Theory TypHeap
theory TypHeap
imports
Vanilla32
ArchArraysMemInstance
HeapRawState
MapExtraTrans
begin
declare map_add_assoc [simp del]
definition wf_heap_val :: "heap_state ⇒ bool" where
"wf_heap_val s ≡
∀x t n v. s (x,SIndexVal) ≠ Some (STyp t) ∧ s (x,SIndexTyp n) ≠ Some (SValue v)"
type_synonym typ_slice_list = "(typ_uinfo × typ_base) list"
primrec
typ_slice_t :: "typ_uinfo ⇒ nat ⇒ typ_slice_list" and
typ_slice_struct :: "typ_uinfo_struct ⇒ nat ⇒ typ_slice_list" and
typ_slice_list :: "(typ_uinfo,field_name, unit) dt_tuple list ⇒ nat ⇒ typ_slice_list" and
typ_slice_tuple :: "(typ_uinfo,field_name, unit) dt_tuple ⇒ nat ⇒ typ_slice_list"
where
tl0: "typ_slice_t (TypDesc algn st nm) m = typ_slice_struct st m @
[(if m = 0 then ((TypDesc algn st nm),True) else
((TypDesc algn st nm),False))]"
| tl1: "typ_slice_struct (TypScalar n algn d) m = []"
| tl2: "typ_slice_struct (TypAggregate xs) m = typ_slice_list xs m"
| tl3: "typ_slice_list [] m = []"
| tl4: "typ_slice_list (x#xs) m = (if m < size_td (dt_fst x) ∨ xs = [] then
typ_slice_tuple x m else typ_slice_list xs (m - size_td (dt_fst x)))"
| tl5: "typ_slice_tuple (DTuple t n d) m = typ_slice_t t m"
definition list_map :: "'a list ⇒ (nat ⇀ 'a)" where
"list_map xs ≡ map_of (zip [0..<length xs] xs)"
:: "addr ⇒ typ_uinfo ⇒ (addr × s_heap_index) set" where
"s_footprint_untyped p t ≡
{(p + of_nat x,k) | x k. x < size_td t ∧
(k=SIndexVal ∨ (∃n. k=SIndexTyp n ∧ n < length (typ_slice_t t x)))}"
(in c_type) :: "'a ptr ⇒ (addr × s_heap_index) set" where
"s_footprint p ≡ s_footprint_untyped (ptr_val p) (typ_uinfo_t TYPE('a))"
definition empty_htd :: "heap_typ_desc" where
"empty_htd ≡ λx. (False,Map.empty)"
definition dom_s :: "heap_typ_desc ⇒ s_addr set" where
"dom_s d ≡ {(x,SIndexVal) | x. fst (d x)} ∪
{(x,SIndexTyp n) | x n. snd (d x) n ≠ None}"
definition restrict_s :: "heap_typ_desc ⇒ s_addr set ⇒ heap_typ_desc" where
"restrict_s d X ≡
λx. ((x,SIndexVal) ∈ X ∧ fst (d x), (λy. if (x,SIndexTyp y) ∈ X then snd (d x) y else None))"
:: "heap_typ_desc ⇒ addr ⇒ typ_uinfo ⇒ bool" where
"valid_footprint d x t ≡
let n = size_td t in
0 < n ∧ (∀y. y < n ⟶
list_map (typ_slice_t t y) ⊆⇩m snd (d (x + of_nat y)) ∧ fst (d (x + of_nat y)))"
definition (in c_type) h_t_valid ::
"heap_typ_desc ⇒ 'a ptr_guard ⇒ 'a ptr ⇒ bool" ("_,_ ⊨⇩t _" [99,0,99] 100) where
"d,g ⊨⇩t p ≡ valid_footprint d (ptr_val (p::'a ptr)) (typ_uinfo_t TYPE('a)) ∧ g p"
type_synonym 'a typ_heap = "'a ptr ⇀ 'a"
definition proj_h :: "heap_state ⇒ heap_mem" where
"proj_h s ≡ λx. case_option undefined (case_s_heap_value id undefined) (s (x,SIndexVal))"
definition lift_state :: "heap_raw_state ⇒ heap_state" where
"lift_state ≡ λ(h,d) (x,y).
case y of
SIndexVal ⇒ if fst (d x)then Some (SValue (h x)) else None
| SIndexTyp n ⇒ case_option None (Some ∘ STyp) (snd (d x) n)"
definition fun2list :: "(nat ⇒ 'a) ⇒ nat ⇒ 'a list" where
"fun2list f n ≡ if n=0 then [] else map f [0..<n]"
definition null_d :: "heap_state ⇒ addr ⇒ nat ⇒ bool" where
"null_d s x y ≡ s (x,SIndexTyp y) = None"
definition max_d :: "heap_state ⇒ addr ⇒ nat" where
"max_d s x ≡ 1 + (GREATEST y. ¬ null_d s x y)"
definition proj_d :: "heap_state ⇒ heap_typ_desc" where
"proj_d s ≡ λx. (s (x,SIndexVal) ≠ None,
λn. case_option None (Some ∘ s_heap_tag) (s (x,SIndexTyp n)))"
definition (in c_type) s_valid ::
"heap_state ⇒ 'a ptr_guard ⇒ 'a ptr ⇒ bool" ("_,_ ⊨⇩s _" [100,0,100] 100) where
"s,g ⊨⇩s p ≡ proj_d s,g ⊨⇩t p"
definition heap_list_s :: "heap_state ⇒ nat ⇒ addr ⇒ byte list" where
"heap_list_s s n p ≡ heap_list (proj_h s) n p"
definition (in c_type) lift_typ_heap :: "'a ptr_guard ⇒ heap_state ⇒ 'a typ_heap" where
"lift_typ_heap g s ≡
(Some ∘ from_bytes ∘ heap_list_s s (size_of TYPE('a)) ∘ ptr_val) |` {p. s,g ⊨⇩s p}"
definition (in c_type) heap_update_s :: "'a ptr ⇒ 'a ⇒ heap_state ⇒ heap_state" where
"heap_update_s n p s ≡ lift_state (heap_update n p (proj_h s), proj_d s)"
definition (in c_type) lift_t :: "'a ptr_guard ⇒ heap_raw_state ⇒ 'a typ_heap" where
"lift_t g ≡ lift_typ_heap g ∘ lift_state"
definition tag_disj :: "('a, 'b) typ_desc ⇒ ('a,'b) typ_desc ⇒ bool" ("_ ⊥⇩t _" [90,90] 90) where
"f ⊥⇩t g ≡ ¬ (f ≤ g ∨ g ≤ f)"
definition ladder_set :: "typ_uinfo ⇒ nat ⇒ nat ⇒ (typ_uinfo × nat) set" where
"ladder_set s n p ≡ {(t,n+p) | t. ∃k. (t,k) ∈ set (typ_slice_t s n)}"
primrec
field_names :: "('a,'b) typ_info ⇒ typ_uinfo ⇒
(qualified_field_name) list" and
field_names_struct :: "('a field_desc,'b) typ_struct ⇒ typ_uinfo ⇒
(qualified_field_name) list" and
field_names_list :: "(('a,'b) typ_info,field_name, 'b) dt_tuple list ⇒ typ_uinfo ⇒
(qualified_field_name) list" and
field_names_tuple :: "(('a,'b) typ_info,field_name, 'b) dt_tuple ⇒ typ_uinfo ⇒
(qualified_field_name) list"
where
tfs0: "field_names (TypDesc algn st nm) t = (if t=export_uinfo (TypDesc algn st nm) then
[[]] else field_names_struct st t)"
| tfs1: "field_names_struct (TypScalar m algn d) t = []"
| tfs2: "field_names_struct (TypAggregate xs) t = field_names_list xs t"
| tfs3: "field_names_list [] t = []"
| tfs4: "field_names_list (x#xs) t = field_names_tuple x t@field_names_list xs t"
| tfs5: "field_names_tuple (DTuple s f d) t = map (λfs. f#fs) (field_names s t)"
definition field_typ_untyped :: "('a,'b) typ_desc ⇒ qualified_field_name ⇒ ('a,'b) typ_desc" where
"field_typ_untyped t n ≡ (fst (the (field_lookup t n 0)))"
definition (in c_type) field_typ :: "'a itself ⇒ qualified_field_name ⇒ 'a xtyp_info" where
"field_typ t n ≡ field_typ_untyped (typ_info_t TYPE('a)) n"
definition (in c_type) fs_consistent ::
"qualified_field_name list ⇒ 'a itself ⇒ 'b::c_type itself ⇒ bool" where
"fs_consistent fs a b ≡ set fs ⊆ set (field_names (typ_info_t TYPE('a)) (typ_uinfo_t TYPE('b)))"
(in c_type) :: "'a ptr ⇒ (qualified_field_name) list ⇒ 'b ptr set"
where
"field_offset_footprint p fs ≡ {Ptr &(p→k) | k. k ∈ set fs}"
definition sub_typ :: "'a::c_type itself ⇒ 'b::c_type itself ⇒ bool" ("_ ≤⇩τ _" [51, 51] 50) where
"s ≤⇩τ t ≡ typ_uinfo_t s ≤ typ_uinfo_t t"
definition sub_typ_proper :: "'a::c_type itself ⇒ 'b::c_type itself ⇒ bool" ("_ <⇩τ _" [51, 51] 50)
where
"s <⇩τ t ≡ typ_uinfo_t s < typ_uinfo_t t"
definition peer_typ :: "'a::c_type itself ⇒ 'b :: c_type itself ⇒ bool"
where
"peer_typ a b ≡ typ_uinfo_t TYPE('a) = typ_uinfo_t TYPE('b) ∨
typ_uinfo_t TYPE('a) ⊥⇩t typ_uinfo_t TYPE('b)"
definition (in c_type) guard_mono :: "'a ptr_guard ⇒ 'b::c_type ptr_guard ⇒ bool" where
"guard_mono g g' ≡
∀n f p. g p ∧
field_lookup (typ_uinfo_t TYPE('a)) f 0 = Some (typ_uinfo_t TYPE('b),n) ⟶
g' (Ptr (ptr_val p + of_nat n))"
primrec (in c_type) sub_field_update_t ::
"qualified_field_name list ⇒ 'a ptr ⇒ 'a ⇒ 'b::c_type typ_heap ⇒ 'b typ_heap"
where
sft0: "sub_field_update_t [] p v s = s"
| sft1: "sub_field_update_t (f#fs) p (v::'a) s =
(let s' = sub_field_update_t fs p v s in
s'(Ptr &(p→f) ↦ from_bytes (access_ti⇩0 (field_typ TYPE('a) f) v))) |`
dom (s::'b::c_type typ_heap)"
primrec (in c_type) update_value_t :: "(qualified_field_name) list ⇒ 'a ⇒ 'b ⇒ nat ⇒ 'b::c_type"
where
uvt0: "update_value_t [] v w x = w"
| uvt1: "update_value_t (f#fs) v (w::'b) x = (if x=field_offset TYPE('b) f then
field_update (field_desc (field_typ TYPE('b) f)) (to_bytes_p (v::'a)) (w::'b::c_type) else update_value_t fs v w x)"
definition (in c_type) super_field_update_t :: "'a ptr ⇒ 'a ⇒ 'b::c_type typ_heap ⇒ 'b typ_heap" where
"super_field_update_t p v s ≡ λq.
if field_of_t p q
then
case_option None
(λw. Some (update_value_t (field_names (typ_info_t TYPE('b)) (typ_uinfo_t TYPE('a)))
v w (unat (ptr_val p - ptr_val q))))
(s q)
else s q"
:: "heap_typ_desc ⇒ typ_uinfo ⇒ addr set" where
"heap_footprint d t ≡ {x. ∃y. valid_footprint d y t ∧ x ∈ {y} ∪ {y..+size_td t}}"
definition (in c_type) ptr_safe :: "'a ptr ⇒ heap_typ_desc ⇒ bool" where
"ptr_safe p d ≡ s_footprint p ⊆ dom_s d"
primrec
htd_update_list :: "addr ⇒ typ_slice list ⇒ heap_typ_desc ⇒ heap_typ_desc"
where
hul0: "htd_update_list p [] d = d"
| hul1: "htd_update_list p (x#xs) d = htd_update_list (p+1) xs (d(p := (True,snd (d p) ++ x)))"
definition dom_tll :: "addr ⇒ typ_slice list ⇒ s_addr set" where
"dom_tll p xs ≡ {(p + of_nat x,SIndexVal) | x. x < length xs} ∪
{(p + of_nat x,SIndexTyp n) | x n. x < length xs ∧ (xs ! x) n ≠ None}"
definition (in c_type) typ_slices :: "'a itself ⇒ typ_slice list" where
"typ_slices t ≡ map (λn. list_map (typ_slice_t (typ_uinfo_t TYPE('a)) n)) [0..<size_of TYPE('a)]"
definition (in c_type) ptr_retyp :: "'a ptr ⇒ heap_typ_desc ⇒ heap_typ_desc" where
"ptr_retyp p ≡ htd_update_list (ptr_val p) (typ_slices TYPE('a))"
definition (in c_type) field_fd :: "'a itself ⇒ qualified_field_name ⇒ 'a field_desc" where
"field_fd t n ≡ field_desc (field_typ t n)"
definition tag_disj_typ :: "'a::c_type itself ⇒ 'b::c_type itself ⇒ bool" ("_ ⊥⇩τ _") where
"s ⊥⇩τ t ≡ typ_uinfo_t s ⊥⇩t typ_uinfo_t t"
text ‹----›
lemma wf_heap_val_SIndexVal_STyp_simp [simp]:
"wf_heap_val s ⟹ s (x,SIndexVal) ≠ Some (STyp t)"
apply(clarsimp simp: wf_heap_val_def)
apply(drule spec [where x=x])
apply clarsimp
apply(cases t, simp)
apply fast
done
lemma wf_heap_val_SIndexTyp_SValue_simp [simp]:
"wf_heap_val s ⟹ s (x,SIndexTyp n) ≠ Some (SValue v)"
apply(unfold wf_heap_val_def)
apply clarify
apply(drule_tac x=x in spec)
apply clarsimp
done
lemma (in mem_type) field_tag_sub:
"field_lookup (typ_info_t TYPE('a)) f 0 = Some (t,n) ⟹
{&(p→f)..+size_td t} ⊆ {ptr_val (p::'a ptr)..+size_of TYPE('a)}"
apply(clarsimp simp: field_ti_def split: option.splits)
apply(drule intvlD, clarsimp simp: field_lvalue_def field_offset_def)
apply(drule field_lookup_export_uinfo_Some)
apply(subst add.assoc)
apply(subst Abs_fnat_homs)
apply(rule intvlI)
apply(simp add: size_of_def typ_uinfo_t_def)
apply(drule td_set_field_lookupD)
apply(drule td_set_offset_size)
apply(simp)
done
lemma typ_slice_t_not_empty [simp]:
"typ_slice_t t n ≠ []"
by (cases t, simp)
lemma list_map_typ_slice_t_not_empty [simp]:
"list_map (typ_slice_t t n) ≠ Map.empty"
by(simp add: list_map_def)
lemma (in c_type) :
"s_footprint (p::'a ptr) =
{(ptr_val p + of_nat x,k) | x k.
