by
(
cs_concl
cs_simp:
cf_prod_2_Rel_ObjMap_app cf_prod_2_Rel_ArrMap_app
cat_cs_simps cat_prod_cs_simps
cs_intro:
V_cs_intros cat_cs_intros cat_Rel_cs_intros cat_prod_cs_intros
)
qed
qed
(
cs_concl cs_shallow
cs_simp: cat_cs_simps
cs_intro: cat_cs_intros cat_cs_intros cat_Rel_cs_intros
)+
qed
lemma (in 𝒵) cf_prod_2_Rel_is_functor'[cat_cs_intros]:
assumes "𝔄' = cat_Rel α ×⇩C cat_Rel α"
and "𝔅' = cat_Rel α"
and "α' = α"
shows "cf_prod_2_Rel (cat_Rel α) : 𝔄' ↦↦⇩C⇘α'⇙ 𝔅'"
unfolding assms by (rule cf_prod_2_Rel_is_functor)
lemmas [cat_cs_intros] = 𝒵.cf_prod_2_Rel_is_functor'
subsection‹Product universal property arrow for ‹Set››
subsubsection‹Definition and elementary properties›
definition cat_Set_obj_prod_up :: "V ⇒ (V ⇒ V) ⇒ V ⇒ (V ⇒ V) ⇒ V"
where "cat_Set_obj_prod_up I F A φ =
[(λa∈⇩∘A. (λi∈⇩∘I. φ i⦇ArrVal⦈⦇a⦈)), A, (∏⇩∘i∈⇩∘I. F i)]⇩∘"
text‹Components.›
lemma cat_Set_obj_prod_up_components:
shows "cat_Set_obj_prod_up I F A φ⦇ArrVal⦈ =
(λa∈⇩∘A. (λi∈⇩∘I. φ i⦇ArrVal⦈⦇a⦈))"
and [cat_Set_cs_simps]:
"cat_Set_obj_prod_up I F A φ⦇ArrDom⦈ = A"
and [cat_Set_cs_simps]:
"cat_Set_obj_prod_up I F A φ⦇ArrCod⦈ = (∏⇩∘i∈⇩∘I. F i)"
unfolding cat_Set_obj_prod_up_def arr_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹Arrow value›
mk_VLambda cat_Set_obj_prod_up_components(1)
|vsv cat_Set_obj_prod_up_ArrVal_vsv[cat_Set_cs_intros]|
|vdomain cat_Set_obj_prod_up_ArrVal_vdomain[cat_Set_cs_simps]|
|app cat_Set_obj_prod_up_ArrVal_app|
lemma cat_Set_obj_prod_up_ArrVal_vrange:
assumes "⋀i. i ∈⇩∘ I ⟹ φ i : A ↦⇘cat_Set α⇙ F i"
shows "ℛ⇩∘ (cat_Set_obj_prod_up I F A φ⦇ArrVal⦈) ⊆⇩∘ (∏⇩∘i∈⇩∘I. F i)"
unfolding cat_Set_obj_prod_up_components
proof(intro vrange_VLambda_vsubset vproductI)
fix a assume prems: "a ∈⇩∘ A"
show "∀i∈⇩∘I. (λi∈⇩∘I. φ i⦇ArrVal⦈⦇a⦈)⦇i⦈ ∈⇩∘ F i"
proof(intro ballI)
fix i assume "i ∈⇩∘ I"
with assms prems show "(λi∈⇩∘I. φ i⦇ArrVal⦈⦇a⦈)⦇i⦈ ∈⇩∘ F i"
by (cs_concl cs_shallow cs_simp: V_cs_simps cs_intro: cat_Set_cs_intros)
qed
qed auto
lemma cat_Set_obj_prod_up_ArrVal_app_vdomain[cat_Set_cs_simps]:
assumes "a ∈⇩∘ A"
shows "𝒟⇩∘ (cat_Set_obj_prod_up I F A φ⦇ArrVal⦈⦇a⦈) = I"
unfolding cat_Set_obj_prod_up_ArrVal_app[OF assms] by simp
lemma cat_Set_obj_prod_up_ArrVal_app_component[cat_Set_cs_simps]:
assumes "a ∈⇩∘ A" and "i ∈⇩∘ I"
shows "cat_Set_obj_prod_up I F A φ⦇ArrVal⦈⦇a⦈⦇i⦈ = φ i⦇ArrVal⦈⦇a⦈"
using assms
by (cs_concl cs_shallow cs_simp: cat_Set_obj_prod_up_ArrVal_app V_cs_simps)
lemma cat_Set_obj_prod_up_ArrVal_app_vrange:
assumes "a ∈⇩∘ A" and "⋀i. i ∈⇩∘ I ⟹ φ i : A ↦⇘cat_Set α⇙ F i"
shows "ℛ⇩∘ (cat_Set_obj_prod_up I F A φ⦇ArrVal⦈⦇a⦈) ⊆⇩∘ (⋃⇩∘i∈⇩∘I. F i)"
proof(intro vsubsetI)
fix b assume prems: "b ∈⇩∘ ℛ⇩∘ (cat_Set_obj_prod_up I F A φ⦇ArrVal⦈⦇a⦈)"
from assms(1) have "vsv (cat_Set_obj_prod_up I F A φ⦇ArrVal⦈⦇a⦈)"
by (auto simp: cat_Set_obj_prod_up_components)
with prems obtain i
where b_def: "b = cat_Set_obj_prod_up I F A φ⦇ArrVal⦈⦇a⦈⦇i⦈"
and i: "i ∈⇩∘ I"
by
(
auto
elim: vsv.vrange_atE
simp: cat_Set_obj_prod_up_ArrVal_app[OF assms(1)]
)
from cat_Set_obj_prod_up_ArrVal_app_component[OF assms(1) i] b_def have b_def':
"b = φ i⦇ArrVal⦈⦇a⦈"
by simp
from assms(1) assms(2)[OF i] have "b ∈⇩∘ F i"
unfolding b_def' by (cs_concl cs_shallow cs_intro: cat_Set_cs_intros)
with i show "b ∈⇩∘ (⋃⇩∘i∈⇩∘I. F i)" by force
qed
subsubsection‹Product universal property arrow for ‹Set› is an arrow in ‹Set››
lemma (in 𝒵) cat_Set_obj_prod_up_cat_Set_is_arr:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈"
and "VLambda I F ∈⇩∘ Vset α"
and "⋀i. i ∈⇩∘ I ⟹ φ i : A ↦⇘cat_Set α⇙ F i"
