Theory TypHeapLib
chapter "Misc. Lemmas"
theory TypHeapLib
imports "CTranslation"
begin
section "Abbreviations and helpers"
definition "is_an_abbreviation ≡ True"
abbreviation
"clift ≡ lift_t c_guard"
lemma clift_def: "is_an_abbreviation" by (simp add: is_an_abbreviation_def)
section "Basic operations"
subsection "clift"
lemma c_guard_clift:
"clift hp p = Some x ⟹ c_guard p"
by (rule lift_t_g)
lemma clift_heap_update:
fixes p :: "'a :: mem_type ptr"
shows "hrs_htd hp ⊨⇩t p ⟹ clift (hrs_mem_update (heap_update p v) hp) = (clift hp)(p ↦ v)"
unfolding hrs_mem_update_def
apply (cases hp)
apply (simp add: split_def hrs_htd_def)
apply (erule lift_t_heap_update)
done
lemma clift_heap_update_same:
fixes p :: "'a :: mem_type ptr"
shows "⟦ hrs_htd hp ⊨⇩t p; typ_uinfo_t TYPE('a) ⊥⇩t typ_uinfo_t TYPE('b) ⟧
⟹ clift (hrs_mem_update (heap_update p v) hp) = (clift hp :: 'b :: mem_type typ_heap)"
unfolding hrs_mem_update_def
apply (cases hp)
apply (simp add: split_def hrs_htd_def)
apply (erule lift_t_heap_update_same)
apply simp
done
lemmas clift_heap_update_same_td_name = clift_heap_update_same [OF _ tag_disj_via_td_name, unfolded pad_typ_name_def]
subsection "\<^const>‹h_val›"
lemmas h_val_clift = lift_t_lift [where g = c_guard, unfolded CTypesDefs.lift_def, simplified]
lemma h_val_clift':
"clift hp p = Some v ⟹ h_val (hrs_mem hp) p = v"
unfolding hrs_mem_def by (cases hp, simp add: h_val_clift)
subsection "\<^const>‹h_t_valid›"
lemma clift_Some_eq_valid:
"(∃v. clift hp p = Some v) = (hrs_htd hp ⊨⇩t p)"
apply (cases hp)
apply (simp add: lift_t_if hrs_htd_def)
done
lemma h_t_valid_clift_Some_iff:
"(hrs_htd hp ⊨⇩t p) = (∃v. clift hp p = Some v)"
apply (cases hp)
apply (simp add: lift_t_if hrs_htd_def)
done
lemma h_t_valid_clift:
"clift hp p = Some v ⟹ hrs_htd hp ⊨⇩t p"
apply (cases hp, simp add: hrs_htd_def)
apply (erule lift_t_h_t_valid)
done
lemma c_guard_h_t_valid:
"hrs_htd hp ⊨⇩t p ⟹ c_guard p"
by (simp add: h_t_valid_def)
section "\<^const>‹field_lvalue›"
subsection "\<^const>‹heap_update›"
lemma heap_update_field:
"⟦field_ti TYPE('a :: packed_type) f = Some t; c_guard p;
export_uinfo t = export_uinfo (typ_info_t TYPE('b :: packed_type))⟧
⟹ heap_update (Ptr &(p→f) :: 'b ptr) v hp =
heap_update p (update_ti t (to_bytes_p v) (h_val hp p)) hp"
apply (erule field_ti_field_lookupE)
apply (erule (2) packed_heap_super_field_update [unfolded typ_uinfo_t_def])
done
lemma heap_update_field':
"⟦field_ti TYPE('a :: packed_type) f = Some t; c_guard p;
export_uinfo t = export_uinfo (typ_info_t TYPE('b :: packed_type))⟧
⟹ heap_update (Ptr &(p→f) :: 'b ptr) v hp =
heap_update p (update_ti_t t (to_bytes_p v) (h_val hp p)) hp"
apply (erule field_ti_field_lookupE)
apply (subst packed_heap_super_field_update [unfolded typ_uinfo_t_def])
apply assumption+
apply (drule export_size_of [simplified typ_uinfo_t_def])