x < size_of TYPE('a) ∧
(k=SIndexVal ∨ (∃n. k=SIndexTyp n ∧ n < length (typ_slice_t (typ_uinfo_t TYPE('a)) x)))}"
by (auto simp: s_footprint_def s_footprint_untyped_def size_of_def )
lemma (in mem_type) [simp]:
"(ptr_val p, SIndexVal) ∈ s_footprint (p::'a ptr)"
apply(simp add: s_footprint)
apply(rule exI [where x=0])
by auto
lemma (in c_type) :
"⟦ n < length (typ_slice_t (typ_uinfo_t TYPE('a)) x); x < size_of TYPE('a) ⟧ ⟹
(ptr_val p + of_nat x, SIndexTyp n) ∈ s_footprint (p::'a ptr)"
apply(simp add: s_footprint)
apply(rule exI [where x=x])
apply auto
done
lemma (in c_type) :
"x < size_of TYPE('a) ⟹ (ptr_val p + of_nat x, SIndexVal) ∈ s_footprint (p::'a ptr)"
apply(simp add: s_footprint)
apply(rule exI [where x=x])
apply auto
done
lemma (in c_type) :
"(x,k) ∈ s_footprint p ⟹ x ∈ {ptr_val (p::'a ptr)..+size_of TYPE('a)}"
by (auto simp: s_footprint elim: intvlI)
lemma (in mem_type) :
"(x,SIndexTyp n) ∈ s_footprint (p::'a ptr) ⟹
n < length (typ_slice_t (typ_uinfo_t TYPE('a)) (unat (x - ptr_val p)))"
by (clarsimp simp add: s_footprint)
(metis len_of_addr_card max_size nat_less_le of_nat_inverse order_less_le_trans)
lemma (in c_type) :
"x ∈ s_footprint p ⟹ (s |` s_footprint p) x = s x"
by (rule restrict_in)
lemma restrict_s_fst:
"fst (restrict_s d X x) ⟹ fst (d x)"
by (clarsimp simp: restrict_s_def)
lemma restrict_s_map_le [simp]:
"snd (restrict_s d X x) ⊆⇩m snd (d x)"
by (auto simp: restrict_s_def map_le_def)
lemma dom_list_map [simp]:
"dom (list_map xs) = {0..<length xs}"
by (auto simp: list_map_def)
lemma list_map [simp]:
"n < length xs ⟹ list_map xs n = Some (xs ! n)"
by (force simp: list_map_def set_zip)
lemma list_map_eq:
"list_map xs n = (if n < length xs then Some (xs ! n) else None)"
by (force simp: list_map_def set_zip)
lemma :
"⟦ 0 < size_td t; ⋀y. y < size_td t ⟹ list_map (typ_slice_t t y) ⊆⇩m snd (d (x + of_nat y)) ∧
fst (d (x + of_nat y)) ⟧ ⟹
valid_footprint d x t"
by (simp add: valid_footprint_def)
lemma :
"⟦ valid_footprint d x t; y < size_td t ⟧ ⟹
list_map (typ_slice_t t y) ⊆⇩m snd (d (x + of_nat y)) ∧
fst (d (x + of_nat y))"
by (simp add: valid_footprint_def Let_def)
lemma (in c_type) h_t_valid_taut:
"d,g ⊨⇩t p ⟹ d,(λx. True) ⊨⇩t p"
by (simp add: h_t_valid_def)
lemma (in c_type) h_t_valid_restrict:
"restrict_s d (s_footprint p),g ⊨⇩t p = d,g ⊨⇩t p"
apply (simp add: h_t_valid_def valid_footprint_def Let_def)
apply (fastforce simp: restrict_s_def map_le_def size_of_def intro: s_footprintI s_footprintI2)
done
lemma (in c_type) h_t_valid_restrict2:
"⟦ d,g ⊨⇩t p; restrict_s d (s_footprint p) = restrict_s d' (s_footprint p)
⟧ ⟹ d',g ⊨⇩t (p::'a ptr)"
apply(clarsimp simp: h_t_valid_def valid_footprint_def Let_def)
apply(rule conjI; clarsimp?)
apply(clarsimp simp: map_le_def)
apply(drule_tac x="(ptr_val p + of_nat y)" in fun_cong)
apply(clarsimp simp: restrict_s_def)
apply(drule_tac x=a in fun_cong)
apply(fastforce simp: size_of_def intro: s_footprintI split: if_split_asm)
apply(drule_tac x="(ptr_val p + of_nat y)" in fun_cong)
apply(fastforce simp: size_of_def restrict_s_def intro: s_footprintI2)
done
lemma lift_state_wf_heap_val [simp]:
"wf_heap_val (lift_state (h,d))"
unfolding wf_heap_val_def
by (auto simp: lift_state_def split: option.splits)
lemma wf_hs_proj_d:
"fst (proj_d s x) ⟹ s (x,SIndexVal) ≠ None"
by (auto simp: proj_d_def)
lemma (in c_type) s_valid_g:
"s,g ⊨⇩s p ⟹ g p"
by (simp add: s_valid_def h_t_valid_def)
lemma (in c_type) lift_typ_heap_if:
"lift_typ_heap g s = (λ(p::'a ptr). if s,g ⊨⇩s p then Some (from_bytes
(heap_list_s s (size_of TYPE('a)) (ptr_val p))) else None)"
by (force simp: lift_typ_heap_def)
lemma (in c_type) lift_typ_heap_s_valid:
"lift_typ_heap g s p = Some x ⟹ s,g ⊨⇩s p"
by (simp add: lift_typ_heap_if split: if_split_asm)
lemma (in c_type) lift_typ_heap_g:
"lift_typ_heap g s p = Some x ⟹ g p"
by (fast dest: lift_typ_heap_s_valid s_valid_g)
lemma lift_state_empty [simp]:
"lift_state (h,empty_htd) = Map.empty"
by (auto simp: lift_state_def empty_htd_def split: s_heap_index.splits)
lemma lift_state_eqI:
"⟦ h x = h' x; d x = d' x ⟧ ⟹ lift_state (h,d) (x,k) = lift_state (h',d') (x,k)"
by (clarsimp simp: lift_state_def split: s_heap_index.splits)
lemma proj_h_lift_state:
"fst (d x) ⟹ proj_h (lift_state (h,d)) x = h x"
by (clarsimp simp: proj_h_def lift_state_def)
lemma lift_state_proj_simp [simp]:
"lift_state (proj_h (lift_state (h, d)), d) = lift_state (h, d)"
by (auto simp: lift_state_def proj_h_def split: s_heap_index.splits option.splits)
lemma f2l_length [simp]:
"length (fun2list f n) = n"
by (simp add: fun2list_def)
lemma GREATEST_lt [simp]:
"0 < n ⟹ (GREATEST x. x < n) = n - (1::nat)"
by (rule Greatest_equality; simp)
lemma fun2list_nth [simp]:
"x < n ⟹ fun2list f n ! x = f x"
by (clarsimp simp: fun2list_def)
lemma proj_d_lift_state:
"proj_d (lift_state (h,d)) = d"
apply(rule ext)
subgoal for x
apply(cases "d x")
apply(auto simp: proj_d_def lift_state_def Let_def split: option.splits)
done
done
lemma lift_state_proj [simp]:
"wf_heap_val s ⟹ lift_state (proj_h s,proj_d s) = s"
apply (clarsimp simp: proj_h_def proj_d_def lift_state_def fun_eq_iff
split: if_split_asm s_heap_index.splits option.splits)
apply safe
apply (metis s_heap_tag.simps s_heap_value.exhaust wf_heap_val_SIndexTyp_SValue_simp)
apply (metis id_apply s_heap_value.exhaust s_heap_value.simps(5) wf_heap_val_SIndexVal_STyp_simp)
apply (metis s_heap_tag.simps s_heap_value.exhaust wf_heap_val_SIndexTyp_SValue_simp)
done
lemma lift_state_Some:
"lift_state (h,d) (p,SIndexTyp n) = Some t ⟹ snd (d p) n = Some (s_heap_tag t)"
apply (simp add: lift_state_def split: option.splits split: if_split_asm)
apply (cases t; simp)
done
lemma lift_state_Some2:
"snd (d p) n = Some t ⟹
∃v. lift_state (h,d) (p,SIndexTyp n) = Some (STyp t)"
by (simp add: lift_state_def split: option.split)
lemma (in c_type) h_t_s_valid:
"lift_state (h,d),g ⊨⇩s p = d,g ⊨⇩t p"
by (simp add: s_valid_def proj_d_lift_state)
lemma (in c_type) lift_t:
"lift_typ_heap g (lift_state s) = lift_t g s"
by (simp add: lift_t_def)
lemma (in c_type) lift_t_h_t_valid:
"lift_t g (h,d) p = Some x ⟹ d,g ⊨⇩t p"
by (force simp: lift_t_def h_t_s_valid dest: lift_typ_heap_s_valid)
lemma (in c_type) lift_t_g:
"lift_t g s p = Some x ⟹ g p"
by (force simp: lift_t_def dest: lift_typ_heap_g)
lemma (in c_type) lift_t_proj [simp]:
"wf_heap_val s ⟹ lift_t g (proj_h s, proj_d s) = lift_typ_heap g s"
by (simp add: lift_t_def)
lemma :
assumes valid: "valid_footprint d p t" and size: "x < size_td t"
shows "fst (d (p + of_nat x))"
proof (cases "of_nat x=(0::addr)")
case True
with valid show ?thesis by (force simp add: valid_footprint_def Let_def)
next
case False
with size valid show ?thesis by (force simp: valid_footprint_def Let_def)
qed
lemma (in c_type) h_t_valid_Some:
"⟦ d,g ⊨⇩t (p::'a ptr); x < size_of TYPE('a) ⟧ ⟹
fst (d (ptr_val p + of_nat x))"
by (force simp: h_t_valid_def size_of_def dest: valid_footprint_Some)
lemma (in c_type) h_t_valid_ptr_safe:
"d,g ⊨⇩t (p::'a ptr) ⟹ ptr_safe p d"
apply(clarsimp simp: ptr_safe_def h_t_valid_def valid_footprint_def s_footprint_def
s_footprint_untyped_def dom_s_def size_of_def Let_def)
by (metis (mono_tags, opaque_lifting) domIff list_map map_le_def option.simps(3) surj_pair)
lemma (in c_type) lift_t_ptr_safe:
"lift_t g (h,d) (p::'a ptr) = Some x ⟹ ptr_safe p d"
by (fast dest: lift_t_h_t_valid h_t_valid_ptr_safe)
lemma (in c_type) s_valid_Some:
"⟦ d,g ⊨⇩s (p::'a ptr); x < size_of TYPE('a) ⟧ ⟹
d (ptr_val p + of_nat x,SIndexVal) ≠ None"
by (auto simp: s_valid_def dest!: h_t_valid_Some wf_hs_proj_d split: option.splits)
lemma heap_list_s_heap_list_dom:
"⋀n. (λx. (x,SIndexVal)) ` {n..+k} ⊆ dom_s d ⟹
heap_list_s (lift_state (h,d)) k n = heap_list h k n"
proof (induct k)
case 0 show ?case by (simp add: heap_list_s_def)
next
case (Suc k)
hence "(λx. (x,SIndexVal)) ` {n + 1..+k} ⊆ dom_s d"
by (force intro: intvl_plus_sub_Suc subset_trans simp: image_def)
with Suc have "heap_list_s (lift_state (h, d)) k (n + 1) =
heap_list h k (n + 1)" by simp
moreover from this Suc have "(n,SIndexVal) ∈ dom_s d"
by (force simp: dom_s_def image_def intro: intvl_self)
ultimately show ?case
by (auto simp add: heap_list_s_def proj_h_lift_state dom_s_def)
qed
lemma (in c_type) heap_list_s_heap_list:
"d,(λx. True) ⊨⇩t (p::'a ptr) ⟹
heap_list_s (lift_state (h,d)) (size_of TYPE('a)) (ptr_val p)
= heap_list h (size_of TYPE('a)) (ptr_val p)"
apply(drule h_t_valid_ptr_safe)
apply(clarsimp simp: ptr_safe_def)
apply(subst heap_list_s_heap_list_dom)
apply(clarsimp simp: dom_s_def)
apply(drule_tac c="(x,SIndexVal)" in subsetD)
apply(clarsimp simp: intvl_def)
apply(erule s_footprintI2)
apply clarsimp+
done
lemma (in c_type) lift_t_if:
"lift_t g (h,d) = (λp. if d,g ⊨⇩t p then Some (h_val h (p::'a ptr)) else None)"
by (force simp: lift_t_def lift_typ_heap_if h_t_s_valid h_val_def
heap_list_s_heap_list h_t_valid_taut)
lemma (in c_type) lift_lift_t:
"d,g ⊨⇩t (p::'a ptr) ⟹ lift h p = the (lift_t g (h,d) p)"
by (simp add: lift_t_if lift_def)
lemma (in c_type) lift_t_lift:
"lift_t g (h,d) (p::'a ptr) = Some v ⟹ lift h p = v"
by (simp add: lift_t_if lift_def split: if_split_asm)
lemma heap_update_list_same:
"⋀h p k. ⟦ 0 < k; k ≤ addr_card - length v ⟧ ⟹ heap_update_list (p + of_nat k) v h p = h p"
proof (induct v)
case Nil show ?case by simp
next
case (Cons x xs)
have "heap_update_list (p + of_nat k) (x # xs) h p =
heap_update_list (p + of_nat (k + 1)) xs (h(p + of_nat k := x)) p"
by (simp add: ac_simps)
also have "… = (h(p + of_nat k := x)) p"
proof -
from Cons have "k + 1 ≤ addr_card - length xs" by simp
with Cons show ?thesis by (simp only:)
qed
also have "… = h p"
proof -
from Cons have "of_nat k ≠ (0::addr)"
by - (erule of_nat_neq_0, simp add: addr_card)
thus ?thesis by clarsimp
qed
finally show ?case .