shows "cat_Set_obj_prod_up I F A φ : A ↦⇘cat_Set α⇙ (∏⇩∘i∈⇩∘I. F i)"
proof(intro cat_Set_is_arrI arr_SetI)
show "vfsequence (cat_Set_obj_prod_up I F A φ)"
unfolding cat_Set_obj_prod_up_def by auto
show "vcard (cat_Set_obj_prod_up I F A φ) = 3⇩ℕ"
unfolding cat_Set_obj_prod_up_def by (auto simp: nat_omega_simps)
show
"ℛ⇩∘ (cat_Set_obj_prod_up I F A φ⦇ArrVal⦈) ⊆⇩∘
cat_Set_obj_prod_up I F A φ⦇ArrCod⦈"
unfolding cat_Set_obj_prod_up_components(3)
by (rule cat_Set_obj_prod_up_ArrVal_vrange[OF assms(3)])
show "cat_Set_obj_prod_up I F A φ⦇ArrCod⦈ ∈⇩∘ Vset α"
unfolding cat_Set_cs_simps
by (rule Limit_vproduct_in_Vset_if_VLambda_in_VsetI)
(simp_all add: cat_Set_cs_simps assms)
qed
(
auto
simp: assms[unfolded cat_Set_components(1)] cat_Set_cs_simps
intro: cat_Set_cs_intros
)
subsubsection‹Further properties›
lemma (in 𝒵) cat_Set_cf_comp_proj_obj_prod_up:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈"
and "VLambda I F ∈⇩∘ Vset α"
and "⋀i. i ∈⇩∘ I ⟹ φ i : A ↦⇘cat_Set α⇙ F i"
and "i ∈⇩∘ I"
shows
"φ i = vprojection_arrow I F i ∘⇩A⇘cat_Set α⇙ cat_Set_obj_prod_up I F A φ"
(is ‹φ i = ?Fi ∘⇩A⇘cat_Set α⇙ ?φ›)
proof(rule arr_Set_eqI[of α])
note φi = assms(3)[OF assms(4)]
note φi = cat_Set_is_arrD[OF φi] φi
have Fi: "?Fi : (∏⇩∘i∈⇩∘I. F i) ↦⇘cat_Set α⇙ F i"
by (rule vprojection_arrow_is_arr[OF assms(4,2)])
from cat_Set_obj_prod_up_cat_Set_is_arr[OF assms(1,2,3)] have φ:
"cat_Set_obj_prod_up I F A φ : A ↦⇘cat_Set α⇙ (∏⇩∘i∈⇩∘I. F i)"
by simp
show "arr_Set α (φ i)" by (rule φi(1))
interpret φi: arr_Set α ‹φ i› by (rule φi(1))
from Fi φ have Fi_φ: "?Fi ∘⇩A⇘cat_Set α⇙ ?φ : A ↦⇘cat_Set α⇙ F i"
by (cs_concl cs_shallow cs_intro: cat_cs_intros)
then show arr_Set_Fi_φ: "arr_Set α (?Fi ∘⇩A⇘cat_Set α⇙ ?φ)"
by (auto simp: cat_Set_is_arrD(1))
interpret arr_Set α ‹?Fi ∘⇩A⇘cat_Set α⇙ ?φ› by (rule arr_Set_Fi_φ)
from φi have dom_lhs: "𝒟⇩∘ (φ i⦇ArrVal⦈) = A"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)
from Fi_φ have dom_rhs: "𝒟⇩∘ ((?Fi ∘⇩A⇘cat_Set α⇙ ?φ)⦇ArrVal⦈) = A"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
show "φ i⦇ArrVal⦈ = (?Fi ∘⇩A⇘cat_Set α⇙ ?φ)⦇ArrVal⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume prems: "a ∈⇩∘ A"
from assms(4) prems φi(4) φ Fi show
"φ i⦇ArrVal⦈⦇a⦈ = (?Fi ∘⇩A⇘cat_Set α⇙ ?φ)⦇ArrVal⦈⦇a⦈"
by
(
cs_concl cs_shallow
cs_simp: cat_Set_cs_simps cat_cs_simps
cs_intro: cat_Set_cs_intros cat_cs_intros
)
qed auto
from Fi φ show
"φ i⦇ArrDom⦈ = (?Fi ∘⇩A⇘cat_Set α⇙ ?φ)⦇ArrDom⦈"
"φ i⦇ArrCod⦈ = (?Fi ∘⇩A⇘cat_Set α⇙ ?φ)⦇ArrCod⦈"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cat_Set_cs_simps φi(2,3))+
qed
subsection‹Coproduct universal property arrow for ‹Set››
subsubsection‹Definition and elementary properties›
definition cat_Set_obj_coprod_up :: "V ⇒ (V ⇒ V) ⇒ V ⇒ (V ⇒ V) ⇒ V"
where "cat_Set_obj_coprod_up I F A φ =
[(λix∈⇩∘(∐⇩∘i∈⇩∘I. F i). φ (vfst ix)⦇ArrVal⦈⦇vsnd ix⦈), (∐⇩∘i∈⇩∘I. F i), A]⇩∘"
text‹Components.›
lemma cat_Set_obj_coprod_up_components:
shows "cat_Set_obj_coprod_up I F A φ⦇ArrVal⦈ =
(λix∈⇩∘(∐⇩∘i∈⇩∘I. F i). φ (vfst ix)⦇ArrVal⦈⦇vsnd ix⦈)"
and [cat_Set_cs_simps]:
"cat_Set_obj_coprod_up I F A φ⦇ArrDom⦈ = (∐⇩∘i∈⇩∘I. F i)"
and [cat_Set_cs_simps]:
"cat_Set_obj_coprod_up I F A φ⦇ArrCod⦈ = A"
unfolding cat_Set_obj_coprod_up_def arr_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹Arrow value›
mk_VLambda cat_Set_obj_coprod_up_components(1)
|vsv cat_Set_obj_coprod_up_ArrVal_vsv[cat_Set_cs_intros]|
|vdomain cat_Set_obj_coprod_up_ArrVal_vdomain[cat_Set_cs_simps]|
|app cat_Set_obj_coprod_up_ArrVal_app'|
lemma cat_Set_obj_coprod_up_ArrVal_app[cat_cs_simps]:
assumes "ix = ⟨i, x⟩" and "⟨i, x⟩ ∈⇩∘ (∐⇩∘i∈⇩∘I. F i)"
