Theory Strong_Sim
theory Strong_Sim
imports Agent
begin
definition simulation :: "ccs ⇒ (ccs × ccs) set ⇒ ccs ⇒ bool" ("_ ↝[_] _" [80, 80, 80] 80)
where
"P ↝[Rel] Q ≡ ∀a Q'. Q ⟼a ≺ Q' ⟶ (∃P'. P ⟼a ≺ P' ∧ (P', Q') ∈ Rel)"
lemma simI[case_names Sim]:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
assumes "⋀α Q'. Q ⟼α ≺ Q' ⟹ ∃P'. P ⟼α ≺ P' ∧ (P', Q') ∈ Rel"
shows "P ↝[Rel] Q"
using assms
by(auto simp add: simulation_def)
lemma simE:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
and α :: act
and Q' :: ccs
assumes "P ↝[Rel] Q"
and "Q ⟼α ≺ Q'"
obtains P' where "P ⟼α ≺ P'" and "(P', Q') ∈ Rel"
using assms
by(auto simp add: simulation_def)
lemma reflexive:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
assumes "Id ⊆ Rel"
shows "P ↝[Rel] P"
using assms
by(auto simp add: simulation_def)
lemma transitive:
fixes P :: ccs
and Rel :: "(ccs × ccs) set"
and Q :: ccs
and Rel' :: "(ccs × ccs) set"
and R :: ccs
and Rel'' :: "(ccs × ccs) set"
assumes "P ↝[Rel] Q"
and "Q ↝[Rel'] R"
and "Rel O Rel' ⊆ Rel''"
shows "P ↝[Rel''] R"
using assms
by(force simp add: simulation_def)
end