qed
lemma heap_list_update:
"⋀h p. length v ≤ addr_card ⟹
heap_list (heap_update_list p v h) (length v) p = v"
proof (induct v)
case Nil thus ?case by simp
next
case (Cons x xs)
hence "heap_update_list (p + of_nat 1) xs (h(p := x)) p = (h(p := x)) p"
by - (rule heap_update_list_same, auto)
with Cons show ?case by simp
qed
lemma (in mem_type) heap_list_update_to_bytes:
"heap_list (heap_update_list p (to_bytes (v::'a) (heap_list h (size_of TYPE('a)) p)) h)
(size_of TYPE('a)) p = to_bytes v (heap_list h (size_of TYPE('a)) p)"
by (metis (mono_tags) heap_list_length heap_list_update len less_imp_le max_size)
lemma (in mem_type) heap_list_update_to_bytes_padding:
"length bs = size_of TYPE('a) ⟹ heap_list (heap_update_list p (to_bytes (v::'a) bs) h)
(size_of TYPE('a)) p = to_bytes v bs"
by (metis heap_list_update local.len local.max_size nless_le)
lemma (in mem_type) h_val_heap_update[simp]:
"h_val (heap_update p v h) p = (v::'a)"
by (simp add: h_val_def heap_update_def heap_list_update_to_bytes inv)
lemma (in mem_type) h_val_heap_update_padding:
fixes p:: "'a ptr"
shows "length bs = size_of TYPE('a) ⟹ h_val (heap_update_padding p v bs h) p = v"
apply (simp add: heap_update_padding_def h_val_def)
by (metis heap_list_update inv le_eq_less_or_eq len max_size)
lemma heap_list_update_disjoint_same:
shows "⋀q. {p..+length v} ∩ {q..+k} = {} ⟹
heap_list (heap_update_list p v h) k q = heap_list h k q"
proof (induct k)
case 0 show ?case by simp
next
case (Suc n)
hence "{p..+length v} ∩ {q + 1..+n} = {}"
by (force intro: intvl_plus_sub_Suc)
with Suc have "heap_list (heap_update_list p v h) n (q + 1) =
heap_list h n (q + 1)" by simp
moreover have "heap_update_list (q + of_nat (unat (p - q))) v h q = h q"
proof (cases v)
case Nil thus ?thesis by simp
next
case (Cons y ys)
with Suc have "0 < unat (p - q)"
by (cases "p=q")
(simp add: intvl_start_inter unat_gt_0)+
moreover have "unat (p - q) ≤ addr_card - length v" (is ?G)
proof (rule ccontr)
assume "¬ ?G"
moreover from Suc have "q ∉ {p..+length v}"
by (fast intro: intvl_self)
ultimately show False
by (simp only: linorder_not_le len_of_addr_card [symmetric])
(frule_tac p=q in intvl_self_offset, force+)
qed
ultimately show ?thesis by (rule heap_update_list_same)
qed
ultimately show ?case by simp
qed
lemma heap_update_nmem_same:
assumes nmem: "q ∉ {p..+length v}"
shows "heap_update_list p v h q = h q"
proof -
from nmem have "heap_list (heap_update_list p v h) 1 q = heap_list h 1 q"
by - (rule heap_list_update_disjoint_same, force dest: intvl_Suc)
thus ?thesis by simp
qed
lemma heap_update_mem_same:
"⟦ q ∈ {p..+length v}; length v < addr_card ⟧ ⟹
heap_update_list p v h q = heap_update_list p v h' q"
by (induct v arbitrary: p h h'; simp)
(fastforce dest: intvl_neq_start simp: heap_update_list_same [where k=1, simplified])
lemma sub_tag_proper_TypScalar [simp]:
"¬ t < TypDesc algn' (TypScalar n algn d) nm"
by (simp add: typ_tag_lt_def typ_tag_le_def)
lemma tag_disj_com [simp]:
"f ⊥⇩t g = g ⊥⇩t f"
by (force simp: tag_disj_def)
lemma typ_slice_set':
"∀m n. fst ` set (typ_slice_t s n) ⊆ fst ` td_set s m"
"∀m n. fst ` set (typ_slice_struct st n) ⊆ fst ` td_set_struct st m"
"∀m n. fst ` set (typ_slice_list xs n) ⊆ fst ` td_set_list xs m"
"∀m n. fst ` set (typ_slice_tuple x n) ⊆ fst ` td_set_tuple x m"
apply(induct s and st and xs and x, all ‹clarsimp simp: ladder_set_def›)
apply auto[1]
apply (rule conjI; clarsimp)
apply force
apply(thin_tac "All P" for P)
apply force
done
lemma typ_slice_set:
"fst ` set (typ_slice_t s n) ⊆ fst ` td_set s m"
using typ_slice_set'(1) [of s] by clarsimp
lemma typ_slice_struct_set:
"(s,t) ∈ set (typ_slice_struct st n) ⟹ ∃k. (s,k) ∈ td_set_struct st m"
using typ_slice_set'(2) [of st] by force
lemma typ_slice_set_sub:
"typ_slice_t s m ≤ typ_slice_t t n ⟹
fst ` set (typ_slice_t s m) ⊆ fst ` set (typ_slice_t t n)"
by (force simp: image_def prefix_def less_eq_list_def)
lemma ladder_set_self:
"s ∈ fst ` set (typ_slice_t s n)"
by (cases s) (auto simp: ladder_set_def)
lemma typ_slice_sub:
"typ_slice_t s m ≤ typ_slice_t t n ⟹ s ≤ t"
apply(drule typ_slice_set_sub)
using ladder_set_self [of s m] typ_slice_set [of t n 0]
apply(force simp: typ_tag_le_def)
done
lemma typ_slice_self:
"(s,True) ∈ set (typ_slice_t s 0)"
by (cases s) simp
lemma typ_slice_struct_nmem:
"(TypDesc algn st nm,n) ∉ set (typ_slice_struct st k)"
by (fastforce dest: typ_slice_struct_set td_set_struct_size_lte)
lemma typ_slice_0_prefix:
"0 < n ⟹ ¬ typ_slice_t t 0 ≤ typ_slice_t t n ∧ ¬ typ_slice_t t n ≤ typ_slice_t t 0"
by (cases t) (fastforce simp: less_eq_list_def typ_slice_struct_nmem dest: set_mono_prefix)
lemma prefix_eq_nth:
"xs ≤ ys = ((∀i. i < length xs ⟶ xs ! i = ys ! i) ∧ length xs ≤ length ys)"
apply(rule iffI; clarsimp simp: less_eq_list_def prefix_def nth_append)
by (metis append_take_drop_id nth_take_lemma order_refl take_all)
lemma map_prefix_same_cases:
"⟦ list_map xs ⊆⇩m f; list_map ys ⊆⇩m f ⟧ ⟹ xs ≤ ys ∨ ys ≤ xs"
using linorder_linear[where x="length xs" and y="length ys"]
apply(clarsimp simp: prefix_eq_nth map_le_def prefix_def)
apply (erule disjE)
apply clarsimp
subgoal for i
by ((drule_tac x=i in bspec, simp)+, force dest: sym)
apply clarsimp
subgoal for i
by ((drule_tac x=i in bspec, simp)+, force dest: sym)
done
lemma list_map_mono:
"xs ≤ ys ⟹ list_map xs ⊆⇩m list_map ys"
by (auto simp: map_le_def prefix_def nth_append less_eq_list_def)
lemma map_list_map_trans:
"⟦ xs ≤ ys; list_map ys ⊆⇩m f ⟧ ⟹ list_map xs ⊆⇩m f"
apply(drule list_map_mono)
apply(erule (1) map_le_trans)
done
lemma :
"valid_footprint d x t ⟹ size_td t ≤ addr_card"
apply(clarsimp simp: valid_footprint_def Let_def)
apply(rule ccontr)
apply(frule_tac x=addr_card in spec)
apply(drule_tac x=0 in spec)
apply clarsimp
apply(drule (1) map_prefix_same_cases)
apply(simp add: typ_slice_0_prefix addr_card)
done
lemma typ_slice_True_set':
"∀s k m. (s,True) ∈ set (typ_slice_t t k) ⟶ (s,k+m) ∈ td_set t m"
"∀s k m. (s,True) ∈ set (typ_slice_struct st k) ⟶ (s,k+m) ∈ td_set_struct st m"
"∀s k m. (s,True) ∈ set (typ_slice_list xs k) ⟶ (s,k+m) ∈ td_set_list xs m"
"∀s k m. (s,True) ∈ set (typ_slice_tuple x k) ⟶ (s,k+m) ∈ td_set_tuple x m"
proof (induct t and st and xs and x)
case (TypDesc nat typ_struct list)
then show ?case by auto
next
case (TypScalar nat1 nat2 a)
then show ?case by auto
next
case (TypAggregate list)
then show ?case by auto
next
case Nil_typ_desc
then show ?case by auto
next
case (Cons_typ_desc dt_tuple list)
then show ?case
apply clarsimp
apply(cases dt_tuple, clarsimp)
subgoal for s k m a b
apply(thin_tac "All P" for P)
apply(drule spec [where x=s])
apply(drule spec [where x="k - size_td a"])
apply clarsimp
apply(drule spec [where x="m + size_td a"])
apply simp
done
done
next
case (DTuple_typ_desc typ_desc list b)
then show ?case by auto
qed
lemma typ_slice_True_set:
"(s,True) ∈ set (typ_slice_t t k) ⟹ (s,k+m) ∈ td_set t m"
by (simp add: typ_slice_True_set')
lemma typ_slice_True_prefix:
"typ_slice_t s 0 ≤ typ_slice_t t k ⟹ (s,k) ∈ td_set t 0"
using typ_slice_self [of s] typ_slice_True_set [of s t k 0]
by (force simp: less_eq_list_def dest: set_mono_prefix)
lemma tag_sub_prefix [simp]:
"t < s ⟹ ¬ typ_slice_t s m ≤ typ_slice_t t n"
by (fastforce dest: typ_slice_sub)
lemma tag_disj_prefix [simp]:
"s ⊥⇩t t ⟹ ¬ typ_slice_t s m ≤ typ_slice_t t n"
by (auto dest: typ_slice_sub simp: tag_disj_def typ_slice_sub)
lemma typ_slice_0_True':
"∀x. x ∈ set (typ_slice_t t 0) ⟶ snd x = True"
"∀x. x ∈ set (typ_slice_struct st 0) ⟶ snd x = True"
"∀x. x ∈ set (typ_slice_list xs 0) ⟶ snd x = True"
"∀x. x ∈ set (typ_slice_tuple y 0) ⟶ snd x = True"
by (induct t and st and xs and y) auto
lemma typ_slice_0_True:
"x ∈ set (typ_slice_t t 0) ⟹ snd x = True"
by (simp add: typ_slice_0_True')
lemma typ_slice_False_self:
"k ≠ 0 ⟹ (t,False) ∈ set (typ_slice_t t k)"
by (cases t) simp
lemma tag_prefix_True:
"typ_slice_t s k ≤ typ_slice_t t 0 ⟹ k = 0"
using typ_slice_0_True [of "(s,False)" t]
apply(clarsimp simp: less_eq_list_def dest!: set_mono_prefix)
apply(rule ccontr)
apply(fastforce dest!: typ_slice_False_self[where t=s and k=k])
done
lemma :
assumes valid_p: "valid_footprint d p f" and
valid_q: "valid_footprint d q g" and
neq: "p ≠ q" and
disj: "f ⊥⇩t g ∨ f=g"
shows "p ∉ {q..+size_td g}" (is ?G)
proof -
from assms show ?thesis
apply(clarsimp simp: valid_footprint_def intvl_def Let_def)
apply(erule disjE)
apply(drule_tac x=0 in spec)
apply (fastforce dest: map_prefix_same_cases)
apply(drule_tac x=0 in spec)
apply(drule_tac x=k in spec)
apply clarsimp
by (metis add.comm_neutral map_prefix_same_cases neq semiring_1_class.of_nat_0
typ_slice_0_prefix zero_less_iff_neq_zero)
qed
lemma :
assumes valid_p: "valid_footprint d p s"
assumes valid_q: "valid_footprint d q t"
assumes sub: "¬ t < s"
shows "p ∉ {q..+size_td t} ∨ field_of (p - q) (s) (t)" (is ?G)
proof -
from assms show ?thesis
apply clarsimp
apply(insert valid_footprint_le[OF valid_q])
apply(clarsimp simp: valid_footprint_def Let_def)
apply(drule_tac x=0 in spec)
apply clarsimp
apply(drule intvlD)
apply clarsimp
apply(drule_tac x=k in spec)
apply clarsimp
apply(drule (1) map_prefix_same_cases)
apply(erule disjE)
prefer 2
apply(frule typ_slice_sub)
apply(subgoal_tac "k = 0")
prefer 2
apply(rule ccontr, simp)
apply(simp add: typ_slice_0_prefix)
apply simp
apply(drule typ_slice_True_prefix)
apply(clarsimp simp: field_of_def)
apply(simp only: unat_simps)
done
qed
lemma :
"⟦ valid_footprint d p s; valid_footprint d q t; ¬ t < s ⟧ ⟹
q ∉ {p..+size_td s} ∨ p=q"
apply(clarsimp simp: valid_footprint_def Let_def)
apply(drule intvlD)
apply clarsimp
subgoal for k
apply(drule spec [where x=k])
apply clarsimp
apply(drule spec [where x=0])
apply clarsimp
apply(drule (1) map_prefix_same_cases)
apply(cases "k=0")
apply simp
apply(erule disjE)
prefer 2
apply(frule typ_slice_sub)
apply(drule order_le_imp_less_or_eq[where x=t])
apply clarsimp
apply(simp add: typ_slice_0_prefix)
apply(drule tag_prefix_True)
apply simp
done
done
lemma :
"⟦ valid_footprint d p s; valid_footprint d q t; ¬ t < s;
¬ field_of (p - q) (s) (t) ⟧ ⟹ {p..+size_td s} ∩ {q..+size_td t} = {}"
apply(rule ccontr)
apply(drule intvl_inter)
apply(erule disjE)
apply(drule (2) valid_footprint_sub)
apply clarsimp
apply(frule (1) valid_footprint_sub2, assumption)
apply(frule (1) valid_footprint_sub2)
apply simp
apply simp
apply(clarsimp simp: field_of_def)
apply(clarsimp simp: valid_footprint_def Let_def)
apply(drule_tac x=0 in spec)+
apply clarsimp
apply(drule (1) map_prefix_same_cases [where xs="typ_slice_t s 0"])
apply(erule disjE)