shows "cat_Set_obj_coprod_up I F A φ⦇ArrVal⦈⦇ix⦈ = φ i⦇ArrVal⦈⦇x⦈"
using assms by (auto simp: cat_Set_obj_coprod_up_ArrVal_app')
lemma cat_Set_obj_coprod_up_ArrVal_vrange:
assumes "⋀i. i ∈⇩∘ I ⟹ φ i : F i ↦⇘cat_Set α⇙ A"
shows "ℛ⇩∘ (cat_Set_obj_coprod_up I F A φ⦇ArrVal⦈) ⊆⇩∘ A"
proof
(
intro vsv.vsv_vrange_vsubset cat_Set_obj_coprod_up_ArrVal_vsv,
unfold cat_Set_cs_simps
)
fix ix assume "ix ∈⇩∘ (∐⇩∘i∈⇩∘I. F i)"
then obtain i x where ix_def: "ix = ⟨i, x⟩" and i: "i ∈⇩∘ I" and x: "x ∈⇩∘ F i"
by auto
show "cat_Set_obj_coprod_up I F A φ⦇ArrVal⦈⦇ix⦈ ∈⇩∘ A"
proof(cs_concl_step cat_Set_obj_coprod_up_ArrVal_app)
show "ix = ⟨i, x⟩" by (rule ix_def)
from i x show "⟨i, x⟩ ∈⇩∘ (∐⇩∘i∈⇩∘I. F i)" by auto
from i x assms[OF i] show "φ i⦇ArrVal⦈⦇x⦈ ∈⇩∘ A"
by (auto intro: cat_Set_ArrVal_app_vrange)
qed
qed
subsubsection‹Coproduct universal property arrow for ‹Set› is an arrow in ‹Set››
lemma (in 𝒵) cat_Set_obj_coprod_up_cat_Set_is_arr:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈"
and "VLambda I F ∈⇩∘ Vset α"
and "⋀i. i ∈⇩∘ I ⟹ φ i : F i ↦⇘cat_Set α⇙ A"
shows "cat_Set_obj_coprod_up I F A φ : (∐⇩∘i∈⇩∘I. F i) ↦⇘cat_Set α⇙ A"
proof(intro cat_Set_is_arrI arr_SetI)
show "vfsequence (cat_Set_obj_coprod_up I F A φ)"
unfolding cat_Set_obj_coprod_up_def by auto
show "vcard (cat_Set_obj_coprod_up I F A φ) = 3⇩ℕ"
unfolding cat_Set_obj_coprod_up_def by (auto simp: nat_omega_simps)
show
"ℛ⇩∘ (cat_Set_obj_coprod_up I F A φ⦇ArrVal⦈) ⊆⇩∘
cat_Set_obj_coprod_up I F A φ⦇ArrCod⦈"
unfolding cat_Set_obj_coprod_up_components(3)
by (rule cat_Set_obj_coprod_up_ArrVal_vrange[OF assms(3)])
show "cat_Set_obj_coprod_up I F A φ⦇ArrCod⦈ ∈⇩∘ Vset α"
by (simp_all add: cat_Set_cs_simps assms[unfolded cat_Set_components(1)])
qed
(
auto simp:
assms
cat_Set_obj_coprod_up_components
Limit_vdunion_in_Vset_if_VLambda_in_VsetI
)
subsubsection‹Further properties›
lemma (in 𝒵) cat_Set_cf_comp_coprod_up_vcia:
assumes "A ∈⇩∘ cat_Set α⦇Obj⦈"
and "VLambda I F ∈⇩∘ Vset α"
and "⋀i. i ∈⇩∘ I ⟹ φ i : F i ↦⇘cat_Set α⇙ A"
and "i ∈⇩∘ I"
shows
"φ i = cat_Set_obj_coprod_up I F A φ ∘⇩A⇘cat_Set α⇙ vcinjection_arrow I F i"
(is ‹φ i = ?φ ∘⇩A⇘cat_Set α⇙ ?Fi›)
proof(rule arr_Set_eqI[of α])
note φi = assms(3)[OF assms(4)]
note φi = cat_Set_is_arrD[OF φi] φi
have Fi: "?Fi : F i ↦⇘cat_Set α⇙ (∐⇩∘i∈⇩∘I. F i)"
by (rule vcinjection_arrow_is_arr[OF assms(4,2)])
from cat_Set_obj_coprod_up_cat_Set_is_arr[OF assms(1,2,3)] have φ:
"cat_Set_obj_coprod_up I F A φ : (∐⇩∘i∈⇩∘I. F i) ↦⇘cat_Set α⇙ A"
by simp
show "arr_Set α (φ i)" by (rule φi(1))
then interpret φi: arr_Set α ‹φ i› .
from Fi φ have Fi_φ: "?φ ∘⇩A⇘cat_Set α⇙ ?Fi : F i ↦⇘cat_Set α⇙ A"
by (cs_concl cs_shallow cs_intro: cat_cs_intros)
then show arr_Set_Fi_φ: "arr_Set α (?φ ∘⇩A⇘cat_Set α⇙ ?Fi)"
by (auto simp: cat_Set_is_arrD(1))
interpret arr_Set α ‹?φ ∘⇩A⇘cat_Set α⇙ ?Fi› by (rule arr_Set_Fi_φ)
from φi have dom_lhs: "𝒟⇩∘ (φ i⦇ArrVal⦈) = F i"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)
from Fi_φ have dom_rhs: "𝒟⇩∘ ((?φ ∘⇩A⇘cat_Set α⇙ ?Fi)⦇ArrVal⦈) = F i"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cs_intro: cat_cs_intros)
show "φ i⦇ArrVal⦈ = (?φ ∘⇩A⇘cat_Set α⇙ ?Fi)⦇ArrVal⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume "a ∈⇩∘ F i"
from assms(4) this φi(4) φ Fi show
"φ i⦇ArrVal⦈⦇a⦈ = (?φ ∘⇩A⇘cat_Set α⇙ ?Fi)⦇ArrVal⦈⦇a⦈"
by
(
cs_concl cs_shallow
cs_simp: cat_Set_cs_simps cat_cs_simps
cs_intro: vdunionI cat_Set_cs_intros cat_cs_intros
)
qed auto
from Fi φ show
"φ i⦇ArrDom⦈ = (?φ ∘⇩A⇘cat_Set α⇙ ?Fi)⦇ArrDom⦈"
"φ i⦇ArrCod⦈ = (?φ ∘⇩A⇘cat_Set α⇙ ?Fi)⦇ArrCod⦈"