apply (simp add: update_ti_t_def)
done
lemma heap_update_field_hrs:
fixes p :: "'a :: packed_type ptr" and v :: "'b :: packed_type"
shows "⟦field_ti TYPE('a) f = Some t; c_guard p;
export_uinfo t = export_uinfo (typ_info_t TYPE('b))⟧
⟹ hrs_mem_update (heap_update (Ptr &(p→f)) v) hp =
hrs_mem_update (heap_update p (update_ti_t t (to_bytes_p v) (h_val (hrs_mem hp) p))) hp"
unfolding hrs_mem_update_def
apply (simp add: split_def)
apply (subst heap_update_field)
apply assumption
apply assumption
apply assumption
apply (frule export_size_of [unfolded typ_uinfo_t_def])
apply (simp add: update_ti_t_def hrs_mem_def)
done
lemma heap_update_field_ext:
"⟦field_ti TYPE('a :: packed_type) f = Some t; c_guard p;
export_uinfo t = export_uinfo (typ_info_t TYPE('b :: packed_type))⟧
⟹ heap_update (Ptr &(p→f) :: 'b ptr) =
(λv hp. heap_update p (update_ti t (to_bytes_p v) (h_val hp p)) hp)"
apply (rule ext, rule ext)
apply (erule (2) heap_update_field)
done
subsection "\<^const>‹c_guard›"
lemma c_guard_field:
"⟦c_guard (p :: 'a :: mem_type ptr); field_ti TYPE('a :: mem_type) f = Some t;
export_uinfo t = export_uinfo (typ_info_t TYPE('b :: mem_type))⟧
⟹ c_guard (Ptr &(p→f) :: 'b :: mem_type ptr)"
apply (erule field_ti_field_lookupE)
apply (erule (1) c_guard_field_lvalue)
apply (simp add: typ_uinfo_t_def)
done
subsection "clift"
lemma clift_field:
fixes v :: "'a :: mem_type" and p :: "'a :: mem_type ptr"
assumes lf: "clift hp p = Some v"
and fl: "field_ti TYPE('a) f = Some t"
and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b :: mem_type))"
shows "clift hp (Ptr &(p→f) :: 'b :: mem_type ptr) = Some (from_bytes (access_ti⇩0 t v))"
using lf fl eu
apply (clarsimp elim!: field_ti_field_lookupE)
apply (erule (2) lift_t_mono [unfolded typ_uinfo_t_def])
apply (rule c_guard_mono)
done
subsubsection "Updates"
lemma clift_field_update:
fixes val :: "'b :: mem_type" and ptr :: "'a :: mem_type ptr"
assumes fl: "field_ti TYPE('a) f = Some t"
and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b))"
and cl: "clift hp ptr = Some z"
shows "(clift (hrs_mem_update (heap_update (Ptr &(ptr→f)) val) hp)) =
(clift hp)(ptr ↦ field_update (field_desc t) (to_bytes_p val) z)"
(is "?LHS = ?RHS")
proof -
have cl': "clift (fst hp, snd hp) ptr = Some z" using cl by simp
have "?LHS = super_field_update_t (Ptr &(ptr→f)) val (clift (fst hp, snd hp))"
unfolding hrs_mem_update_def split_def
proof (rule lift_t_super_field_update [OF h_t_valid_sub, unfolded typ_uinfo_t_def])
from cl' show "snd hp ⊨⇩t ptr" by (rule lift_t_h_t_valid)
show "TYPE('b) ≤⇩τ TYPE('a)" using fl eu by (rule field_ti_sub_typ [unfolded typ_uinfo_t_def])
qed fact+
also have "… = ?RHS" using fl eu cl
apply -
apply (erule field_ti_field_lookupE)
apply (subst super_field_update_lookup [unfolded typ_uinfo_t_def])
apply assumption
apply simp
apply simp
apply simp
done
finally show ?thesis .