apply(drule typ_slice_True_prefix)
apply simp
apply(drule typ_slice_sub)
apply(drule order_le_imp_less_or_eq)
apply simp
done
lemma sub_typ_proper_not_same [simp]:
"¬ t <⇩τ t"
by (simp add: sub_typ_proper_def)
lemma sub_typ_proper_not_simple [simp]:
"¬ TYPE('a::c_type) <⇩τ TYPE('b::simple_mem_type)"
apply(cases "typ_uinfo_t TYPE('b)")
subgoal for x1 typ_struct
by(cases typ_struct, auto simp: sub_typ_proper_def)
done
lemma field_of_sub:
"field_of p s t ⟹ s ≤ t"
by (auto simp: field_of_def typ_tag_lt_def typ_tag_le_def)
lemma h_t_valid_neq_disjoint:
"⟦ d,g ⊨⇩t (p::'a::c_type ptr); d,g' ⊨⇩t (q::'b::c_type ptr);
¬ TYPE('b) <⇩τ TYPE('a); ¬ field_of_t p q ⟧ ⟹ {ptr_val p..+size_of TYPE('a)} ∩
{ptr_val q..+size_of TYPE('b)} = {}"
by (fastforce dest: valid_footprint_neq_disjoint
simp: size_of_def h_t_valid_def sub_typ_proper_def field_of_t_def)
lemma field_ti_sub_typ:
"⟦ field_ti (TYPE('b::mem_type)) f = Some t; export_uinfo t = (typ_uinfo_t TYPE('a::c_type)) ⟧ ⟹
TYPE('a) ≤⇩τ TYPE('b)"
by (auto simp: field_ti_def sub_typ_def typ_tag_le_def typ_uinfo_t_def
dest!: td_set_export_uinfoD td_set_field_lookupD
split: option.splits)
lemma h_t_valid_neq_disjoint_simple:
"⟦ d,g ⊨⇩t (p::'a::simple_mem_type ptr); d,g' ⊨⇩t (q::'b::simple_mem_type ptr) ⟧
⟹ ptr_val p ≠ ptr_val q ∨ typ_uinfo_t TYPE('a) = typ_uinfo_t TYPE('b)"
apply(clarsimp simp: h_t_valid_def valid_footprint_def Let_def)
apply(drule_tac x=0 in spec)+
apply clarsimp
apply(drule (1) map_prefix_same_cases[where xs="typ_slice_t (typ_uinfo_t TYPE('a)) 0"])
apply(erule disjE; drule typ_slice_sub)
apply(cases "typ_info_t TYPE('b)", rename_tac typ_struct xs)
subgoal for x1 typ_struct xs
apply(cases "typ_struct"; fastforce simp: typ_tag_le_def typ_uinfo_t_def)
done
apply(cases "typ_info_t TYPE('a)", rename_tac typ_struct xs)
subgoal for x1 typ_struct xs
apply(cases "typ_struct"; simp add: typ_tag_le_def typ_uinfo_t_def)
done
done
lemma h_val_heap_same:
fixes p::"'a::mem_type ptr" and q::"'b::c_type ptr"
assumes val_p: "d,g ⊨⇩t p" and val_q: "d,g' ⊨⇩t q" and
subt: "¬ TYPE('a) <⇩τ TYPE('b)" and nf: "¬ field_of_t q p"
shows "h_val (heap_update p v h) q = h_val h q"
proof -
from val_p val_q subt nf
have "{ptr_val p..+length (to_bytes v (heap_list h (size_of TYPE('a)) (ptr_val p)))} ∩
{ptr_val q..+size_of TYPE('b)} = {}"
by (force dest: h_t_valid_neq_disjoint)
hence "heap_list (heap_update_list (ptr_val p) (to_bytes v (heap_list h (size_of TYPE('a)) (ptr_val p))) h)
(size_of TYPE('b)) (ptr_val q) = heap_list h (size_of TYPE('b)) (ptr_val q)"
by - (erule heap_list_update_disjoint_same)
thus ?thesis by (simp add: h_val_def heap_update_def)
qed
lemma h_val_heap_same_padding:
fixes p::"'a::mem_type ptr" and q::"'b::c_type ptr"
assumes val_p: "d,g ⊨⇩t p" and val_q: "d,g' ⊨⇩t q" and
subt: "¬ TYPE('a) <⇩τ TYPE('b)" and nf: "¬ field_of_t q p"
assumes lbs: "length bs = size_of TYPE('a)"
shows "h_val (heap_update_padding p v bs h) q = h_val h q"
proof -
from val_p val_q subt nf
have "{ptr_val p..+length (to_bytes v bs)} ∩
{ptr_val q..+size_of TYPE('b)} = {}"
using lbs
by (force dest: h_t_valid_neq_disjoint)
hence "heap_list (heap_update_list (ptr_val p) (to_bytes v bs) h)
(size_of TYPE('b)) (ptr_val q) = heap_list h (size_of TYPE('b)) (ptr_val q)"
by - (erule heap_list_update_disjoint_same)
thus ?thesis by (simp add: h_val_def heap_update_padding_def)
qed
lemma peer_typI:
"typ_uinfo_t TYPE('a) ⊥⇩t typ_uinfo_t TYPE('b) ⟹ peer_typ (a::'a::c_type itself) (b::'b::c_type itself)"
by (simp add: peer_typ_def)
lemma peer_typD:
"peer_typ TYPE('a::c_type) TYPE('b::c_type) ⟹ ¬ TYPE('a) <⇩τ TYPE('b)"
by (clarsimp simp: peer_typ_def tag_disj_def sub_typ_proper_def order_less_imp_le)
lemma peer_typ_refl [simp]:
"peer_typ t t"
by (simp add: peer_typ_def)
lemma peer_typ_simple [simp]:
"peer_typ TYPE('a::simple_mem_type) TYPE('b::simple_mem_type)"
apply(clarsimp simp: peer_typ_def tag_disj_def typ_tag_le_def typ_uinfo_t_def)
apply(erule disjE)
apply(cases "typ_info_t TYPE('b)")
subgoal for x1 typ_struct xs
by(cases typ_struct; simp)
apply(cases "typ_info_t TYPE('a)")
subgoal for x1 typ_struct xs
by(cases typ_struct; simp)
done
lemmas peer_typ_nlt = peer_typD
lemma peer_typ_not_field_of:
"⟦ peer_typ TYPE('a::c_type) TYPE('b::c_type); ptr_val p ≠ ptr_val q ⟧ ⟹
¬ field_of_t (q::'b ptr) (p::'a ptr)"
by (fastforce simp: peer_typ_def field_of_t_def field_of_def tag_disj_def typ_tag_le_def
unat_eq_zero
dest: td_set_size_lte)
lemma h_val_heap_same_peer:
"⟦ d,g ⊨⇩t (p::'a::mem_type ptr); d,g' ⊨⇩t (q::'b::c_type ptr);
ptr_val p ≠ ptr_val q; peer_typ TYPE('a) TYPE('b) ⟧ ⟹
h_val (heap_update p v h) q = h_val h q"
apply(erule (1) h_val_heap_same)
apply(erule peer_typ_nlt)
apply(erule (1) peer_typ_not_field_of)
done
lemma h_val_heap_same_peer_padding:
"⟦ d,g ⊨⇩t (p::'a::mem_type ptr); d,g' ⊨⇩t (q::'b::c_type ptr);
ptr_val p ≠ ptr_val q; peer_typ TYPE('a) TYPE('b); length bs = size_of TYPE('a) ⟧ ⟹
h_val (heap_update_padding p v bs h) q = h_val h q"
apply(erule (1) h_val_heap_same_padding)
apply(erule peer_typ_nlt)
apply(erule (1) peer_typ_not_field_of)
apply assumption
done
lemma [simp]:
"field_offset_footprint p (x#xs) = {Ptr &(p→x)} ∪ field_offset_footprint p xs"
unfolding field_offset_footprint_def by (cases x) auto
lemma heap_list_update_list:
"⟦ n + x ≤ length v; length v < addr_card ⟧ ⟹
heap_list (heap_update_list p v h) n (p + of_nat x) = take n (drop x v)"
apply(induct v arbitrary: n x p h; clarsimp)
subgoal for a list n x p h
apply(cases x; clarsimp)
apply(cases n; clarsimp)
apply (rule conjI)
apply(subgoal_tac "heap_update_list (p + of_nat 1) list (h(p := a)) p = a", simp)
apply(subst heap_update_list_same; simp)
apply(metis add.right_neutral drop0 semiring_1_class.of_nat_0)
subgoal for nat
apply(drule meta_spec [where x=n])
apply(drule meta_spec [where x=nat])
apply(drule meta_spec [where x="p+1"])
apply (simp add: add.assoc)
done
done
done
lemma typ_slice_td_set':
"∀s m n k. (s,m + n) ∈ td_set t m ∧ k < size_td s ⟶
typ_slice_t s k ≤ typ_slice_t t (n + k)"
"∀s m n k. (s,m + n) ∈ td_set_struct st m ∧ k < size_td s ⟶
typ_slice_t s k ≤ typ_slice_struct st (n + k)"
"∀s m n k. (s,m + n) ∈ td_set_list ts m ∧ k < size_td s ⟶
typ_slice_t s k ≤ typ_slice_list ts (n + k)"
"∀s m n k. (s,m + n) ∈ td_set_tuple x m ∧ k < size_td s ⟶
typ_slice_t s k ≤ typ_slice_tuple x (n + k)"
apply(induct t and st and ts and x, all ‹clarsimp simp: split_DTuple_all›)
apply(safe; clarsimp)
apply(drule_tac x=s in spec)
apply(drule_tac x=m in spec)
apply(drule_tac x=0 in spec)
apply fastforce
apply (safe; clarsimp?)
apply(fastforce dest: td_set_list_offset_le)
apply(fastforce dest: td_set_offset_size_m)
apply(rotate_tac)
apply(drule_tac x=s in spec)
apply(rename_tac a list s m n k)
apply(drule_tac x="m + size_td a" in spec)
apply(drule_tac x="n - size_td a" in spec)
apply(drule_tac x="k" in spec)
apply(erule impE)
apply(subgoal_tac "m + size_td a + (n - size_td a) = m + n", simp)
apply(fastforce dest: td_set_list_offset_le)
apply(fastforce dest: td_set_list_offset_le)
done
lemma typ_slice_td_set:
"⟦ (s,n) ∈ td_set t 0; k < size_td s ⟧ ⟹
typ_slice_t s k ≤ typ_slice_t t (n + k)"
using typ_slice_td_set'(1) [of t]
apply(drule_tac x=s in spec)
apply(drule_tac x=0 in spec)
apply clarsimp
done
lemma typ_slice_td_set_list:
"⟦ (s,n) ∈ td_set_list ts 0; k < size_td s ⟧ ⟹
typ_slice_t s k ≤ typ_slice_list ts (n + k)"
using typ_slice_td_set'(3) [of ts]
apply(drule_tac x=s in spec)
apply(drule_tac x=0 in spec)
apply clarsimp
done
lemma h_t_valid_sub:
"⟦ d,g ⊨⇩t (p::'b::mem_type ptr);
field_ti TYPE('b) f = Some t; export_uinfo t = (typ_uinfo_t TYPE('a)) ⟧ ⟹
d,(λx. True) ⊨⇩t ((Ptr &(p→f))::'a::mem_type ptr)"
apply(clarsimp simp: h_t_valid_def field_ti_def valid_footprint_def Let_def split: option.splits)
apply(rule conjI)
apply(simp add: typ_uinfo_t_def export_uinfo_def size_of_def [symmetric, where t="TYPE('a)"])
apply clarsimp
apply(drule_tac x="field_offset TYPE('b) f + y" in spec)
apply(erule impE)
apply(fastforce simp: field_offset_def field_offset_untyped_def typ_uinfo_t_def size_of_def
dest: td_set_offset_size td_set_field_lookupD field_lookup_export_uinfo_Some)
apply clarsimp
apply(frule td_set_field_lookupD)
apply(clarsimp simp: field_lvalue_def ac_simps)
apply(drule td_set_export_uinfoD)
apply(drule typ_slice_td_set)
apply(simp add: size_of_def typ_uinfo_t_def)
apply(drule field_lookup_export_uinfo_Some)
apply(simp add: field_offset_def ac_simps field_offset_untyped_def typ_uinfo_t_def export_uinfo_def)
apply(erule (1) map_list_map_trans)
done
lemma size_of_tag:
"size_td (typ_uinfo_t t) = size_of t"
by (simp add: size_of_def typ_uinfo_t_def)
lemma size_of_neq_implies_typ_uinfo_t_neq [simp]:
"size_of TYPE('a::c_type) ≠ size_of TYPE('b::c_type) ⟹ typ_uinfo_t TYPE('a) ≠ typ_uinfo_t TYPE('b)"
by (metis size_of_tag)
lemma guard_mono_self[simp]:
"guard_mono g g"
by (fastforce dest: td_set_field_lookupD td_set_size_lte simp: guard_mono_def)
lemma (in c_type) field_lookup_offset_size:
"field_lookup (typ_info_t TYPE('a)) f 0 = Some (t,n) ⟹
size_td t + n ≤ size_td (typ_info_t TYPE('a))"
by (fastforce dest: td_set_field_lookupD td_set_offset_size)
lemma (in mem_type) sub_h_t_valid':
"⟦ d,g ⊨⇩t (p::'a ptr);
field_lookup (typ_uinfo_t TYPE('a)) f 0 = Some (typ_uinfo_t TYPE('b),n);
guard_mono g (g'::'b::mem_type ptr_guard) ⟧ ⟹
d,g' ⊨⇩t ((Ptr (ptr_val p + of_nat n))::'b::mem_type ptr)"
apply(clarsimp simp: h_t_valid_def c_type_class.h_t_valid_def guard_mono_def valid_footprint_def Let_def size_of_tag)
apply(drule_tac x="n+y" in spec, erule impE;
fastforce simp: ac_simps size_of_def c_type_class.size_of_def typ_uinfo_t_def c_type_class.typ_uinfo_t_def
dest: td_set_field_lookupD typ_slice_td_set map_list_map_trans td_set_offset_size)
done
lemma (in mem_type) sub_h_t_valid:
"⟦ d,g ⊨⇩t (p::'a ptr); (typ_uinfo_t TYPE('b),n) ∈ td_set (typ_uinfo_t TYPE('a)) 0 ⟧ ⟹
d,(λx. True) ⊨⇩t ((Ptr (ptr_val p + of_nat n))::'b::mem_type ptr)"
apply(subst (asm) td_set_field_lookup)
apply(simp add: typ_uinfo_t_def export_uinfo_def wf_desc_map)
apply(fastforce intro: sub_h_t_valid' simp: guard_mono_def)
done
lemma (in mem_type) h_t_valid_mono:
"⟦ field_lookup (typ_info_t TYPE('a)) f 0 = Some (s,n);
export_uinfo s = typ_uinfo_t TYPE('b); guard_mono g g' ⟧ ⟹
d,g ⊨⇩t (p::'a ptr) ⟶ d,g' ⊨⇩t (Ptr (&(p→f))::'b::mem_type ptr)"
apply(clarsimp simp: field_lvalue_def)
apply(drule field_lookup_export_uinfo_Some)
apply(clarsimp simp: field_offset_def c_type_class.field_offset_def typ_uinfo_t_def c_type_class.typ_uinfo_t_def field_offset_untyped_def)
apply(rule sub_h_t_valid'; fast?)