by (cs_concl cs_shallow cs_simp: cat_cs_simps cat_Set_cs_simps φi(2,3))+
qed
subsection‹Equalizer object for the category ‹Set››
text‹
The definition of the (non-categorical concept of an) equalizer can be
found in \<^cite>‹"noauthor_wikipedia_2001"›\footnote{
\url{https://en.wikipedia.org/wiki/Equaliser_(mathematics)}
}›
definition vequalizer :: "V ⇒ V ⇒ V ⇒ V"
where "vequalizer X f g = set {x. x ∈⇩∘ X ∧ f⦇ArrVal⦈⦇x⦈ = g⦇ArrVal⦈⦇x⦈}"
lemma small_vequalizer[simp]:
"small {x. x ∈⇩∘ X ∧ f⦇ArrVal⦈⦇x⦈ = g⦇ArrVal⦈⦇x⦈}"
by auto
text‹Rules.›
lemma vequalizerI:
assumes "x ∈⇩∘ X" and "f⦇ArrVal⦈⦇x⦈ = g⦇ArrVal⦈⦇x⦈"
shows "x ∈⇩∘ vequalizer X f g"
using assms unfolding vequalizer_def by auto
lemma vequalizerD[dest]:
assumes "x ∈⇩∘ vequalizer X f g"
shows "x ∈⇩∘ X" and "f⦇ArrVal⦈⦇x⦈ = g⦇ArrVal⦈⦇x⦈"
using assms unfolding vequalizer_def by auto
lemma vequalizerE[elim]:
assumes "x ∈⇩∘ vequalizer X f g"
obtains "x ∈⇩∘ X" and "f⦇ArrVal⦈⦇x⦈ = g⦇ArrVal⦈⦇x⦈"
using assms unfolding vequalizer_def by auto
text‹Elementary results.›
lemma vequalizer_vsubset_vdomain[cat_Set_cs_intros]: "vequalizer a g f ⊆⇩∘ a"
by auto
lemma Limit_vequalizer_in_Vset[cat_Set_cs_intros]:
assumes "Limit α" and "a ∈⇩∘ cat_Set α⦇Obj⦈"
shows "vequalizer a g f ∈⇩∘ cat_Set α⦇Obj⦈"
using assms unfolding cat_Set_components(1) by auto
lemma vequalizer_flip: "vequalizer a f g = vequalizer a g f"
unfolding vequalizer_def by auto
lemma cat_Set_incl_Set_commute:
assumes "𝔤 : 𝔞 ↦⇘cat_Set α⇙ 𝔟" and "𝔣 : 𝔞 ↦⇘cat_Set α⇙ 𝔟"
shows
"𝔤 ∘⇩A⇘cat_Set α⇙ incl_Set (vequalizer 𝔞 𝔣 𝔤) 𝔞 =
𝔣 ∘⇩A⇘cat_Set α⇙ incl_Set (vequalizer 𝔞 𝔣 𝔤) 𝔞"
(is ‹𝔤 ∘⇩A⇘cat_Set α⇙ ?incl = 𝔣 ∘⇩A⇘cat_Set α⇙ ?incl›)
proof-
interpret 𝔤: arr_Set α 𝔤
rewrites "𝔤⦇ArrDom⦈ = 𝔞" and "𝔤⦇ArrCod⦈ = 𝔟"
by (intro cat_Set_is_arrD[OF assms(1)])+
interpret 𝔣: arr_Set α 𝔣
rewrites "𝔣⦇ArrDom⦈ = 𝔞" and "𝔣⦇ArrCod⦈ = 𝔟"
by (intro cat_Set_is_arrD[OF assms(2)])+
note [cat_Set_cs_intros] = 𝔤.arr_Set_ArrDom_in_Vset 𝔣.arr_Set_ArrCod_in_Vset
from assms have 𝔤_incl:
"𝔤 ∘⇩A⇘cat_Set α⇙ ?incl : vequalizer 𝔞 𝔣 𝔤 ↦⇘cat_Set α⇙ 𝔟"
by (cs_concl cs_intro: V_cs_intros cat_Set_cs_intros cat_cs_intros)
then have dom_lhs: "𝒟⇩∘ ((𝔤 ∘⇩A⇘cat_Set α⇙ ?incl)⦇ArrVal⦈) = vequalizer 𝔞 𝔣 𝔤"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)+
from assms have 𝔣_incl:
"𝔣 ∘⇩A⇘cat_Set α⇙ ?incl : vequalizer 𝔞 𝔣 𝔤 ↦⇘cat_Set α⇙ 𝔟"
by (cs_concl cs_intro: V_cs_intros cat_Set_cs_intros cat_cs_intros)
then have dom_rhs: "𝒟⇩∘ ((𝔣 ∘⇩A⇘cat_Set α⇙ ?incl)⦇ArrVal⦈) = vequalizer 𝔞 𝔣 𝔤"
by (cs_concl cs_shallow cs_simp: cat_cs_simps)+
show ?thesis
proof(rule arr_Set_eqI)
from 𝔤_incl show arr_Set_𝔤_incl: "arr_Set α (𝔤 ∘⇩A⇘cat_Set α⇙ ?incl)"
by (auto dest: cat_Set_is_arrD(1))
interpret arr_Set_𝔤_incl: arr_Set α ‹𝔤 ∘⇩A⇘cat_Set α⇙ ?incl›
by (rule arr_Set_𝔤_incl)
from 𝔣_incl show arr_Set_𝔣_incl: "arr_Set α (𝔣 ∘⇩A⇘cat_Set α⇙ ?incl)"
by (auto dest: cat_Set_is_arrD(1))
interpret arr_Set_𝔣_incl: arr_Set α ‹𝔣 ∘⇩A⇘cat_Set α⇙ ?incl›
by (rule arr_Set_𝔣_incl)
show "(𝔤 ∘⇩A⇘cat_Set α⇙ ?incl)⦇ArrVal⦈ = (𝔣 ∘⇩A⇘cat_Set α⇙ ?incl)⦇ArrVal⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix a assume "a ∈⇩∘ vequalizer 𝔞 𝔣 𝔤"
with assms show
"(𝔤 ∘⇩A⇘cat_Set α⇙ ?incl)⦇ArrVal⦈⦇a⦈ = (𝔣 ∘⇩A⇘cat_Set α⇙ ?incl)⦇ArrVal⦈⦇a⦈"
by
(
cs_concl
cs_simp: vequalizerD(2) cat_Set_cs_simps cat_cs_simps
cs_intro: V_cs_intros cat_Set_cs_intros cat_cs_intros
)
qed auto
qed (use 𝔤_incl 𝔣_incl in ‹cs_concl cs_shallow cs_simp: cat_cs_simps›)+
qed
subsection‹Application of a function to a finite sequence as an arrow in ‹Set››
definition vfsequence_map :: "V ⇒ V"
where "vfsequence_map F =
[