qed
lemma clift_field_update_padding:
fixes val :: "'b :: mem_type" and ptr :: "'a :: mem_type ptr"
assumes fl: "field_ti TYPE('a) f = Some t"
and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b))"
and cl: "clift hp ptr = Some z"
and lbs: "length bs = size_of TYPE('b)"
shows "(clift (hrs_mem_update (heap_update_padding (Ptr &(ptr→f)) val bs) hp)) =
(clift hp)(ptr ↦ field_update (field_desc t) (to_bytes_p val) z)"
(is "?LHS = ?RHS")
proof -
have cl': "clift (fst hp, snd hp) ptr = Some z" using cl by simp
have "?LHS = super_field_update_t (Ptr &(ptr→f)) val (clift (fst hp, snd hp))"
unfolding hrs_mem_update_def split_def
proof (rule lift_t_super_field_update_padding [OF h_t_valid_sub _ lbs, unfolded typ_uinfo_t_def])
from cl' show "snd hp ⊨⇩t ptr" by (rule lift_t_h_t_valid)
show "TYPE('b) ≤⇩τ TYPE('a)" using fl eu by (rule field_ti_sub_typ [unfolded typ_uinfo_t_def])
qed fact+
also have "… = ?RHS" using fl eu cl
apply -
apply (erule field_ti_field_lookupE)
apply (subst super_field_update_lookup [unfolded typ_uinfo_t_def])
apply assumption
apply simp
apply simp
apply simp
done
finally show ?thesis .
qed
subsection "cparent"
definition
cparent :: "('a :: c_type) ptr ⇒ string list ⇒ ('b :: c_type) ptr"
where
"cparent p fs ≡ THE p'. p = Ptr &(p'→fs)"
lemma cparent_field [simp]:
"cparent (Ptr &(p→fs)) fs = p"
unfolding cparent_def
by (simp add: field_lvalue_def)
lemma cparent_def2:
fixes p :: "'b :: c_type ptr"
shows "cparent p f ≡ (Ptr (ptr_val p - of_nat (field_offset TYPE('a :: c_type) f)) :: 'a :: c_type ptr)"
(is "cparent p f ≡ ?p'")
proof -
have pv: "p = Ptr &(?p'→f)"
by (simp add: field_lvalue_def field_simps)
show "cparent p f ≡ ?p'"
by (subst pv) simp
qed
lemma field_cparent [simp]:
fixes p :: "'a :: c_type ptr"
shows "(Ptr &(cparent p f :: 'b :: c_type ptr →f)) = p"
by (simp add: cparent_def2 field_lvalue_def)
lemma clift_cparentE:
fixes v :: "'a :: mem_type" and p :: "'b :: mem_type ptr"
assumes lf: "clift hp (cparent p fs :: 'a ptr) = Some v"
and fl: "field_ti TYPE('a) fs = Some t"
and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b))"
shows "clift hp p = Some (from_bytes (access_ti⇩0 t v))"
unfolding cparent_def
proof -
have pv: "p = Ptr &((Ptr (ptr_val p - of_nat (field_offset TYPE('a) fs)) :: 'a ptr)→fs)"
(is "p = Ptr &(?p'→fs)") by (simp add: field_lvalue_def field_simps)
have cp: "cparent p fs = ?p'"
by (subst pv) simp
from lf have lf': "clift hp ?p' = Some v"
by (simp add: cparent_def2)
have "clift hp (Ptr &(?p'→fs) :: 'b ptr) = Some (from_bytes (access_ti⇩0 t v))" using lf' fl eu
by (rule clift_field)
thus ?thesis
by (simp add: pv [symmetric])
qed
lemma heap_update_to_cparent:
fixes p :: "'b :: packed_type ptr" and fs :: "char list list"
defines "cp ≡ cparent p fs :: 'a :: packed_type ptr"
assumes fl: "field_ti TYPE('a :: packed_type) fs = Some t"
and cg: "c_guard cp"
and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b))"
shows "heap_update p v hp = heap_update cp (update_ti t (to_bytes_p v) (h_val hp cp)) hp"
(is "?LHS = ?RHS")
proof -
have "?LHS = heap_update (Ptr &(cp→fs)) v hp"
unfolding cp_def by simp
moreover have "… = ?RHS" using fl cg eu
by (fastforce intro: heap_update_field)
finally show ?thesis .