apply(fastforce simp: c_type_class.typ_uinfo_t_def typ_uinfo_t_def)
done
lemma (in mem_type) s_valid_mono:
"⟦ field_lookup (typ_info_t TYPE('a)) f 0 = Some (s,n);
export_uinfo s = typ_uinfo_t TYPE('b); guard_mono g g' ⟧ ⟹
d,g ⊨⇩s (p::'a ptr) ⟶ d,g' ⊨⇩s (Ptr (&(p→f))::'b::mem_type ptr)"
unfolding s_valid_def c_type_class.s_valid_def by (rule h_t_valid_mono)
lemma take_heap_list_le:
"k ≤ n ⟹ take k (heap_list h n x) = heap_list h k x"
apply (induct n arbitrary: k x; clarsimp)
subgoal for n k x by (cases k; simp)
done
lemma drop_heap_list_le:
"k ≤ n ⟹ drop k (heap_list h n x) = heap_list h (n - k) (x + of_nat k)"
apply (induct n arbitrary: k x; clarsimp)
subgoal for n k x by (cases k; simp add: ac_simps)
done
lemma (in mem_type) h_val_field_from_bytes':
"⟦ field_ti TYPE('a) f = Some t;
export_uinfo t = export_uinfo (typ_info_t TYPE('b::{mem_type})) ⟧ ⟹
h_val h (Ptr &(pa→f) :: 'b ptr) = from_bytes (access_ti⇩0 t (h_val h pa))"
apply (clarsimp simp: field_ti_def h_val_def c_type_class.h_val_def split: option.splits)
apply (frule field_lookup_export_uinfo_Some)
apply (frule_tac bs="heap_list h (size_of TYPE('a)) (ptr_val pa)" in fi_fa_consistentD)
apply simp
apply (clarsimp simp: field_lvalue_def field_offset_def field_offset_untyped_def typ_uinfo_t_def
field_names_def access_ti⇩0_def)
apply (subst drop_heap_list_le)
apply(simp add: size_of_def)
apply(drule td_set_field_lookupD)
apply(drule td_set_offset_size)
apply simp
apply(subst take_heap_list_le)
apply(simp add: size_of_def)
apply(drule td_set_field_lookupD)
apply(drule td_set_offset_size)
apply simp
apply (fold c_type_class.norm_bytes_def)
apply (subgoal_tac "size_td t = size_of TYPE('b)")
apply (clarsimp simp: wf_type_class.norm)
apply(clarsimp simp: c_type_class.size_of_def)
apply(subst c_type_class.typ_uinfo_size [symmetric])
apply(unfold c_type_class.typ_uinfo_t_def)
apply(drule sym)
apply simp
done
lemma (in mem_type) h_val_field_from_bytes:
"⟦ field_ti TYPE('a) f = Some t;
export_uinfo t = export_uinfo (typ_info_t TYPE('b::{mem_type})) ⟧ ⟹
h_val (hrs_mem h) (Ptr &(pa→f) :: 'b ptr) = from_bytes (access_ti⇩0 t (h_val (hrs_mem h) pa))"
by (simp add: h_val_field_from_bytes')
lemma (in mem_type) lift_typ_heap_mono:
"⟦ field_lookup (typ_info_t TYPE('a)) f 0 = Some (t,n);
lift_typ_heap g s (p::'a ptr) = Some v;
export_uinfo t = typ_uinfo_t TYPE('b); guard_mono g g' ⟧ ⟹
lift_typ_heap g' s (Ptr (&(p→f))::'b::mem_type ptr) = Some (from_bytes (access_ti⇩0 t v))"
apply(clarsimp simp: c_type_class.lift_typ_heap_if lift_typ_heap_if split: if_split_asm)
apply(rule conjI; clarsimp?)
apply(clarsimp simp: heap_list_s_def)
apply(frule field_lookup_export_uinfo_Some)
apply(frule_tac bs="heap_list (proj_h s) (size_of TYPE('a)) (ptr_val p)" in fi_fa_consistentD; simp)
apply(simp add: c_type_class.field_lvalue_def
field_lvalue_def c_type_class.field_offset_def field_offset_def field_offset_untyped_def
typ_uinfo_t_def c_type_class.typ_uinfo_t_def
field_names_def access_ti⇩0_def)
apply(subst drop_heap_list_le)
apply(simp add: size_of_def)
apply(drule td_set_field_lookupD)
apply(drule td_set_offset_size)
apply simp
apply(subst take_heap_list_le)
apply(simp add: size_of_def)
apply(drule td_set_field_lookupD)
apply(drule td_set_offset_size)
apply simp
apply(fold c_type_class.norm_bytes_def)
apply(subgoal_tac "size_td t = size_of TYPE('b)")
apply(simp add: wf_type_class.norm)
apply(clarsimp simp: c_type_class.size_of_def size_of_def)
apply(subst c_type_class.typ_uinfo_size [symmetric])
apply(unfold c_type_class.typ_uinfo_t_def)[1]
apply(drule sym)
apply simp
apply (fastforce dest: s_valid_mono)
done
lemma (in mem_type) lift_t_mono:
"⟦ field_lookup (typ_info_t TYPE('a)) f 0 = Some (t,n);
lift_t g s (p::'a ptr) = Some v;
export_uinfo t = typ_uinfo_t TYPE('b); guard_mono g g' ⟧ ⟹
lift_t g' s (Ptr (&(p→f))::'b::mem_type ptr) = Some (from_bytes (access_ti⇩0 t v))"
by (clarsimp simp: lift_t_def c_type_class.lift_t_def lift_typ_heap_mono)
lemma align_td_wo_align_field_lookupD:
"field_lookup (t::('a,'b) typ_desc) f m = Some (s, n) ⟹ align_td_wo_align s ≤ align_td_wo_align t"
by(simp add: align_td_wo_align_field_lookup)
lemma (in c_type) align_td_wo_align_uinfo:
"align_td_wo_align (typ_uinfo_t TYPE('a)) = align_td_wo_align (typ_info_t TYPE('a))"
by (clarsimp simp: typ_uinfo_t_def)
lemma (in c_type) align_td_uinfo:
"align_td (typ_uinfo_t TYPE('a)) = align_td (typ_info_t TYPE('a))"
by (clarsimp simp: typ_uinfo_t_def export_uinfo_def)
lemma align_td_export_uinfo: "align_td (export_uinfo t) = align_td t"
by (clarsimp simp add: export_uinfo_def)
lemma (in mem_type) align_field_uinfo:
"align_field (typ_uinfo_t TYPE('a)) = align_field (typ_info_t TYPE('a))"
apply (standard)
apply (simp add: align_field)
apply (clarsimp simp add: typ_uinfo_t_def align_field_def align_field)
apply (drule field_lookup_export_uinfo_Some_rev)
apply (clarsimp simp add: align_td_export_uinfo)
done
lemma (in mem_type) ptr_aligned_mono':
"field_lookup (typ_uinfo_t TYPE('a)) f 0 = Some (typ_uinfo_t TYPE('b),n) ⟹
ptr_aligned (p::'a ptr) ⟶ ptr_aligned (Ptr (&(p→f))::'b::mem_type ptr)"
apply(clarsimp simp: ptr_aligned_def c_type_class.ptr_aligned_def
align_of_def c_type_class.align_of_def
field_lvalue_def c_type_class.field_lvalue_def)
apply(subgoal_tac "align_field (typ_uinfo_t (TYPE('a)))")
apply(subst (asm) align_field_def)
apply(drule_tac x=f in spec)
apply(drule_tac x="typ_uinfo_t TYPE('b)" in spec)
apply(drule_tac x=n in spec)
apply clarsimp
apply(simp add: c_type_class.align_td_uinfo)
apply(clarsimp simp: field_offset_def field_offset_untyped_def)
apply(subst unat_word_ariths)
apply(rule dvd_mod)
apply(rule dvd_add)
subgoal
apply (drule field_lookup_uinfo_Some_rev)
apply clarsimp
by (metis ArraysMemInstance.align_td_export_uinfo c_type_class.typ_uinfo_t_def align_td_field_lookup_mem_type power_le_dvd)
subgoal
apply(subst unat_of_nat)
apply(subst mod_less)
apply(frule td_set_field_lookupD)
apply(drule td_set_offset_size)
apply(subst len_of_addr_card)
using local.max_size local.size_of_def apply force
apply assumption
done
subgoal
apply(subst len_of_addr_card)
apply(subgoal_tac "align_of TYPE('b) dvd addr_card")
apply(subst (asm) c_type_class.align_of_def)
apply simp
apply simp
done
apply(subst align_field_uinfo)
apply(rule align_field)
done
lemma (in mem_type) ptr_aligned_mono:
"guard_mono (ptr_aligned::'a ptr_guard) (ptr_aligned::'b::mem_type ptr_guard)"
apply(clarsimp simp: guard_mono_def)
apply(frule ptr_aligned_mono')
apply(fastforce simp: field_lvalue_def field_offset_def field_offset_untyped_def)
done
lemma (in wf_type) wf_desc_typ_tag [simp]:
"wf_desc (typ_uinfo_t TYPE('a))"
by (simp add: typ_uinfo_t_def export_uinfo_def wf_desc_map)
lemma (in c_type) sft1':
"sub_field_update_t (f#fs) p (v::'a) s =
(let s' = sub_field_update_t fs p (v::'a) s in
s'(Ptr &(p→f) ↦ from_bytes (access_ti⇩0 (field_typ TYPE('a) f) v))) |`
dom (s::'b::c_type typ_heap)"
by (rule sft1)
lemma size_map_td:
"size (map_td f g t) = size t"
"size (map_td_struct f g st) = size st"
"size_list (size_dt_tuple size (λ_. 0) (λ_. 0)) (map_td_list f g ts) = size_list (size_dt_tuple size (λ_. 0) (λ_. 0)) ts"
"size_dt_tuple size (λ_. 0) (λ_. 0) (map_td_tuple f g x) = size_dt_tuple size (λ_. 0) (λ_. 0) x"
by (induct t and st and ts and x) auto
lemma field_names_size':
"field_names t s ≠ [] ⟶ size s ≤ size (t::('a,'b) typ_info)"
"field_names_struct st s ≠ [] ⟶ size s ≤ size (st::('a field_desc,'b) typ_struct)"
"field_names_list ts s ≠ [] ⟶ size s ≤ size_list (size_dt_tuple size (λ_. 0) (λ_. 0)) (ts::(('a,'b) typ_info,field_name,'b) dt_tuple list)"
"field_names_tuple x s ≠ [] ⟶ size s ≤ size_dt_tuple size (λ_. 0) (λ_. 0) (x::(('a,'b) typ_info,field_name,'b) dt_tuple)"
by (induct t and st and ts and x) (auto simp: size_map_td size_char_def)
lemma field_names_size:
"f ∈ set (field_names t s) ⟹ size s ≤ size t"
by (cases "field_names t s"; simp add: field_names_size')
lemma field_names_size_struct:
"f ∈ set (field_names_struct st s) ⟹ size s ≤ size st"
by (cases "field_names_struct st s"; simp add: field_names_size')
lemma field_names_Some3:
"∀f m s n. field_lookup (t::('a,'b) typ_info) f m = Some (s,n) ⟶
f ∈ set (field_names t (export_uinfo s))"
"∀f m s n. field_lookup_struct (st::('a field_desc,'b) typ_struct) f m = Some (s,n) ⟶
f ∈ set (field_names_struct st (export_uinfo s))"
"∀f m s n. field_lookup_list (ts::(('a,'b) typ_info,field_name,'b) dt_tuple list) f m = Some (s,n) ⟶
f ∈ set (field_names_list ts (export_uinfo s))"
"∀f m s n. field_lookup_tuple (x::(('a,'b) typ_info,field_name,'b) dt_tuple) f m = Some (s,n) ⟶
f ∈ set (field_names_tuple x (export_uinfo s))"
apply(induct t and st and ts and x)
apply clarsimp
apply((erule allE)+, erule impE, fast)
apply simp
apply(drule field_names_size_struct)
apply(simp add: size_map_td)
apply (auto split: option.splits)[4]
apply clarsimp
by (metis image_eqI list.collapse)
lemma field_names_SomeD3:
"field_lookup (t::('a,'b) typ_info) f m = Some (s,n) ⟹ f ∈ set (field_names t (export_uinfo s))"
by (simp add: field_names_Some3)
lemma empty_not_in_field_names [simp]:
"[] ∉ set (field_names_tuple x s)"
by (cases x, auto)
lemma empty_not_in_field_names_list [simp]:
"[] ∉ set (field_names_list ts s)"
by (induct ts, auto)
lemma empty_not_in_field_names_struct [simp]:
"[] ∉ set (field_names_struct st s)"
by (cases st, auto)
lemma field_names_Some:
"∀m f. f ∈ set (field_names (t::('a,'b) typ_info) s) ⟶ (field_lookup t f m ≠ None)"
"∀m f. f ∈ set (field_names_struct (st::('a field_desc,'b) typ_struct) s) ⟶ (field_lookup_struct st f m ≠ None)"
"∀m f. f ∈ set (field_names_list (ts::(('a,'b) typ_info,field_name,'b) dt_tuple list) s) ⟶ (field_lookup_list ts f m ≠ None)"
"∀m f. f ∈ set (field_names_tuple (x::(('a,'b) typ_info,field_name,'b) dt_tuple) s) ⟶ (field_lookup_tuple x f m ≠ None)"
proof(induct t and st and ts and x)
case (TypDesc nat typ_struct list)
then show ?case by auto
next
case (TypScalar nat1 nat2 a)
then show ?case by auto
next
case (TypAggregate list)
then show ?case by auto
next
case Nil_typ_desc
then show ?case by auto
next
case (Cons_typ_desc dt_tuple list)
then show ?case
apply clarsimp
apply (safe; clarsimp?)
subgoal for m f
apply(drule spec [where x=m])
apply(drule spec [where x=f])
apply clarsimp
done
apply(clarsimp split: option.splits)
done
next
case (DTuple_typ_desc typ_desc list b)
then show ?case by force
qed
lemma dt_snd_field_names_list_simp [simp]:
"f ∉ dt_snd ` set xs ⟹ ¬ f#fs ∈ set (field_names_list xs s)"
by (induct xs; clarsimp) (auto simp: split_DTuple_all)
lemma field_names_Some2:
"∀m f. wf_desc t ⟶ f ∈ set (field_names (t::('a,'b) typ_info) s) ⟶
(∃n k. field_lookup t f m = Some (k,n) ∧ export_uinfo k = s)"
"∀m f. wf_desc_struct st ⟶ f ∈ set (field_names_struct (st::('a field_desc,'b) typ_struct) s) ⟶
(∃n k. field_lookup_struct st f m = Some (k,n) ∧ export_uinfo k = s)"
"∀m f. wf_desc_list ts ⟶ f ∈ set (field_names_list (ts::(('a,'b) typ_info,field_name,'b) dt_tuple list) s) ⟶
(∃n k. field_lookup_list ts f m = Some (k,n) ∧ export_uinfo k = s)"
"∀m f. wf_desc_tuple x ⟶ f ∈ set (field_names_tuple (x::(('a,'b) typ_info,field_name,'b) dt_tuple) s) ⟶
(∃n k. field_lookup_tuple x f m = Some (k,n) ∧ export_uinfo k = s )"
proof (induct t and st and ts and x)
case (TypDesc nat typ_struct list)
then show ?case by auto
next
case (TypScalar nat1 nat2 a)
then show ?case by auto
next
case (TypAggregate list)
then show ?case by auto
next
case Nil_typ_desc
then show ?case by auto
next
case (Cons_typ_desc dt_tuple list)
then show ?case
apply (clarsimp simp: export_uinfo_def)
subgoal for m f
apply(safe; clarsimp?)
