Theory Refine_Imperative_HOL.Sepref_Improper
section ‹Ad-Hoc Solutions›
theory Sepref_Improper
imports
Sepref_Tool
Sepref_HOL_Bindings
Sepref_Foreach
Sepref_Intf_Util
begin
text ‹This theory provides some ad-hoc solutions to practical problems,
that, however, still need a more robust/clean solution›
subsection ‹Pure Higher-Order Functions›
text ‹Ad-Hoc way to support pure higher-order arguments›
definition pho_apply :: "('a ⇒ 'b) ⇒ 'a ⇒ 'b" where [code_unfold,simp]: "pho_apply f x = f x"
sepref_register pho_apply
lemmas fold_pho_apply = pho_apply_def[symmetric]
lemma pure_fun_refine[sepref_fr_rules]: "hn_refine
(hn_val (A→B) f fi * hn_val A x xi)
(return (pho_apply$fi$xi))
(hn_val (A→B) f fi * hn_val A x xi)
(pure B)
(RETURN$(pho_apply$f$x))"
by (sep_auto intro!: hn_refineI simp: pure_def hn_ctxt_def dest: fun_relD)
end