qed
lemma c_guard_cparent:
"⟦ c_guard ((cparent p f)::'a::mem_type ptr);
field_ti TYPE('a) f = Some t;
export_uinfo t = typ_uinfo_t TYPE('b) ⟧ ⟹
c_guard (p::'b::mem_type ptr)"
apply(subst field_cparent[symmetric, where f=f])
apply(rule c_guard_field, (simp add:typ_uinfo_t_def)+)
done
lemma parent_update_child:
fixes p::"'b::packed_type ptr"
shows
"⟦ c_guard ((cparent p f)::'a::packed_type ptr); field_ti TYPE('a) f = Some t;
export_uinfo t = export_uinfo (typ_info_t TYPE('b))⟧
⟹ hrs_mem_update (heap_update p v) hp =
hrs_mem_update
(heap_update ((cparent p f)::'a ptr)
(update_ti_t t (to_bytes_p v) (h_val (hrs_mem hp) (cparent p f))))
hp"
apply(subst field_cparent[symmetric, where f=f and 'b='a])
apply(rule heap_update_field_hrs, simp+)
done
subsection "\<^const>‹h_val›"
lemma h_val_field_clift:
fixes pa :: "'a :: mem_type ptr"
assumes cl: "clift (h, d) pa = Some v"
and fl: "field_ti TYPE('a) f = Some t"
and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b :: mem_type))"
shows "h_val h (Ptr &(pa→f) :: 'b :: mem_type ptr) = from_bytes (access_ti⇩0 t v)"
using cl fl eu
apply -
apply (rule h_val_clift)
apply (clarsimp simp: field_ti_def split: option.splits)
apply (erule (2) lift_t_mono [unfolded typ_uinfo_t_def])
apply (rule c_guard_mono)
done
lemma h_val_field_clift':
fixes pa :: "'a :: mem_type ptr"
assumes cl: "clift hp pa = Some v"
and fl: "field_ti TYPE('a) f = Some t"
and eu: "export_uinfo t = typ_uinfo_t TYPE('b :: mem_type)"
shows "h_val (hrs_mem hp) (Ptr &(pa→f) :: 'b :: mem_type ptr) = from_bytes (access_ti⇩0 t v)"
using cl fl eu
apply (cases hp)
apply (simp add: h_val_field_clift hrs_mem_def typ_uinfo_t_def)
done
lemma clift_subtype:
"⟦ clift hp ((cparent p f)::'a::mem_type ptr) = Some v;
field_ti TYPE('a) f = Some t;
export_uinfo t = export_uinfo (typ_info_t TYPE('b::mem_type)) ⟧ ⟹
clift hp (p::'b ptr) = Some (from_bytes (access_ti⇩0 t v))"
apply(subst field_cparent[symmetric, where f=f])
apply(rule clift_field)
apply(simp)+
done
subsection "\<^const>‹h_t_valid›"
lemma h_t_valid_field:
fixes p :: "'a :: mem_type ptr"
assumes htv: "d ⊨⇩t p"
and fti: "field_ti TYPE('a :: mem_type) f = Some t"
and eu: "export_uinfo t = export_uinfo (typ_info_t TYPE('b :: mem_type))"
shows "d ⊨⇩t (Ptr &(p→f) :: 'b :: mem_type ptr)"
using htv fti eu
apply -
apply (clarsimp simp: field_ti_def split: option.splits)
apply (erule (1) h_t_valid_mono [rule_format, unfolded typ_uinfo_t_def])
apply (rule c_guard_mono)
apply assumption
done
lemma h_t_valid_field':
fixes p::"'a::mem_type ptr"
shows
"⟦ field_ti TYPE('a) f = Some t;
export_uinfo t = typ_uinfo_t TYPE('b);
d,g ⊨⇩t p; g' ((Ptr &(p→f))::'b::mem_type ptr) ⟧ ⟹ d,g' ⊨⇩t Ptr &(p→f)"
apply(simp add:h_t_valid_guard_subst[OF h_t_valid_sub])
done
lemma h_t_valid_c_guard_field:
fixes p::"'a::mem_type ptr"
shows
"⟦ d ⊨⇩t p;
field_ti TYPE('a) f = Some t;
export_uinfo t = typ_uinfo_t TYPE('b) ⟧ ⟹