apply(drule spec [where x=m])
apply(fastforce simp: split: option.split)
apply (cases dt_tuple)
apply(clarsimp )
apply(cases f; fastforce)
done
done
next
case (DTuple_typ_desc typ_desc list b)
then show ?case
apply (clarsimp simp: export_uinfo_def)
subgoal for m f
apply(cases f; fastforce)
done
done
qed
lemma field_names_SomeD2:
"⟦ f ∈ set (field_names (t::('a,'b) typ_info) s); wf_desc t ⟧ ⟹
(∃n k. field_lookup t f m = Some (k,n) ∧ export_uinfo k = s)"
by (simp add: field_names_Some2)
lemma field_names_SomeD:
"f ∈ set (field_names (t::('a,'b) typ_info) s) ⟹ (field_lookup t f m ≠ None)"
by (simp add: field_names_Some)
lemma lift_t_sub_field_update' [rule_format]:
"⟦ d,g' ⊨⇩t p; ¬ (TYPE('a) <⇩τ TYPE('b)) ⟧ ⟹ fs_consistent fs TYPE('a) TYPE('b) ⟶
(∀K. K = UNIV - (((field_offset_footprint p (field_names (typ_info_t TYPE('a)) (typ_uinfo_t TYPE('b))))) - (field_offset_footprint p fs)) ⟶
lift_t g (heap_update p (v::'a::mem_type) h,d) |` K =
sub_field_update_t fs p v ((lift_t g (h,d))::'b::mem_type typ_heap) |` K)"
apply(induct fs)
apply clarsimp
apply(rule ext)
subgoal for x
apply(clarsimp simp: lift_t_if restrict_map_def)
apply(erule (2) h_val_heap_same)
apply(clarsimp simp: field_of_t_def field_offset_footprint_def field_of_def)
apply(cases x)
apply(clarsimp simp: field_lvalue_def td_set_field_lookup field_offset_def field_offset_untyped_def)
subgoal for xa f
apply(drule_tac x=f in spec)
apply(fastforce simp: typ_uinfo_t_def dest: field_lookup_export_uinfo_Some_rev field_names_SomeD3)
done
done
subgoal for a list
apply clarify
apply(clarsimp simp: fs_consistent_def)
apply (rule conjI; clarsimp)
subgoal for y
apply(rule ext)
subgoal for x
apply(cases "x ≠ Ptr &(p→a)")
apply(clarsimp simp: restrict_map_def)
apply(drule fun_cong [where x=x])
apply clarsimp
apply(fastforce simp: lift_t_if split: if_split_asm)
apply(clarsimp simp: lift_t_if)
apply (rule conjI)
apply clarsimp
apply(clarsimp simp: h_val_def heap_update_def field_lvalue_def)
apply(subst heap_list_update_list; simp?)
apply(simp add: size_of_def)
apply(subst typ_uinfo_size [symmetric])
apply(subst typ_uinfo_size [symmetric])
apply(drule field_names_SomeD2 [where m=0]; clarsimp)
apply(frule td_set_field_lookupD [where m=0])
apply(clarsimp simp: field_offset_def field_offset_untyped_def typ_uinfo_t_def)
apply(drule field_lookup_export_uinfo_Some)
apply simp
apply(drule td_set_export_uinfoD)
apply(simp add: export_uinfo_def)
apply(drule td_set_offset_size)
apply fastforce
apply(drule field_names_SomeD2 [where m=0], clarsimp+)
subgoal for n k
apply(frule fi_fa_consistentD [where bs="to_bytes v (heap_list h (size_of TYPE('a)) (ptr_val p))"] )
apply simp
apply(simp add: size_of_def)
apply(frule field_lookup_export_uinfo_Some)
apply(simp add: typ_uinfo_t_def)
apply(subgoal_tac "size_td k = size_td (typ_info_t TYPE('b))")
prefer 2
apply(simp flip: export_uinfo_size)
apply simp
apply(rule sym)
apply(fold norm_bytes_def)
apply(subst typ_uinfo_size [symmetric])
apply(drule sym [where t="Some (k,n)"])
apply(simp only: typ_uinfo_t_def)
apply(simp)
apply(clarsimp simp: access_ti⇩0_def field_typ_def field_typ_untyped_def)
apply(drule sym [where s="Some (k,n)"])
apply simp
apply(rule norm)
apply(simp add: size_of_def)
apply(subst typ_uinfo_size [symmetric])+
apply(drule td_set_field_lookupD, drule td_set_offset_size)
apply(fastforce simp: min_def split: if_split_asm)
done
apply(clarsimp split: if_split_asm)
done
done
apply(rule ccontr, clarsimp)
apply(erule notE, rule ext)
subgoal for x
apply(cases "x ≠ Ptr &(p→a)")
apply(clarsimp simp: restrict_map_def)
apply(drule fun_cong [where x=x])
apply clarsimp
apply(rule ccontr, clarsimp)
apply(erule impE [where P="x ∈ dom (lift_t g (h, d))"])
apply(clarsimp simp: lift_t_if h_t_valid_def split: if_split_asm)
apply clarsimp
apply(clarsimp simp: restrict_map_def)
apply(rule conjI, clarsimp)
apply(clarsimp simp: lift_t_if)
done
done
done
lemma lift_t_sub_field_update:
"⟦ d,g' ⊨⇩t p; ¬ (TYPE('a) <⇩τ TYPE('b))⟧ ⟹
lift_t g (heap_update p (v::'a::mem_type) h,d) =
sub_field_update_t (field_names (typ_info_t TYPE('a)) (typ_uinfo_t TYPE('b))) p v
((lift_t g (h,d))::'b::mem_type typ_heap)"
apply(drule lift_t_sub_field_update' [where fs="(field_names (typ_info_t TYPE('a)) (typ_uinfo_t TYPE('b)))"] , assumption+)
apply(clarsimp simp: fs_consistent_def)
apply fast
apply(simp add: restrict_map_def)
done
lemma lift_t_field_ind:
"⟦ d,g' ⊨⇩t (p::'b::mem_type ptr); d,ga ⊨⇩t (q::'b ptr);
field_lookup (typ_info_t TYPE('b::mem_type)) f 0 = Some (a,ba);
field_lookup (typ_info_t TYPE('b::mem_type)) z 0 = Some (c,da) ;
size_td a = size_of TYPE('a); size_td c = size_of TYPE('c);
¬ f ≤ z; ¬ z ≤ f ⟧ ⟹
lift_t g (heap_update (Ptr (&(p→f))) (v::'a::mem_type) h,d) (Ptr (&(q→z))) =
((lift_t g (h,d) (Ptr (&(q→z))))::'c::c_type option)"
apply(clarsimp simp: lift_t_if h_val_def heap_update_def)
apply(subgoal_tac "(heap_list (heap_update_list &(p→f) (to_bytes v (heap_list h (size_of TYPE('a)) &(p→f))) h)
(size_of TYPE('c)) &(q→z)) =
(heap_list h (size_of TYPE('c)) &(q→z))")
apply(drule arg_cong [where f=from_bytes])
apply simp
apply(rule heap_list_update_disjoint_same)
apply simp
apply(simp add: field_lvalue_def field_offset_def field_offset_untyped_def)
apply(simp add: typ_uinfo_t_def field_lookup_export_uinfo_Some)
apply(frule field_lookup_export_uinfo_Some[where s=c])
apply(cases "ptr_val p = ptr_val q")
apply clarsimp
apply(subst intvl_disj_offset)
apply(drule fa_fu_lookup_disj_interD)
apply fast
apply(simp add: disj_fn_def)
apply simp
apply(subst size_of_def [symmetric, where t="TYPE('b)"])
apply simp
apply simp
apply clarsimp
apply(drule (1) h_t_valid_neq_disjoint, simp)
apply(rule peer_typ_not_field_of; clarsimp)
apply(subgoal_tac "{ptr_val p + of_nat ba..+size_td a} ⊆ {ptr_val p..+size_of TYPE('b)}")
apply(subgoal_tac "{ptr_val q + of_nat da..+size_td c} ⊆ {ptr_val q..+size_of TYPE('b)}")
apply fastforce
apply(rule intvl_sub_offset)
apply(simp add: size_of_def)
apply(drule td_set_field_lookupD[where k="(c,da)"])
apply(drule td_set_offset_size)
apply (smt (verit, ccfv_threshold) add.commute add_le_cancel_right le_trans le_unat_uoi nat_le_linear)
apply(rule intvl_sub_offset)
apply(simp add: size_of_def)
apply(drule td_set_field_lookupD)
apply(drule td_set_offset_size)
by (smt (verit, ccfv_threshold) add.commute add_le_imp_le_right le_trans le_unat_uoi nat_le_linear)
lemma (in c_type) uvt1':
"update_value_t (f#fs) v (w::'b) x = (if x=field_offset TYPE('b) f then
update_ti_t (field_typ TYPE('b) f) (to_bytes_p (v::'a)) (w::'b::c_type) else update_value_t fs v w x)"
by simp
lemma (in c_type) field_typ_self [simp]:
"field_typ TYPE('a) [] = typ_info_t TYPE('a)"
by (simp add: field_typ_def field_typ_untyped_def)
lemma (in mem_type) field_of_t_less_size:
"field_of_t (p::'a ptr) (x::'b::c_type ptr) ⟹
unat (ptr_val p - ptr_val x) < size_of TYPE('b)"
apply(simp add: field_of_t_def field_of_def)
apply(drule td_set_offset_size)
apply(subgoal_tac "0 < size_td (typ_info_t TYPE('a)) ")
apply(simp add: c_type_class.size_of_def)
apply(simp add: size_of_def [symmetric, where t="TYPE('a)"])
done
lemma unat_minus:
"x ≠ 0 ⟹ unat (- (x::addr)) = addr_card - unat x"
by (metis word_bits_def word_bits_size len_of_addr_card unat_minus)
lemma (in mem_type) field_of_t_nmem:
"⟦ field_of_t p q; ptr_val p ≠ ptr_val (q::'b::mem_type ptr) ⟧ ⟹
ptr_val q ∉ {ptr_val (p::'a ptr)..+size_of TYPE('a)}"
supply unsigned_of_nat [simp del] unsigned_of_int [simp del]
apply(clarsimp simp: field_of_t_def field_of_def intvl_def)
apply(drule td_set_offset_size)
apply(simp add: unat_minus size_of_def)
apply(subgoal_tac "size_td (typ_info_t TYPE('b)) < addr_card")
apply(simp only: unat_simps)
apply (smt add.commute add.left_neutral diff_less_mono2 gr_implies_not0 le_eq_less_or_eq
less_diff_conv2 less_trans max_size nat_mod_eq' size_of_def c_type_class.size_of_def)
by (metis c_type_class.size_of_def mem_type_class.max_size)
lemma (in mem_type) field_of_t_init_neq_disjoint:
"field_of_t p (x::'b::mem_type ptr) ⟹
{ptr_val (p::'a ptr)..+size_of TYPE('a)} ∩
{ptr_val x..+unat (ptr_val p - ptr_val x)} = {}"
apply(cases "ptr_val p = ptr_val x", simp)
apply(rule ccontr)
apply(drule intvl_inter)
apply(auto simp: field_of_t_nmem le_unat_uoi nat_less_le dest!: intvlD)
done
lemma (in mem_type) field_of_t_final_neq_disjoint:
"field_of_t (p::'a ptr) (x::'b ptr) ⟹ {ptr_val p..+size_of TYPE('a)} ∩
{ptr_val p + of_nat (size_of TYPE('a))..+size_of TYPE('b::mem_type) -
(unat (ptr_val p - ptr_val x) + size_of TYPE('a))} = {}"
supply unsigned_of_nat [simp del] unsigned_of_int [simp del]
apply(rule ccontr)
apply(drule intvl_inter)
apply(erule disjE)
apply(subgoal_tac "ptr_val p ∉ {ptr_val p + of_nat (size_of TYPE('a)) ..+
size_of TYPE('b) - (unat (ptr_val p - ptr_val x) +
size_of TYPE('a))}")
apply simp
apply(rule intvl_offset_nmem)
apply(rule intvl_self)
apply(subst unat_of_nat)
apply(subst mod_less)
apply(subst len_of_addr_card)
apply(rule max_size)
apply(rule sz_nzero)
apply(subst len_of_addr_card)
apply(thin_tac "x ∈ S" for x S)
apply(simp add: field_of_t_def field_of_def)
apply(drule td_set_offset_size)
apply(simp add: size_of_def)
subgoal
proof -
have "size_td (typ_info_t (TYPE('b)::'b itself)) ≤ addr_card"
by (metis c_type_class.size_of_def less_imp_le_nat mem_type_class.max_size)
then show ?thesis
by (smt (verit, ccfv_threshold) c_type_class.size_of_def diff_diff_left diff_le_mono2 diff_le_self
le_diff_conv le_trans le_unat_uoi nat_le_linear)
qed
apply(drule intvlD, clarsimp)
apply(subst (asm) word_unat.norm_eq_iff [symmetric])
apply(subst (asm) mod_less)
apply(subst len_of_addr_card)
apply(rule max_size)
apply(subst (asm) mod_less)
apply(subst len_of_addr_card)
apply(erule less_trans)
apply(rule max_size)
apply simp
done
lemma (in mem_type) h_val_super_update_bs:
"field_of_t p x ⟹ h_val (heap_update p (v::'a) h) (x::'b::mem_type ptr) =
from_bytes (super_update_bs (to_bytes v (heap_list h (size_of TYPE('a)) (ptr_val p)) ) (heap_list h (size_of TYPE('b)) (ptr_val x)) (unat (ptr_val p - ptr_val x)))"
apply(simp add: h_val_def c_type_class.h_val_def)
apply (rule arg_cong [where f = "c_type_class.from_bytes::byte list ⇒ 'b"])
apply(simp add: heap_update_def c_type_class.heap_update_def super_update_bs_def)
apply(subst heap_list_split [of "unat (ptr_val p - ptr_val x)" "size_of TYPE('b)"])
apply(drule field_of_t_less_size)
apply simp
apply simp
apply(subst heap_list_update_disjoint_same)
apply(drule field_of_t_init_neq_disjoint)
apply (simp add: len)
apply(subst take_heap_list_le)
apply(drule field_of_t_less_size)
apply simp
apply simp
apply(subst heap_list_split [of "size_of TYPE('a)"
"size_of TYPE('b) - unat (ptr_val p - ptr_val x)"])
apply(frule field_of_t_less_size)
apply(simp add: field_of_t_def field_of_def)
apply(drule td_set_offset_size)
apply(simp add: size_of_def c_type_class.size_of_def)
apply clarsimp
apply (rule conjI)
apply(simp add: heap_list_update_to_bytes)
apply(subst heap_list_update_disjoint_same)
apply(drule field_of_t_final_neq_disjoint)
apply(simp)
apply(subst drop_heap_list_le)
apply(simp add: field_of_t_def field_of_def)
apply(drule td_set_offset_size)
apply(simp add: size_of_def c_type_class.size_of_def)
apply simp
done
lemma (in mem_type) h_val_super_update_bs_padding:
"field_of_t p x ⟹ length bs = size_of TYPE('a) ⟹ h_val (heap_update_padding p (v::'a) bs h) (x::'b::mem_type ptr) =
from_bytes (super_update_bs (to_bytes v bs) (heap_list h (size_of TYPE('b)) (ptr_val x)) (unat (ptr_val p - ptr_val x)))"
apply(simp add: h_val_def c_type_class.h_val_def)
apply (rule arg_cong [where f = "c_type_class.from_bytes::byte list ⇒ 'b"])
apply(simp add: heap_update_padding_def c_type_class.heap_update_padding_def super_update_bs_def)
apply(subst heap_list_split [of "unat (ptr_val p - ptr_val x)" "size_of TYPE('b)"])
apply(drule field_of_t_less_size)
apply simp
apply simp
apply(subst heap_list_update_disjoint_same)
apply(drule field_of_t_init_neq_disjoint)
apply (simp add: len)
apply(subst take_heap_list_le)
apply(drule field_of_t_less_size)
apply simp
apply simp
apply(subst heap_list_split [of "size_of TYPE('a)"
"size_of TYPE('b) - unat (ptr_val p - ptr_val x)"])
apply(frule field_of_t_less_size)
apply(simp add: field_of_t_def field_of_def)
apply(drule td_set_offset_size)
apply(simp add: size_of_def c_type_class.size_of_def)
apply clarsimp
apply (rule conjI)
apply(simp add: heap_list_update_to_bytes_padding)
apply(subst heap_list_update_disjoint_same)
apply(drule field_of_t_final_neq_disjoint)
apply(simp)
apply(subst drop_heap_list_le)
apply(simp add: field_of_t_def field_of_def)
apply(drule td_set_offset_size)
apply(simp add: size_of_def c_type_class.size_of_def)
apply simp
done
lemma (in c_type) update_field_update':
"n ∈ (λf. field_offset TYPE('b) f) ` set fs ⟹
(∃f. update_value_t fs (v::'a) (v'::'b::c_type) n =
field_update (field_desc (field_typ TYPE('b) f)) (to_bytes_p v) v' ∧ f ∈ set fs ∧ n = field_offset TYPE('b) f)"
by (induct fs) auto
lemma (in c_type) update_field_update:
"field_of_t (p::'a ptr) (x::'b ptr) ⟹
∃f. update_value_t (field_names (typ_info_t TYPE('b)) (typ_uinfo_t TYPE('a))) (v::'a)
(v'::'b::mem_type) (unat (ptr_val p - ptr_val x)) =
field_update (field_desc (field_typ TYPE('b) f)) (to_bytes_p v) v' ∧
f ∈ set (field_names (typ_info_t TYPE('b)) (typ_uinfo_t TYPE('a))) ∧
unat (ptr_val p - ptr_val x) = field_offset TYPE('b) f"
apply(rule update_field_update')
apply(clarsimp simp: image_def field_offset_def c_type_class.field_offset_def field_of_t_def field_of_def field_offset_untyped_def)
apply(simp add: td_set_field_lookup)
apply clarsimp
subgoal for f
apply(simp add: typ_uinfo_t_def c_type_class.typ_uinfo_t_def)
apply(rule bexI [where x="f"], simp)
apply(drule field_lookup_export_uinfo_Some_rev)
apply clarsimp
apply(drule field_names_SomeD3)
apply clarsimp
done
done
lemma length_fa_ti:
"⟦ wf_fd s; length bs = size_td s ⟧ ⟹ length (access_ti s w bs) = size_td s"
apply(drule wf_fd_consD)
apply(clarsimp simp: fd_cons_def fd_cons_length_def fd_cons_desc_def)
done
lemma fa_fu_v:
"⟦ wf_fd s; length bs = size_td s; length bs' = size_td s ⟧ ⟹
access_ti s (update_ti_t s bs v) bs' = access_ti s (update_ti_t s bs w) bs'"
apply(drule wf_fd_consD)
apply(clarsimp simp: fd_cons_def fd_cons_access_update_def fd_cons_desc_def)
done
lemma fu_fa:
"⟦ wf_fd s; length bs = size_td s ⟧ ⟹
update_ti_t s (access_ti s v bs) v = v"
apply(drule wf_fd_consD)
apply(clarsimp simp: fd_cons_def fd_cons_update_access_def fd_cons_desc_def)
done
lemma fu_fu:
"⟦ wf_fd s; length bs = length bs' ⟧ ⟹
update_ti_t s bs (update_ti_t s bs' v) = update_ti_t s bs v"
apply(drule wf_fd_consD)
apply(clarsimp simp: fd_cons_def fd_cons_double_update_def fd_cons_desc_def)
done
lemma fu_fa'_rpbs:
"⟦ export_uinfo s = export_uinfo t; length bs = size_td s; wf_fd s; wf_fd t ⟧ ⟹
update_ti_t s (access_ti t v bs) w = update_ti_t s (access_ti⇩0 t v) w"
apply(clarsimp simp: access_ti⇩0_def)
apply(subgoal_tac "size_td s = size_td t")
apply(frule_tac bs="access_ti t v bs" in wf_fd_norm_tuD[where t=t])
apply(subst length_fa_ti; simp)
apply(frule_tac bs="access_ti t v bs" in wf_fd_norm_tuD)
apply(subst length_fa_ti; simp)
apply(clarsimp simp: access_ti⇩0_def)
apply(thin_tac "norm_tu X Y = Z" for X Y Z)+
apply(subst (asm) fa_fu_v [where w=v]; simp?)