(λxs∈⇩∘vfsequences_on (F⦇ArrDom⦈). F⦇ArrVal⦈ ∘⇩∘ xs),
vfsequences_on (F⦇ArrDom⦈),
vfsequences_on (F⦇ArrCod⦈)
]⇩∘"
text‹Components.›
lemma vfsequence_map_components:
shows "vfsequence_map F⦇ArrVal⦈ =
(λxs∈⇩∘vfsequences_on (F⦇ArrDom⦈). F⦇ArrVal⦈ ∘⇩∘ xs)"
and [cat_cs_simps]: "vfsequence_map F⦇ArrDom⦈ = vfsequences_on (F⦇ArrDom⦈)"
and [cat_cs_simps]: "vfsequence_map F⦇ArrCod⦈ = vfsequences_on (F⦇ArrCod⦈)"
unfolding vfsequence_map_def arr_field_simps
by (simp_all add: nat_omega_simps)
subsubsection‹Arrow value›
mk_VLambda vfsequence_map_components(1)
|vsv vfsequence_map_ArrVal_vsv[cat_cs_intros, cat_Set_cs_intros]|
|vdomain vfsequence_map_ArrVal_vdomain[cat_cs_simps, cat_Set_cs_simps]|
|app vfsequence_map_ArrVal_app|
lemma vfsequence_map_ArrVal_app_app:
assumes "F : A ↦⇘cat_Set α⇙ B"
and "xs ∈⇩∘ vfsequences_on A"
and "i ∈⇩∘ 𝒟⇩∘ xs"
shows "vfsequence_map F⦇ArrVal⦈⦇xs⦈⦇i⦈ = F⦇ArrVal⦈⦇xs⦇i⦈⦈"
proof-
note FD = cat_Set_is_arrD[OF assms(1)]
interpret arr_Set α F
rewrites "F⦇ArrDom⦈ = A" and "F⦇ArrCod⦈ = B"
by (intro FD)+
note xsD = vfsequences_onD[OF assms(2)]
interpret xs: vfsequence xs by (rule xsD(1))
from assms xsD(2)[OF assms(3)] show ?thesis
by
(
cs_concl
cs_simp: V_cs_simps cat_cs_simps vfsequence_map_ArrVal_app
cs_intro: V_cs_intros
)
qed
subsubsection‹
Application of a function to a finite sequence is an arrow in ‹Set›
›
lemma vfsequence_map_is_arr:
assumes "F : A ↦⇘cat_Set α⇙ B"
shows "vfsequence_map F : vfsequences_on A ↦⇘cat_Set α⇙ vfsequences_on B"
proof-
note FD = cat_Set_is_arrD[OF assms(1)]
interpret arr_Set α F
rewrites [cat_cs_simps]: "F⦇ArrDom⦈ = A" and [cat_cs_simps]: "F⦇ArrCod⦈ = B"
by (intro FD)+
show ?thesis
proof(intro cat_Set_is_arrI arr_SetI , unfold cat_cs_simps)
show "vfsequence (vfsequence_map F)"
unfolding vfsequence_map_def by auto
show "vcard (vfsequence_map F) = 3⇩ℕ"
unfolding vfsequence_map_def by (simp_all add: nat_omega_simps)
show "ℛ⇩∘ (vfsequence_map F⦇ArrVal⦈) ⊆⇩∘ vfsequences_on B"
unfolding vfsequence_map_components
proof
(
intro vrange_VLambda_vsubset vfsequences_onI;
elim vfsequences_onE;
unfold cat_cs_simps
)
fix xs assume prems: "vfsequence xs" "i ∈⇩∘ 𝒟⇩∘ xs ⟹ xs⦇i⦈ ∈⇩∘ A" for i
interpret xs: vfsequence xs by (rule prems(1))
have [intro]: "x ∈⇩∘ 𝒟⇩∘ (F⦇ArrVal⦈)" if "x ∈⇩∘ ℛ⇩∘ xs" for x
proof-
from that obtain i where i: "i ∈⇩∘ 𝒟⇩∘ xs" and x_def: "x = xs⦇i⦈"
by (auto dest: xs.vrange_atD)
from prems(2)[OF i] show "x ∈⇩∘ 𝒟⇩∘ (F⦇ArrVal⦈)"
unfolding x_def arr_Set_ArrVal_vdomain .
qed
show "vfsequence (F⦇ArrVal⦈ ∘⇩∘ xs)"
by (intro vfsequence_vcomp_vsv_vfsequence vsubsetI)
(auto intro: prems(1))
fix i assume prems': "i ∈⇩∘ 𝒟⇩∘ (F⦇ArrVal⦈ ∘⇩∘ xs)"
moreover have "𝒟⇩∘ (F⦇ArrVal⦈ ∘⇩∘ xs) = 𝒟⇩∘ xs"
by (intro vdomain_vcomp_vsubset vsubsetI) (auto intro: prems(1))
ultimately have i: "i ∈⇩∘ 𝒟⇩∘ xs" by simp
with assms(1) prems(2)[OF i] show "(F⦇ArrVal⦈ ∘⇩∘ xs)⦇i⦈ ∈⇩∘ B"
by
(
cs_concl
cs_simp: V_cs_simps cat_cs_simps
cs_intro: V_cs_intros cat_Set_cs_intros
)
qed
qed
(
auto intro:
vfsequences_on_in_VsetI
arr_Set_ArrDom_in_Vset
arr_Set_ArrCod_in_Vset
cat_cs_intros
)
qed
lemma (in 𝒵) vfsequence_map_is_monic_arr:
assumes "F : A ↦⇩m⇩o⇩n⇘cat_Set α⇙ B"
shows "vfsequence_map F : vfsequences_on A ↦⇩m⇩o⇩n⇘cat_Set α⇙ vfsequences_on B"
proof-
note cat_Set_is_monic_arrD[OF assms]
note FD = this cat_Set_is_arrD[OF this(1)]
interpret F: arr_Set α F
rewrites [cat_cs_simps]: "F⦇ArrDom⦈ = A" and [cat_cs_simps]: "F⦇ArrCod⦈ = B"
by (intro FD)+
show ?thesis
proof
(
intro cat_Set_is_monic_arrI vfsequence_map_is_arr FD(1) vsv.vsv_valeq_v11I,
unfold cat_cs_simps;
(elim vfsequences_onE)?