d ⊨⇩t ((Ptr &(p→f))::'b::mem_type ptr)"
apply(simp add:h_t_valid_field c_guard_field h_t_valid_c_guard typ_uinfo_t_def)
done
lemma h_t_valid_cparent:
"⟦ field_ti TYPE('a) f = Some t;
export_uinfo t = typ_uinfo_t TYPE('b);
d,g ⊨⇩t ((cparent p f)::'a::mem_type ptr); g' (p::'b::mem_type ptr) ⟧ ⟹
d,g' ⊨⇩t p"
apply(subst field_cparent[symmetric, where f=f])
apply(rule h_t_valid_field')
apply(assumption)
apply(simp add:typ_uinfo_t_def)
apply(assumption)
apply(simp)
done
lemma h_t_valid_c_guard_cparent:
fixes p::"'b::mem_type ptr"
shows
"⟦ d ⊨⇩t ((cparent p f)::'a::mem_type ptr);
field_ti TYPE('a) f = Some t;
export_uinfo t = typ_uinfo_t TYPE('b) ⟧ ⟹
d ⊨⇩t p"
apply(rule h_t_valid_cparent)
apply(assumption)
apply(simp add:typ_uinfo_t_def)
apply(assumption)
apply(rule c_guard_cparent)
apply(rule h_t_valid_c_guard, assumption)
apply(assumption)
apply(simp add:typ_uinfo_t_def)
done
lemma c_guard_array_c_guard:
"c_guard (ptr_coerce p :: ('b :: c_type, 'a :: finite) array ptr) ⟹ c_guard (p :: 'b ptr)"
apply (clarsimp simp: c_guard_def)
apply (rule conjI)
apply (clarsimp simp: ptr_aligned_def align_of_def align_td_array)
apply (simp add: c_null_guard_def)
apply (erule contra_subsetD [rotated])
apply (rule intvl_start_le)
apply simp
done
lemma c_guard_array_field:
assumes parent_cguard: "c_guard (p :: 'a :: mem_type ptr)"
and subfield: "field_ti TYPE('a :: mem_type) f = Some t"
and type_match: "export_uinfo t = export_uinfo (typ_info_t TYPE(('b :: array_outer_max_size, 'c :: array_max_count) array))"
shows "c_guard (Ptr &(p→f) :: 'b ptr)"
by (metis c_guard_array_c_guard c_guard_field parent_cguard ptr_coerce.simps subfield type_match)
instantiation ptr :: (type) enum
begin
definition "enum_ptr ≡ map Ptr enum_class.enum"
definition "enum_all_ptr P ≡ enum_class.enum_all (λv. P (Ptr v))"
definition "enum_ex_ptr P ≡ enum_class.enum_ex (λv. P (Ptr v))"
instance
apply (intro_classes)
apply (clarsimp simp: enum_ptr_def)
apply (metis ptr.exhaust surj_def)
apply (clarsimp simp: enum_ptr_def distinct_map)
apply (metis injI ptr.inject)
apply (clarsimp simp: enum_all_ptr_def)
apply (rule iffI)
apply (rule allI)
apply (rename_tac x)
apply (erule_tac x="ptr_val x" in allE)
apply force
apply force
apply (clarsimp simp: enum_ex_ptr_def)
apply (rule iffI)
apply force
apply clarsimp
subgoal for P x
apply (rule exI[where x="ptr_val x"])
apply clarsimp
done
done
end
subsection ‹Type Combinators and Padding›
lemma ti_typ_pad_combine_empty_ti:
fixes tp :: "'b :: c_type itself"
shows "ti_typ_pad_combine tp lu upd algn fld (empty_typ_info algn' n) =
TypDesc (max algn' (max algn (align_td (typ_info_t TYPE('b)))))
(TypAggregate [DTuple (adjust_ti (typ_info_t TYPE('b)) lu upd) fld
⦇field_access = xto_bytes ∘ lu,
field_update = upd ∘ xfrom_bytes,
field_sz = size_of TYPE('b)⦈]) n"
by (simp add: ti_typ_pad_combine_def ti_typ_combine_def empty_typ_info_def Let_def)