apply(simp add: length_fa_ti)
apply(subst (asm) fa_fu_v [where w=w]; simp?)
apply(simp add: length_fa_ti; simp)
apply(subst (asm) fu_fa; (solves ‹simp›)?)
apply(drule_tac f="update_ti_t s" in arg_cong)
apply(drule_tac x="update_ti_t s (access_ti t v bs) w" in fun_cong)
apply(subst (asm) fu_fa; (solves ‹simp›)?)
apply(fastforce simp: fu_fu length_fa_ti)
apply(drule_tac f=size_td in arg_cong)
apply(simp add: export_uinfo_def)
done
lemma lift_t_super_field_update:
"⟦ d,g' ⊨⇩t p; TYPE('a) ≤⇩τ TYPE('b) ⟧ ⟹
lift_t g (heap_update p (v::'a::mem_type) h,d) =
super_field_update_t p v ((lift_t g (h,d))::'b::mem_type typ_heap)"
apply(rule ext)
apply(clarsimp simp: super_field_update_t_def split: option.splits)
apply(rule conjI; clarsimp)
apply(simp add: lift_t_if split: if_split_asm)
apply(rule conjI; clarsimp)
apply(simp add: lift_t_if h_val_super_update_bs split: if_split_asm)
apply(drule sym)
apply(rename_tac x1 x2)
apply(drule_tac v=v and v'=x2 in update_field_update)
apply(clarsimp simp: h_val_def)
apply(frule_tac m=0 in field_names_SomeD)
apply clarsimp
apply(subgoal_tac "export_uinfo a = typ_uinfo_t TYPE('a)")
prefer 2
apply(drule_tac m=0 in field_names_SomeD2; clarsimp)
apply(simp add: from_bytes_def)
apply(frule_tac bs="heap_list h (size_of TYPE('b)) (ptr_val x1)" and
v="to_bytes v (heap_list h (size_of TYPE('a)) (ptr_val p))" and
w=undefined in fi_fu_consistentD)
apply simp
apply(simp add: size_of_def)
apply(clarsimp simp: size_of_def sub_typ_def typ_tag_le_def simp flip: export_uinfo_size)
apply(simp add: field_offset_def field_offset_untyped_def typ_uinfo_t_def)
apply(frule field_lookup_export_uinfo_Some)
apply(simp add: to_bytes_def to_bytes_p_def)
apply(subst fu_fa'_rpbs; simp?)
apply(simp add: size_of_def flip: export_uinfo_size)
apply(fastforce intro: wf_fd_field_lookupD)
apply(unfold access_ti⇩0_def)[1]
apply(simp flip: export_uinfo_size)
apply(simp add: size_of_def access_ti⇩0_def field_typ_def field_typ_untyped_def)
apply(frule lift_t_h_t_valid)
apply(simp add: lift_t_if)
apply(cases "typ_uinfo_t TYPE('a) = typ_uinfo_t TYPE('b)")
apply(subst h_val_heap_same_peer; assumption?)
apply(clarsimp simp: field_of_t_def)
apply(simp add: peer_typ_def)
apply(drule (1) h_t_valid_neq_disjoint)
apply(simp add: sub_typ_proper_def)
apply(rule order_less_not_sym)
apply(simp add: sub_typ_def)
apply assumption
apply(simp add: h_val_def heap_update_def heap_list_update_disjoint_same)
done
lemma lift_t_super_field_update_padding:
"⟦ d,g' ⊨⇩t p; TYPE('a) ≤⇩τ TYPE('b); length bs = size_of TYPE('a) ⟧ ⟹
lift_t g (heap_update_padding p (v::'a::mem_type) bs h,d) =
super_field_update_t p v ((lift_t g (h,d))::'b::mem_type typ_heap)"
apply(rule ext)
apply(clarsimp simp: super_field_update_t_def split: option.splits)
apply(rule conjI; clarsimp)
apply(simp add: lift_t_if split: if_split_asm)
apply(rule conjI; clarsimp)
apply(simp add: lift_t_if h_val_super_update_bs_padding split: if_split_asm)
apply(drule sym)
apply(rename_tac x1 x2)
apply(drule_tac v=v and v'=x2 in update_field_update)
apply(clarsimp simp: h_val_def)
apply(frule_tac m=0 in field_names_SomeD)
apply clarsimp
apply(subgoal_tac "export_uinfo a = typ_uinfo_t TYPE('a)")
prefer 2
apply(drule_tac m=0 in field_names_SomeD2; clarsimp)
apply(simp add: from_bytes_def)
apply(frule_tac bs="heap_list h (size_of TYPE('b)) (ptr_val x1)" and
v="to_bytes v bs" and
w=undefined in fi_fu_consistentD)
apply simp
apply(simp add: size_of_def)
apply(clarsimp simp: size_of_def sub_typ_def typ_tag_le_def simp flip: export_uinfo_size)
apply(simp add: field_offset_def field_offset_untyped_def typ_uinfo_t_def)
apply(frule field_lookup_export_uinfo_Some)
apply(simp add: to_bytes_def to_bytes_p_def)
apply(subst fu_fa'_rpbs; simp?)
apply(simp add: size_of_def flip: export_uinfo_size)
apply(fastforce intro: wf_fd_field_lookupD)
apply(unfold access_ti⇩0_def)[1]
apply(simp flip: export_uinfo_size)
apply(simp add: size_of_def access_ti⇩0_def field_typ_def field_typ_untyped_def)
apply(frule lift_t_h_t_valid)
apply(simp add: lift_t_if)
apply(cases "typ_uinfo_t TYPE('a) = typ_uinfo_t TYPE('b)")
apply(subst h_val_heap_same_peer_padding; assumption?)
apply(clarsimp simp: field_of_t_def)
apply(simp add: peer_typ_def)
apply(drule (1) h_t_valid_neq_disjoint)
apply(simp add: sub_typ_proper_def)
apply(rule order_less_not_sym)
apply(simp add: sub_typ_def)
apply assumption
apply(simp add: h_val_def heap_update_padding_def heap_list_update_disjoint_same)
done
lemma field_names_same:
"k = export_uinfo ti ⟹ field_names ti k = [[]]"
by (cases ti, clarsimp)
lemma lift_t_heap_update:
"d,g ⊨⇩t p ⟹ lift_t g (heap_update p v h,d) =
((lift_t g (h,d)) (p ↦ (v::'a::mem_type)))"
apply(subst lift_t_sub_field_update)
apply fast
apply(simp add: sub_typ_proper_def)
apply(simp add: typ_uinfo_t_def Let_def)
apply(subgoal_tac "access_ti⇩0 (typ_info_t TYPE('a)) = to_bytes_p")
apply(simp add: field_names_same)
apply(clarsimp simp: Let_def to_bytes_p_def)
apply(rule conjI, clarsimp)
apply(rule ext, clarsimp simp: restrict_self_UNIV)
apply clarsimp
apply(clarsimp simp: h_t_valid_def lift_t_if)
apply(rule ext)
apply(simp add: to_bytes_p_def to_bytes_def size_of_def access_ti⇩0_def)
done
lemma field_names_disj:
"typ_uinfo_t TYPE('a::c_type) ⊥⇩t typ_uinfo_t TYPE('b::mem_type) ⟹
field_names (typ_info_t TYPE('b)) (typ_uinfo_t TYPE('a)) = []"
apply(rule ccontr)
apply(subgoal_tac "(∃k. k ∈ set (field_names (typ_info_t TYPE('b)) (typ_uinfo_t TYPE('a))))")
apply clarsimp
apply(frule field_names_SomeD2 [where m=0], clarsimp+)
apply(drule field_lookup_export_uinfo_Some)
apply(drule td_set_field_lookupD)
apply(fastforce simp: tag_disj_def typ_tag_le_def typ_uinfo_t_def)
apply(cases "field_names (typ_info_t TYPE('b)) (typ_uinfo_t TYPE('a))"; simp)
apply fast
done
lemma lift_t_heap_update_same:
"⟦ d,g' ⊨⇩t (p::'b::mem_type ptr); typ_uinfo_t TYPE('a) ⊥⇩t typ_uinfo_t TYPE('b) ⟧ ⟹
lift_t g (heap_update p v h,d) = (lift_t g (h,d)::'a::mem_type typ_heap)"
apply(subst lift_t_sub_field_update, simp)
apply(fastforce dest: order_less_imp_le simp: sub_typ_proper_def tag_disj_def)
apply(simp add: field_names_disj)
done
lemma lift_heap_update:
"⟦ d,g ⊨⇩t (p::'a ptr); d,g' ⊨⇩t q ⟧ ⟹ lift (heap_update p v h) q =
((lift h)(p := (v::'a::mem_type))) q"
by (simp add: lift_def h_val_heap_update h_val_heap_same_peer)
lemma (in mem_type) lift_heap_update_p [simp]:
"lift (heap_update p v h) p = (v::'a)"
by (simp add: lift_def heap_update_def h_val_def heap_list_update_to_bytes)
lemma lift_heap_update_same:
"⟦ ptr_val p ≠ ptr_val q; d,g ⊨⇩t (p::'a::mem_type ptr);
d,g' ⊨⇩t (q::'b::mem_type ptr); peer_typ TYPE('a) TYPE('b) ⟧ ⟹
lift (heap_update p v h) q = lift h q"
by (simp add: lift_def h_val_heap_same_peer)
lemma lift_heap_update_same_type:
fixes p::"'a::mem_type ptr" and q::"'b::mem_type ptr"
assumes valid: "d,g ⊨⇩t p" "d,g' ⊨⇩t q"
assumes type: "typ_uinfo_t TYPE('a) ⊥⇩t typ_uinfo_t TYPE('b)"
shows "lift (heap_update p v h) q = lift h q"
proof -
from valid type have "ptr_val p ≠ ptr_val q"
apply(clarsimp simp: h_t_valid_def)
apply(drule (1) valid_footprint_sub)
apply(clarsimp simp: tag_disj_def order_less_imp_le)
apply(fastforce intro: intvl_self
simp: field_of_def tag_disj_def typ_tag_le_def
simp flip: size_of_def [where t="TYPE('b)"])
done
thus ?thesis using valid type
by (fastforce elim: lift_heap_update_same peer_typI)
qed
lemma lift_heap_update_same_ptr_coerce:
"⟦ ptr_val q ≠ ptr_val p;
d,g ⊨⇩t (ptr_coerce (q::'b::mem_type ptr)::'c::mem_type ptr);
d,g' ⊨⇩t (p::'a::mem_type ptr);
size_of TYPE('b) = size_of TYPE('c); peer_typ TYPE('a) TYPE('c) ⟧ ⟹
lift (heap_update q v h) p = lift h p"
apply(clarsimp simp: lift_def h_val_def heap_update_def size_of_def)
apply(subst heap_list_update_disjoint_same)
apply(drule (1) h_t_valid_neq_disjoint)
apply(erule peer_typD)
apply(erule peer_typ_not_field_of, simp)
apply(simp add: size_of_def)
apply simp
done
lemma :
"⟦ valid_footprint d y t; x ∈ {y..+size_td t} ⟧ ⟹ x ∈ heap_footprint d t"
by (force simp: heap_footprint_def)
lemma :
"valid_footprint d x t ⟹ x ∈ heap_footprint d t"
by (force simp: heap_footprint_def)
lemma :
"x ∈ heap_footprint d t ⟹ ∃y. valid_footprint d y t ∧ x ∈ {y} ∪ {y..+size_td t}"
by (simp add: heap_footprint_def)
lemma :
"x ∈ heap_footprint d t ⟹ d x ≠ (False,Map.empty)"
by (auto simp: heap_footprint_def intvl_def valid_footprint_def Let_def)
lemma dom_tll_empty [simp]:
"dom_tll p [] = {}"
by (clarsimp simp: dom_tll_def)
lemma dom_s_upd [simp]:
"dom_s (λb. if b = p then (True,a) else d b) =
(dom_s d - {(p,y) | y. True}) ∪ {(p,SIndexVal)} ∪ {(p,SIndexTyp n) | n. a n ≠ None}"
unfolding dom_s_def by (cases "d p") auto
lemma dom_tll_cons [simp]:
"dom_tll p (x#xs) = dom_tll (p + 1) xs ∪ {(p,SIndexVal)} ∪ {(p,SIndexTyp n) | n. x n ≠ None}"
unfolding dom_tll_def
apply (rule equalityI; clarsimp)
apply (rule conjI; clarsimp)
subgoal using less_Suc_eq_0_disj by auto[1]
subgoal using less_Suc_eq_0_disj by force
subgoal using less_Suc_eq_0_disj Suc_mono of_nat_Suc
by (smt (verit) Groups.add_ac(2) Groups.add_ac(3) UnCI add.right_neutral
mem_Collect_eq nth_Cons' nth_Cons_Suc semiring_1_class.of_nat_simps(1) subsetI)
done
lemma one_plus_x_zero:
"(1::addr) + of_nat x = 0 ⟹ x ≥ addr_card - 1"
apply(simp add: addr_card)
apply(subst (asm) of_nat_1 [symmetric])
apply(subst (asm) Abs_fnat_homs)
apply(subst (asm) Word.of_nat_0)
apply(erule exE)
subgoal for q
apply(cases q; simp)
done
done
lemma htd_update_list_dom [rule_format, simp]:
"length xs < addr_card ⟶ (∀p d. dom_s (htd_update_list p xs d) = dom_s d ∪ dom_tll p xs)"
by (induct xs; clarsimp) (auto simp: dom_s_def)
lemma htd_update_list_same:
shows "⋀h p k. ⟦ 0 < k; k ≤ addr_card - length v ⟧ ⟹
(htd_update_list (p + of_nat k) v) h p = h p"
proof (induct v)
case Nil show ?case by simp
next
case (Cons x xs)
have "htd_update_list (p + of_nat k) (x # xs) h p =
htd_update_list (p + of_nat (k + 1)) xs (h(p + of_nat k := (True,snd (h (p + of_nat k)) ++ x))) p"
by (simp add: ac_simps)
also have "… = (h(p + of_nat k := (True,snd (h (p + of_nat k)) ++ x))) p"
proof -
from Cons have "k + 1 ≤ addr_card - length xs" by simp
with Cons show ?thesis by (simp only:)
qed
also have "… = h p"
proof -
from Cons have "of_nat k ≠ (0::addr)"
by - (erule of_nat_neq_0, simp add: addr_card)
thus ?thesis by clarsimp
qed
finally show ?case .