)
fix xs ys assume prems:
"vfsequence_map F⦇ArrVal⦈⦇xs⦈ = vfsequence_map F⦇ArrVal⦈⦇ys⦈"
"vfsequence xs"
"⋀i. i ∈⇩∘ 𝒟⇩∘ xs ⟹ xs⦇i⦈ ∈⇩∘ A"
"vfsequence ys"
"⋀i. i ∈⇩∘ 𝒟⇩∘ ys ⟹ ys⦇i⦈ ∈⇩∘ A"
interpret xs: vfsequence xs by (rule prems(2))
interpret ys: vfsequence ys by (rule prems(4))
have "xs ∈⇩∘ vfsequences_on (F⦇ArrDom⦈)"
unfolding cat_cs_simps by (intro vfsequences_onI prems(2,3))
from vfsequence_map_ArrVal_app[OF this] have F_xs:
"vfsequence_map F⦇ArrVal⦈⦇xs⦈ = F⦇ArrVal⦈ ∘⇩∘ xs"
by simp
from prems(3) have rxs: "ℛ⇩∘ xs ⊆⇩∘ A"
by (intro vsubsetI) (auto dest: xs.vrange_atD)
from xs.vfsequence_vdomain_in_omega have dxs: "𝒟⇩∘ xs ∈⇩∘ Vset α"
by (auto intro!: Axiom_of_Infinity)
note xs_is_arr = cat_Set_arr_of_vsv_is_arr
[
OF xs.vsv_axioms rxs,
unfolded cat_Set_components(1),
OF dxs F.arr_Par_ArrDom_in_Vset
]
have ys: "ys ∈⇩∘ vfsequences_on (F⦇ArrDom⦈)"
unfolding cat_cs_simps by (intro vfsequences_onI prems(4,5))
from vfsequence_map_ArrVal_app[OF this] have F_ys:
"vfsequence_map F⦇ArrVal⦈⦇ys⦈ = F⦇ArrVal⦈ ∘⇩∘ ys"
by simp
from prems(5) have rys: "ℛ⇩∘ ys ⊆⇩∘ A"
by (intro vsubsetI) (auto dest: ys.vrange_atD)
from ys.vfsequence_vdomain_in_omega have dys: "𝒟⇩∘ ys ∈⇩∘ Vset α"
by (auto intro!: Axiom_of_Infinity)
note ys_is_arr = cat_Set_arr_of_vsv_is_arr
[
OF ys.vsv_axioms rys,
unfolded cat_Set_components(1),
OF dys F.arr_Par_ArrDom_in_Vset
]
note Fxs_Fys = prems(1)[unfolded F_xs F_ys]
from rxs have dom_rxs: "𝒟⇩∘ (F⦇ArrVal⦈ ∘⇩∘ xs) = 𝒟⇩∘ xs"
by (intro vdomain_vcomp_vsubset vsubsetI, unfold F.arr_Set_ArrVal_vdomain)
auto
moreover from rys have dom_rys: "𝒟⇩∘ (F⦇ArrVal⦈ ∘⇩∘ ys) = 𝒟⇩∘ ys"
by (intro vdomain_vcomp_vsubset vsubsetI, unfold F.arr_Set_ArrVal_vdomain)
auto
ultimately have dxs_dys: "𝒟⇩∘ xs = 𝒟⇩∘ ys"
by (simp add: prems(1)[unfolded F_xs F_ys])
from FD(1) xs_is_arr have lhs_is_arr:
"F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv xs A : 𝒟⇩∘ xs ↦⇘cat_Set α⇙ B"
by (cs_concl cs_intro: cat_cs_intros)
then have dom_lhs:
"𝒟⇩∘ ((F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv xs A)⦇ArrVal⦈) = 𝒟⇩∘ xs"
by (simp add: cat_cs_simps)
from FD(1) ys_is_arr have rhs_is_arr:
"F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv ys A : 𝒟⇩∘ xs ↦⇘cat_Set α⇙ B"
by (cs_concl cs_simp: dxs_dys cs_intro: cat_cs_intros)
then have dom_rhs:
"𝒟⇩∘ ((F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv ys A)⦇ArrVal⦈) = 𝒟⇩∘ xs"
by (simp add: cat_cs_simps)
have F_xs_F_ys:
"F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv xs A =
F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv ys A"
proof(rule arr_Set_eqI[of α])
show
"(F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv xs A)⦇ArrVal⦈ =
(F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv ys A)⦇ArrVal⦈"
proof(rule vsv_eqI, unfold dom_lhs dom_rhs)
fix i assume prems: "i ∈⇩∘ 𝒟⇩∘ xs"
from prems rxs have xsi: "xs⦇i⦈ ∈⇩∘ A"
by (auto dest: xs.vdomain_atD)
from prems rys have ysi: "ys⦇i⦈ ∈⇩∘ A"
by (auto simp: dxs_dys dest: ys.vdomain_atD)
from arg_cong[OF Fxs_Fys, where f=‹λx. x⦇i⦈›] prems FD(1) xsi ysi
have "F⦇ArrVal⦈⦇xs⦇i⦈⦈ = F⦇ArrVal⦈⦇ys⦇i⦈⦈"
by
(
cs_prems
cs_simp: V_cs_simps cat_cs_simps dxs_dys[symmetric]
cs_intro: V_cs_intros cat_cs_intros
)
with prems FD(1) xs_is_arr ys_is_arr show
"(F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv xs A)⦇ArrVal⦈⦇i⦈ =
(F ∘⇩A⇘cat_Set α⇙ cat_Set_arr_of_vsv ys A)⦇ArrVal⦈⦇i⦈"
by
(
cs_concl
cs_simp: cat_Set_cs_simps cat_cs_simps dxs_dys[symmetric]
cs_intro: cat_cs_intros
)
qed (use lhs_is_arr rhs_is_arr in ‹auto dest: cat_Set_is_arrD›)
qed
(
use lhs_is_arr rhs_is_arr in
‹auto simp: cat_cs_simps dest: cat_Set_is_arrD(1)›
)+
have "cat_Set_arr_of_vsv xs A = cat_Set_arr_of_vsv ys A"
by
(
rule is_monic_arrD(2)[
OF assms(1) xs_is_arr, unfolded dxs_dys, OF ys_is_arr, OF F_xs_F_ys
]
)
from arg_cong [OF this, where f=‹λx. x⦇ArrVal⦈›, unfolded cat_Set_cs_simps]
show "xs = ys" .
