Theory Weak_Cong_Sim
theory Weak_Cong_Sim
imports Weak_Cong_Semantics Weak_Sim Strong_Sim
begin
definition weakCongSimulation :: "ccs ⇒ (ccs × ccs) set ⇒ ccs ⇒ bool" ("_ ↝<_> _" [80, 80, 80] 80)
where
"P ↝<Rel> Q ≡ ∀a Q'. Q ⟼a ≺ Q' ⟶ (∃P'. P ⟹a ≺ P' ∧ (P', Q') ∈ Rel)"
lemma weakSimI[case_names Sim]:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
assumes "⋀α Q'. Q ⟼α ≺ Q' ⟹ ∃P'. P ⟹α ≺ P' ∧ (P', Q') ∈ Rel"
shows "P ↝<Rel> Q"
using assms
by(auto simp add: weakCongSimulation_def)
lemma weakSimE:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
and α :: act
and Q' :: ccs
assumes "P ↝<Rel> Q"
and "Q ⟼α ≺ Q'"
obtains P' where "P ⟹α ≺ P'" and "(P', Q') ∈ Rel"
using assms
by(auto simp add: weakCongSimulation_def)
lemma simWeakSim:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
assumes "P ↝[Rel] Q"
shows "P ↝<Rel> Q"
using assms
by(rule_tac weakSimI, auto)
(blast dest: simE transitionWeakCongTransition)
lemma weakCongSimWeakSim:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
assumes "P ↝<Rel> Q"
shows "P ↝⇧^<Rel> Q"
using assms
by(rule_tac Weak_Sim.weakSimI, auto)
(blast dest: weakSimE weakCongTransitionWeakTransition)
lemma test:
assumes "P ⟹⇩τ P'"
shows "P = P' ∨ (∃P''. P ⟼τ ≺ P'' ∧ P'' ⟹⇩τ P')"
using assms
by(induct rule: tauChainInduct) auto
lemma tauChainCasesSym[consumes 1, case_names cTauNil cTauStep]:
assumes "P ⟹⇩τ P'"
and "Prop P"
and "⋀P''. ⟦P ⟼τ ≺ P''; P'' ⟹⇩τ P'⟧ ⟹ Prop P'"
shows "Prop P'"
using assms
by(blast dest: test)
lemma simE2:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
and α :: act
and Q' :: ccs
assumes "P ↝<Rel> Q"
and "Q ⟹α ≺ Q'"
and Sim: "⋀R S. (R, S) ∈ Rel ⟹ R ↝⇧^<Rel> S"
obtains P' where "P ⟹α ≺ P'" and "(P', Q') ∈ Rel"
proof -
assume Goal: "⋀P'. ⟦P ⟹α ≺ P'; (P', Q') ∈ Rel⟧ ⟹ thesis"
from ‹Q ⟹α ≺ Q'› obtain Q''' Q''
where QChain: "Q ⟹⇩τ Q'''" and Q'''Trans: "Q''' ⟼α ≺ Q''" and Q''Chain: "Q'' ⟹⇩τ Q'"
by(rule weakCongTransE)
from QChain Q'''Trans show ?thesis
proof(induct rule: tauChainCasesSym)
case cTauNil
from ‹P ↝<Rel> Q› ‹Q ⟼α ≺ Q''› obtain P''' where PTrans: "P ⟹α ≺ P'''" and "(P''', Q'') ∈ Rel"
by(blast dest: weakSimE)
moreover from Q''Chain ‹(P''', Q'') ∈ Rel› Sim obtain P' where P''Chain: "P''' ⟹⇩τ P'" and "(P', Q') ∈ Rel"
by(rule simTauChain)
with PTrans P''Chain show ?thesis
by(force intro: Goal simp add: weakCongTrans_def weakTrans_def)
next
case(cTauStep Q'''')
from ‹P ↝<Rel> Q› ‹Q ⟼τ ≺ Q''''› obtain P'''' where PChain: "P ⟹τ ≺ P''''" and "(P'''', Q'''') ∈ Rel"
by(drule_tac weakSimE) auto
from ‹Q'''' ⟹⇩τ Q'''› ‹(P'''', Q'''') ∈ Rel› Sim obtain P''' where P''''Chain: "P'''' ⟹⇩τ P'''" and "(P''', Q''') ∈ Rel"
by(rule simTauChain)
from ‹(P''', Q''') ∈ Rel› have "P''' ↝⇧^<Rel> Q'''" by(rule Sim)
then obtain P'' where P'''Trans: "P''' ⟹⇧^α ≺ P''" and "(P'', Q'') ∈ Rel" using Q'''Trans by(rule Weak_Sim.weakSimE)
from Q''Chain ‹(P'', Q'') ∈ Rel› Sim obtain P' where P''Chain: "P'' ⟹⇩τ P'" and "(P', Q') ∈ Rel"
by(rule simTauChain)
from PChain P''''Chain P'''Trans P''Chain
have "P ⟹α ≺ P'"
apply(auto simp add: weakCongTrans_def weakTrans_def)
apply(rule_tac x=P''aa in exI)
apply auto
defer
apply blast
by(auto simp add: tauChain_def)
with ‹(P', Q') ∈ Rel› show ?thesis
by(force intro: Goal simp add: weakCongTrans_def weakTrans_def)
qed
qed
lemma reflexive:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
assumes "Id ⊆ Rel"
shows "P ↝<Rel> P"
using assms
by(auto simp add: weakCongSimulation_def intro: transitionWeakCongTransition)
lemma transitive:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
and Rel' :: "(ccs × ccs) set"
and R :: ccs
and Rel'' :: "(ccs × ccs) set"
assumes "P ↝<Rel> Q"
and "Q ↝<Rel'> R"
and "Rel O Rel' ⊆ Rel''"
and "⋀S T. (S, T) ∈ Rel ⟹ S ↝⇧^<Rel> T"
shows "P ↝<Rel''> R"
proof(induct rule: weakSimI)
case(Sim α R')
thus ?case using assms
apply(drule_tac Q=R in weakSimE, auto)
by(drule_tac Q=Q in simE2) auto
qed
lemma weakMonotonic:
fixes P :: ccs
and A :: "(ccs × ccs) set"
and Q :: ccs
and B :: "(ccs × ccs) set"
assumes "P ↝<A> Q"
and "A ⊆ B"
shows "P ↝<B> Q"
using assms
by(fastforce simp add: weakCongSimulation_def)
end