lemma ti_typ_combine_empty_ti:
fixes tp :: "'b :: c_type itself"
shows "ti_typ_combine tp lu upd algn fld (empty_typ_info algn' n) =
TypDesc (max algn' (max algn (align_td (typ_info_t TYPE('b)))))
(TypAggregate [DTuple (adjust_ti (typ_info_t TYPE('b)) lu upd) fld
⦇field_access = xto_bytes ∘ lu,
field_update = upd ∘ xfrom_bytes,
field_sz = size_of TYPE('b)⦈]) n"
by (simp add: ti_typ_combine_def empty_typ_info_def Let_def)
lemma ti_typ_pad_combine_td:
fixes tp :: "'b :: c_type itself"
shows "padup (max (2 ^ algn) (align_of TYPE('b))) (size_td_struct st) = 0 ⟹
ti_typ_pad_combine tp lu upd algn fld (TypDesc algn' st n) =
TypDesc (max algn' (max algn (align_td (typ_info_t TYPE('b)))))
(extend_ti_struct st (adjust_ti (typ_info_t TYPE('b)) lu upd) fld
⦇field_access = xto_bytes ∘ lu,
field_update = upd ∘ xfrom_bytes,
field_sz = size_of TYPE('b)⦈) n"
by (simp add: ti_typ_pad_combine_def ti_typ_combine_def Let_def)
lemma ti_typ_combine_td:
fixes tp :: "'b :: c_type itself"
shows "padup (align_of TYPE('b)) (size_td_struct st) = 0 ⟹
ti_typ_combine tp lu upd algn fld (TypDesc algn' st n) =
TypDesc (max algn' (max algn (align_td (typ_info_t TYPE('b)))))
(extend_ti_struct st (adjust_ti (typ_info_t TYPE('b)) lu upd) fld
⦇field_access = xto_bytes ∘ lu,
field_update = upd ∘ xfrom_bytes,
field_sz = size_of TYPE('b)⦈) n"
by (simp add: ti_typ_combine_def Let_def)
lemma update_ti_t_pad_combine:
assumes std: "size_td td' mod 2 ^ (max algn (align_td (typ_info_t TYPE('a :: c_type)))) = 0"
shows "update_ti_t (ti_typ_pad_combine TYPE('a :: c_type) lu upd algn fld td') bs v =
update_ti_t (ti_typ_combine TYPE('a :: c_type) lu upd algn fld td') bs v"
using std
by (simp add: ti_typ_pad_combine_def size_td_simps Let_def max_2_exp)
subsection ‹
The orphanage: miscellaneous lemmas pulled up to (roughly) where they belong.
›
lemma uinfo_array_tag_n_m_not_le_typ_name:
"typ_name (typ_info_t TYPE('b)) @ ''_array_'' @ nat_to_bin_string m
∉ td_names (typ_info_t TYPE('a))
⟹ ¬ uinfo_array_tag_n_m TYPE('b :: c_type) n m ≤ typ_uinfo_t TYPE('a :: c_type)"
apply (clarsimp simp: typ_tag_le_def typ_uinfo_t_def)
apply (drule td_set_td_names)
apply (clarsimp simp: uinfo_array_tag_n_m_def typ_uinfo_t_def)
apply (drule arg_cong[where f="λxs. set ''r'' ⊆ set xs"], simp)
apply (simp add: uinfo_array_tag_n_m_def typ_uinfo_t_def)
done
lemma tag_not_le_via_td_name:
"typ_name (typ_info_t TYPE('a)) ∉ td_names (typ_info_t TYPE('b))
⟹ typ_name (typ_info_t TYPE('a)) ≠ pad_typ_name
⟹ ¬ typ_uinfo_t TYPE('a :: c_type) ≤ typ_uinfo_t TYPE ('b :: c_type)"
apply (clarsimp simp: typ_tag_le_def typ_uinfo_t_def)
apply (drule td_set_td_names, simp+)
done
lemmas typ_heap_simps =
c_guard_field
c_guard_h_t_valid
h_t_valid_field
h_t_valid_clift
h_val_field_clift'
h_val_clift'
clift_field
clift_field_update
heap_update_field_hrs
heap_update_field'
clift_heap_update
clift_heap_update_same_td_name
end