qed (auto intro: cat_cs_intros)
qed
lemma (in 𝒵) vfsequence_map_is_epic_arr:
assumes "F : A ↦⇩e⇩p⇩i⇘cat_Set α⇙ B"
shows "vfsequence_map F : vfsequences_on A ↦⇩e⇩p⇩i⇘cat_Set α⇙ vfsequences_on B"
proof-
note cat_Set_is_epic_arrD[OF assms]
note FD = this cat_Set_is_arrD[OF this(1)]
interpret F: arr_Set α F
rewrites [cat_cs_simps]: "F⦇ArrDom⦈ = A" and [cat_cs_simps]: "F⦇ArrCod⦈ = B"
by (intro FD)+
interpret SF: arr_Set α ‹vfsequence_map F›
rewrites "vfsequence_map F⦇ArrDom⦈ = vfsequences_on A"
and "vfsequence_map F⦇ArrCod⦈ = vfsequences_on B"
by (intro cat_Set_is_arrD[OF vfsequence_map_is_arr[OF FD(1)]])+
show ?thesis
proof
(
intro cat_Set_is_epic_arrI,
rule vfsequence_map_is_arr[OF FD(1)],
rule vsubset_antisym,
rule SF.arr_Par_ArrVal_vrange,
rule vsubsetI
)
fix xs assume prems: "xs ∈⇩∘ vfsequences_on B"
note xsD = vfsequences_onD[OF prems]
interpret vfsequence xs by (rule xsD(1))
define ys where "ys = (λi∈⇩∘𝒟⇩∘ xs. SOME x. x ∈⇩∘ A ∧ xs⦇i⦈ = F⦇ArrVal⦈⦇x⦈)"
have ys_vdomain: "𝒟⇩∘ ys = 𝒟⇩∘ xs" unfolding ys_def by simp
interpret ys: vfsequence ys
by (rule vfsequenceI)
(auto intro: vfsequence_vdomain_in_omega simp: ys_def)
have ysi: "ys⦇i⦈ = (SOME x. x ∈⇩∘ A ∧ xs⦇i⦈ = F⦇ArrVal⦈⦇x⦈)"
if "i ∈⇩∘ 𝒟⇩∘ xs" for i
using that unfolding ys_def by simp
have ysi: "ys⦇i⦈ ∈⇩∘ A"
and xsi_def: "xs⦇i⦈ = F⦇ArrVal⦈⦇ys⦇i⦈⦈"
if "i ∈⇩∘ 𝒟⇩∘ xs" for i
proof-
have "xs⦇i⦈ ∈⇩∘ ℛ⇩∘ (F⦇ArrVal⦈)" by (rule xsD(2)[OF that, folded FD(2)])
then obtain x where x: "x ∈⇩∘ A" and xsi_def: "xs⦇i⦈ = F⦇ArrVal⦈⦇x⦈"
by (auto elim: F.ArrVal.vrange_atE simp: F.arr_Set_ArrVal_vdomain)
show "ys⦇i⦈ ∈⇩∘ A" and "xs⦇i⦈ = F⦇ArrVal⦈⦇ys⦇i⦈⦈"
unfolding ysi[OF that]
by
(
all‹rule someI2_ex, intro exI conjI; (elim conjE)?›,
tactic‹distinct_subgoals_tac›
)
(auto simp: x xsi_def)
qed
show "xs ∈⇩∘ ℛ⇩∘ (vfsequence_map F⦇ArrVal⦈)"
proof
(
intro vsv.vsv_vimageI2' cat_cs_intros,
cs_concl_step vfsequence_map_ArrVal_app,
unfold cat_cs_simps,
tactic‹distinct_subgoals_tac›
)
show "ys ∈⇩∘ vfsequences_on A"
by (intro vfsequences_onI ys.vfsequence_axioms)
(auto intro: ysi simp: ys_vdomain)
show "xs = F⦇ArrVal⦈ ∘⇩∘ ys"
proof(rule vsv_eqI)
show "𝒟⇩∘ xs = 𝒟⇩∘ (F⦇ArrVal⦈ ∘⇩∘ ys)"
unfolding ys_vdomain[symmetric]
proof(intro vdomain_vcomp_vsubset[symmetric] vsubsetI)
fix y assume "y ∈⇩∘ ℛ⇩∘ ys"
then obtain i where i: "i ∈⇩∘ 𝒟⇩∘ ys" and y_def: "y = ys⦇i⦈"
by (auto dest: ys.vrange_atD)
from i show "y ∈⇩∘ 𝒟⇩∘ (F⦇ArrVal⦈)"
unfolding y_def F.arr_Set_ArrVal_vdomain ys_vdomain by (rule ysi)
qed
show "xs⦇i⦈ = (F⦇ArrVal⦈ ∘⇩∘ ys)⦇i⦈"
if "i ∈⇩∘ 𝒟⇩∘ xs" for i
using FD(1) that
by
(
cs_concl
cs_simp: V_cs_simps cat_cs_simps xsi_def ys_vdomain
cs_intro: V_cs_intros ysi
)
qed (auto intro: vsv_vcomp)
qed
qed
qed
lemma vfsequence_map_is_iso_arr:
assumes "F : A ↦⇩i⇩s⇩o⇘cat_Set α⇙ B"
shows "vfsequence_map F : vfsequences_on A ↦⇩i⇩s⇩o⇘cat_Set α⇙ vfsequences_on B"
proof-
note cat_Set_is_iso_arrD[OF assms]
note FD = this cat_Set_is_arrD[OF this(1)]
interpret F: arr_Set α F
rewrites [cat_cs_simps]: "F⦇ArrDom⦈ = A" and [cat_cs_simps]: "F⦇ArrCod⦈ = B"
by (intro FD)+
interpret Set: category α ‹cat_Set α› by (cs_concl cs_intro: cat_cs_intros)
show ?thesis
by
(
intro
F.cat_Set_is_iso_arr_if_monic_and_epic
F.vfsequence_map_is_monic_arr[
OF Set.cat_is_iso_arr_is_monic_arr[OF assms]
]
F.vfsequence_map_is_epic_arr[
OF Set.cat_is_iso_arr_is_epic_arr[OF assms]
]
)
qed
subsection‹An injection from the range of an arrow in ‹Set› into its domain›
subsubsection‹Definition and elementary properties›
definition vrange_iso :: "V ⇒ V"
where "vrange_iso F =
[
(λy∈⇩∘ℛ⇩∘ (F⦇ArrVal⦈). (SOME x. x ∈⇩∘ F⦇ArrDom⦈ ∧ y = F⦇ArrVal⦈⦇x⦈)),
ℛ⇩∘ (F⦇ArrVal⦈),
F⦇ArrDom⦈
]⇩∘"
text‹Components.›
lemma vrange_iso_components:
shows "vrange_iso F⦇ArrVal⦈ =
(λy∈⇩∘ℛ⇩∘ (F⦇ArrVal⦈). (SOME x. x ∈⇩∘ F⦇ArrDom⦈ ∧ y = F⦇ArrVal⦈⦇x⦈))"
and [cat_cs_simps]: "vrange_iso F⦇ArrDom⦈ = ℛ⇩∘ (F⦇ArrVal⦈)"
and [cat_cs_simps]: "vrange_iso F⦇ArrCod⦈ = F⦇ArrDom⦈"
unfolding vrange_iso_def arr_field_simps by (simp_all add: nat_omega_simps)
subsubsection‹Arrow value›
mk_VLambda vrange_iso_components(1)
|vsv vrange_iso_ArrVal_vsv[cat_cs_intros]|
|vdomain vrange_iso_ArrVal_vdomain[cat_cs_simps]|
|app vrange_iso_ArrVal_app|
lemma vrange_iso_ArrVal_rules:
assumes "F : A ↦⇘cat_Set α⇙ B" and "y ∈⇩∘ ℛ⇩∘ (F⦇ArrVal⦈)"
shows "vrange_iso F⦇ArrVal⦈⦇y⦈ ∈⇩∘ A"
and "y = F⦇ArrVal⦈⦇vrange_iso F⦇ArrVal⦈⦇y⦈⦈"
proof-
note FD = cat_Set_is_arrD[OF assms(1)]
interpret F: arr_Set α F
rewrites [cat_cs_simps]: "F⦇ArrDom⦈ = A" and [cat_cs_simps]: "F⦇ArrCod⦈ = B"
by (intro FD)+
from assms(2) have vri_Fy_def:
"vrange_iso F⦇ArrVal⦈⦇y⦈ = (SOME x. x ∈⇩∘ F⦇ArrDom⦈ ∧ y = F⦇ArrVal⦈⦇x⦈)"
by (cs_concl cs_simp: vrange_iso_ArrVal_app)
from assms(2) F.arr_Set_ArrVal_vdomain obtain x
where x: "x ∈⇩∘ A" and y_def: "y = F⦇ArrVal⦈⦇x⦈"
by (auto elim: F.ArrVal.vrange_atE)
show "vrange_iso F⦇ArrVal⦈⦇y⦈ ∈⇩∘ A"
and "y = F⦇ArrVal⦈⦇vrange_iso F⦇ArrVal⦈⦇y⦈⦈"
unfolding vri_Fy_def cat_cs_simps
by (all‹rule someI2_ex; (intro exI conjI)?; (elim conjE)?›)
(simp_all add: x y_def)
qed
subsubsection‹
An injection from the range of a function into its domain is a monic in ‹Set›
›
lemma vrange_iso_is_arr:
assumes "F : A ↦⇘cat_Set α⇙ B"
shows "vrange_iso F : ℛ⇩∘ (F⦇ArrVal⦈) ↦⇘cat_Set α⇙ A"
proof-
note FD = cat_Set_is_arrD[OF assms(1)]
interpret F: arr_Set α F
rewrites [cat_cs_simps]: "F⦇ArrDom⦈ = A" and [cat_cs_simps]: "F⦇ArrCod⦈ = B"
by (intro FD)+
show "vrange_iso F : ℛ⇩∘ (F⦇ArrVal⦈) ↦⇘cat_Set α⇙ A"
proof(intro cat_Set_is_arrI arr_SetI, unfold cat_cs_simps)
show "vfsequence (vrange_iso F)"
unfolding vrange_iso_def by (simp_all add: nat_omega_simps)
show "vsv (vrange_iso F⦇ArrVal⦈)"
by (cs_concl cs_intro: cat_cs_intros)
then interpret vsv ‹vrange_iso F⦇ArrVal⦈›
rewrites "𝒟⇩∘ (vrange_iso F⦇ArrVal⦈) = ℛ⇩∘ (F⦇ArrVal⦈)"
unfolding cat_cs_simps by simp_all
show "vcard (vrange_iso F) = 3⇩ℕ"
unfolding vrange_iso_def by (simp_all add: nat_omega_simps)
show "ℛ⇩∘ (vrange_iso F⦇ArrVal⦈) ⊆⇩∘ A"
proof(intro vsubsetI)
fix x assume "x ∈⇩∘ ℛ⇩∘ (vrange_iso F⦇ArrVal⦈)"
then obtain y where y: "y ∈⇩∘ ℛ⇩∘ (F⦇ArrVal⦈)"
and x_def: "x = vrange_iso F⦇ArrVal⦈⦇y⦈"
by (auto dest: vrange_atD)
show "x ∈⇩∘ A"
unfolding x_def
by (rule vrange_iso_ArrVal_rules(1)[OF assms y, unfolded cat_cs_simps])
qed
qed
(
auto
simp: F.arr_Set_ArrDom_in_Vset
intro: vrange_in_VsetI F.arr_Rel_ArrVal_in_Vset
)
qed
lemma vrange_iso_is_arr':
assumes "F : A ↦⇘cat_Set α⇙ B"
and "B' = ℛ⇩∘ (F⦇ArrVal⦈)"
and "ℭ' = cat_Set α"
shows "vrange_iso F : B' ↦⇘ℭ'⇙ A"
using assms(1) unfolding assms(2,3) by (rule vrange_iso_is_arr)
lemma vrange_iso_is_monic_arr:
assumes "F : A ↦⇘cat_Set α⇙ B"
shows "vrange_iso F : ℛ⇩∘ (F⦇ArrVal⦈) ↦⇩m⇩o⇩n⇘cat_Set α⇙ A"
proof-
note FD = cat_Set_is_arrD[OF assms(1)]
interpret F: arr_Set α F
rewrites [cat_cs_simps]: "F⦇ArrDom⦈ = A" and [cat_cs_simps]: "F⦇ArrCod⦈ = B"
by (intro FD)+
show ?thesis
proof
(
intro cat_Set_is_monic_arrI vrange_iso_is_arr,
rule assms,
rule vsv.vsv_valeq_v11I[OF vrange_iso_ArrVal_vsv],
unfold cat_cs_simps
)
fix x y assume prems:
"x ∈⇩∘ ℛ⇩∘ (F⦇ArrVal⦈)"
"y ∈⇩∘ ℛ⇩∘ (F⦇ArrVal⦈)"
"vrange_iso F⦇ArrVal⦈⦇x⦈ = vrange_iso F⦇ArrVal⦈⦇y⦈"
show "x = y"
by
(
rule vrange_iso_ArrVal_rules(2)
[
OF assms prems(1),
unfolded prems(3),
folded vrange_iso_ArrVal_rules(2)[OF assms prems(2)]
]
)
qed simp
qed
lemma vrange_iso_is_monic_arr':
assumes "F : A ↦⇘cat_Set α⇙ B"
and "B' = ℛ⇩∘ (F⦇ArrVal⦈)"
and "ℭ' = cat_Set α"
shows "vrange_iso F : B' ↦⇩m⇩o⇩n⇘ℭ'⇙ A"
using assms(1) unfolding assms(2,3) by (rule vrange_iso_is_monic_arr)
subsection‹Auxiliary›
text‹
This subsection is reserved for insignificant helper lemmas
and rules that are used in applied formalization elsewhere.
›
lemma (in 𝒵) cat_Rel_CId_is_cat_Set_arr:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈"
shows "cat_Rel α⦇CId⦈⦇A⦈ : A ↦⇘cat_Set α⇙ A"
proof-
from assms show ?thesis
unfolding cat_Rel_components cat_Set_components(6)[symmetric]
by
(
cs_concl cs_shallow
cs_simp: cat_Set_components(1) cs_intro: cat_cs_intros
)
qed
lemma (in 𝒵) cat_Rel_CId_is_cat_Set_arr'[cat_rel_par_Set_cs_intros]:
assumes "A ∈⇩∘ cat_Rel α⦇Obj⦈"
and "B' = A"
and "C' = A"
and "ℭ' = cat_Set α"
shows "cat_Rel α⦇CId⦈⦇A⦈ : B' ↦⇘ℭ'⇙ C'"
using assms(1) unfolding assms(2-4) by (rule cat_Rel_CId_is_cat_Set_arr)
text‹\newpage›
end