qed
lemma htd_update_list_index [rule_format]:
"∀p d. length xs < addr_card ⟶ x ∈ {p..+length xs} ⟶
htd_update_list p xs d x = (True, snd (d x) ++ (xs ! (unat (x - p))))"
apply(induct xs; clarsimp)
subgoal for x1 xs p d
apply(cases "p=x")
apply simp
apply(subst of_nat_1 [symmetric])
apply(subst htd_update_list_same; simp)
apply(drule spec [where x="p+1"])
apply(erule impE)
apply(drule intvl_neq_start; simp)
apply(subgoal_tac "unat (x - p) = unat (x - (p + 1)) + 1")
apply simp
apply (clarsimp simp: unatSuc[symmetric] field_simps)
done
done
lemma (in c_type) typ_slices_length [simp]:
"length (typ_slices TYPE('a)) = size_of TYPE('a)"
by (simp add: typ_slices_def)
lemma (in c_type) typ_slices_index [simp]:
"n < size_of TYPE('a) ⟹ typ_slices TYPE('a) ! n =
list_map (typ_slice_t (typ_uinfo_t TYPE('a)) n)"
by (simp add: typ_slices_def)
lemma (in c_type) empty_not_in_typ_slices [simp]:
"Map.empty ∉ set (typ_slices TYPE('a))"
by (auto simp: typ_slices_def dest: sym)
lemma (in c_type) [simp]:
"dom_tll (ptr_val p) (typ_slices TYPE('a)) = s_footprint (p::'a ptr)"
by (fastforce simp: list_map_eq typ_slices_def s_footprint_def s_footprint_untyped_def
dom_tll_def size_of_def
split: if_split_asm)
lemma (in mem_type) ptr_retyp_dom [simp]:
"dom_s (ptr_retyp (p::'a ptr) d) = dom_s d ∪ s_footprint p"
by (simp add: ptr_retyp_def)
lemma dom_s_empty_htd [simp]:
"dom_s empty_htd = {}"
by (clarsimp simp: empty_htd_def dom_s_def)
lemma dom_s_nempty:
"d x ≠ (False, Map.empty) ⟹ ∃k. (x,k) ∈ dom_s d"
apply(clarsimp simp: dom_s_def)
apply(cases "d x", clarsimp)
using None_not_eq by fastforce
lemma (in mem_type) ptr_retyp_None:
"x ∉ {ptr_val p..+size_of TYPE('a)} ⟹
ptr_retyp (p::'a ptr) empty_htd x = (False,Map.empty)"
using ptr_retyp_dom [of p empty_htd]
by (fastforce dest: dom_s_nempty s_footprintD)
lemma (in mem_type) :
"x ∈ {ptr_val p..+size_of TYPE('a)} ⟹
ptr_retyp (p::'a ptr) d x =
(True,snd (d x) ++ list_map (typ_slice_t (typ_uinfo_t TYPE('a)) (unat (x - ptr_val p))))"
apply(clarsimp simp: ptr_retyp_def)
apply(subst htd_update_list_index; simp)
apply(subst typ_slices_index; simp?)
apply(drule intvlD, clarsimp)
by (metis le_unat_uoi linorder_not_less nat_less_le)
lemma (in mem_type) ptr_retyp_Some:
"ptr_retyp (p::'a ptr) d (ptr_val p) =
(True,snd (d (ptr_val p)) ++ list_map (typ_slice_t (typ_uinfo_t TYPE('a)) 0))"
by (simp add: ptr_retyp_footprint)
lemma (in mem_type) ptr_retyp_Some2:
"x ∈ {ptr_val (p::'a ptr)..+size_of TYPE('a)} ⟹ ptr_retyp p d x ≠ (False,Map.empty)"
by (auto simp: ptr_retyp_Some ptr_retyp_footprint dest: intvl_neq_start)
lemma snd_empty_htd [simp]:
"snd (empty_htd x) = Map.empty"
by (auto simp: empty_htd_def)
lemma (in mem_type) ptr_retyp_d_empty:
"x ∈ {ptr_val (p::'a ptr)..+size_of TYPE('a)} ⟹
(∀d. fst (ptr_retyp p d x)) ∧
snd (ptr_retyp p d x) = snd (d x) ++ snd (ptr_retyp p empty_htd x)"
by (auto simp: ptr_retyp_Some ptr_retyp_footprint dest: intvl_neq_start)
lemma unat_minus_abs:
"x ≠ y ⟹ unat ((x::addr) - y) = addr_card - unat (y - x)"
by (clarsimp simp: unat_sub_if_size)
(metis (no_types) Nat.diff_cancel Nat.diff_diff_right add.commute len_of_addr_card
nat_le_linear not_le trans_le_add1 unat_lt2p wsst_TYs(3))
lemma (in mem_type) ptr_retyp_d:
"x ∉ {ptr_val (p::'a ptr)..+size_of TYPE('a)} ⟹
ptr_retyp p d x = d x"
apply(simp add: ptr_retyp_def)
apply(subgoal_tac "∃k. ptr_val p = x + of_nat k ∧ 0 < k ∧ k ≤ addr_card - size_of TYPE('a)")
apply clarsimp
apply(subst htd_update_list_same; simp)
apply(rule exI [where x="unat (ptr_val p - x)"])
apply clarsimp
apply(cases "ptr_val p = x")
apply simp
apply(erule notE)
apply(rule intvl_self)
apply simp
apply(rule conjI)
apply(subst unat_gt_0)
apply clarsimp
apply(rule ccontr)
apply(erule notE)
apply(clarsimp simp: intvl_def)
apply(rule exI [where x="unat (x - ptr_val p)"])
apply simp
apply(subst (asm) unat_minus_abs; simp)
done
lemma (in mem_type) :
"⟦ valid_footprint d p s; {p..+size_td s} ∩ {ptr_val q..+size_of TYPE('a)} = {} ⟧
⟹ valid_footprint (ptr_retyp (q::'a ptr) d) p s"
apply(clarsimp simp: valid_footprint_def Let_def)
apply((subst ptr_retyp_d; clarsimp), fastforce intro: intvlI)+
done
lemma ptr_retyp_disjoint:
"⟦ d,g ⊨⇩t (q::'b::mem_type ptr); {ptr_val p..+size_of TYPE('a)} ∩
{ptr_val q..+size_of TYPE('b)} = {} ⟧ ⟹
ptr_retyp (p::'a::mem_type ptr) d,g ⊨⇩t q"
apply(clarsimp simp: h_t_valid_def)
apply(erule ptr_retyp_valid_footprint_disjoint)
apply(fastforce simp: size_of_def)
done
lemma ptr_retyp_d_fst:
"(x,SIndexVal) ∉ s_footprint (p::'a::mem_type ptr) ⟹ fst (ptr_retyp p d x) = fst (d x)"
apply(simp add: ptr_retyp_def)
apply(subgoal_tac "∃k. ptr_val p = x + of_nat k ∧ 0 < k ∧ k ≤ addr_card - size_of TYPE('a)")
apply(fastforce simp: htd_update_list_same)
apply(rule exI [where x="unat (ptr_val p - x)"])
apply clarsimp
apply(cases "ptr_val p = x")
apply(fastforce dest: sym)
apply(rule conjI)
apply(subst unat_gt_0, clarsimp)
apply(rule ccontr)
apply(erule notE)
apply(subst (asm) unat_minus_abs, simp)
apply(clarsimp simp: s_footprint_def s_footprint_untyped_def)
apply(rule exI [where x="unat (x - ptr_val p)"])
apply(simp add: size_of_def)
done
lemma (in mem_type) ptr_retyp_d_eq_fst:
"fst (ptr_retyp p d x) =
(if x ∈ {ptr_val (p::'a ptr)..+size_of TYPE('a)} then True else fst (d x))"
by (auto dest!: ptr_retyp_d_empty[where d=d] ptr_retyp_d[where d=d])
lemma (in mem_type) ptr_retyp_d_eq_snd:
"snd (ptr_retyp p d x) =
(if x ∈ {ptr_val (p::'a ptr)..+size_of TYPE('a)}
then snd (d x) ++ snd (ptr_retyp p empty_htd x)
else snd (d x))"
by (auto dest!: ptr_retyp_d_empty[where d=d] ptr_retyp_d[where d=d])
lemma lift_state_ptr_retyp_d_empty:
"x ∈ {ptr_val (p::'a::mem_type ptr)..+size_of TYPE('a)} ⟹
lift_state (h,ptr_retyp p d) (x,k) =
(lift_state (h,d) ++ lift_state (h,ptr_retyp p empty_htd)) (x,k)"
apply(clarsimp simp: lift_state_def map_add_def split: s_heap_index.splits)
apply safe
apply(subst ptr_retyp_d_empty; simp)
apply(subst ptr_retyp_d_empty; simp)
apply(subst (asm) ptr_retyp_d_empty; simp)
apply(subst ptr_retyp_d_empty, simp)
apply(auto split: option.splits)
done
lemma lift_state_ptr_retyp_d:
"x ∉ {ptr_val (p::'a::mem_type ptr)..+size_of TYPE('a)} ⟹
lift_state (h,ptr_retyp p d) (x,k) = lift_state (h,d) (x,k)"
by (clarsimp simp: lift_state_def ptr_retyp_d split: s_heap_index.splits)
lemma (in mem_type) :
"valid_footprint (ptr_retyp p d) (ptr_val (p::'a ptr)) (typ_uinfo_t TYPE('a))"
apply(clarsimp simp: valid_footprint_def Let_def)
apply(subst size_of_def [symmetric, where t="TYPE('a)"])
apply clarsimp
apply(subst ptr_retyp_footprint)
apply(rule intvlI)
apply(simp add: size_of_def)
apply(subst ptr_retyp_footprint)
apply(rule intvlI)
apply(simp add: size_of_def)
apply clarsimp
by (metis (mono_tags) id_apply len_of_addr_card less_trans map_le_map_add max_size of_nat_eq_id
size_of_def take_bit_nat_eq_self unsigned_of_nat)
lemma (in mem_type) ptr_retyp_h_t_valid:
"g p ⟹ ptr_retyp p d,g ⊨⇩t (p::'a ptr)"
by (simp add: h_t_valid_def ptr_retyp_valid_footprint)
lemma (in mem_type) ptr_retyp_s_valid:
"g p ⟹ lift_state (h,ptr_retyp p d),g ⊨⇩s (p::'a ptr)"
by (simp add: s_valid_def proj_d_lift_state ptr_retyp_h_t_valid)
lemma (in mem_type) lt_size_of_unat_simps:
"k < size_of TYPE('a) ⟹ unat ((of_nat k)::addr) < size_of TYPE('a)"
by (metis le_def le_unat_uoi less_trans)
lemma (in mem_type) ptr_retyp_h_t_valid_same:
"⟦ d,g ⊨⇩t (p::'a ptr); x ∈ {ptr_val p..+size_of TYPE('a)} ⟧ ⟹
snd (ptr_retyp p d x) ⊆⇩m snd (d x)"
apply(clarsimp simp: h_t_valid_def valid_footprint_def Let_def)
apply(subst ptr_retyp_footprint)
apply simp
apply clarsimp
apply(drule_tac x="unat (x - ptr_val p)" in spec)
apply clarsimp
apply(erule impE)
apply(simp only: size_of_def [symmetric, where t="TYPE('a)"])
apply(drule intvlD, clarsimp)
using lt_size_of_unat_simps apply blast
apply(fastforce intro: map_add_le_mapI)
done
lemma (in mem_type) ptr_retyp_ptr_safe [simp]:
"ptr_safe p (ptr_retyp (p::'a ptr) d)"
by (force intro: h_t_valid_ptr_safe ptr_retyp_h_t_valid)
lemma (in mem_type) lift_state_ptr_retyp_restrict:
"(lift_state (h, ptr_retyp p d) |` {(x,k). x ∈ {ptr_val p..+size_of TYPE('a)}}) =
(lift_state (h,d) |` {(x,k). x ∈ {ptr_val p..+size_of TYPE('a)}}) ++
lift_state (h, ptr_retyp (p::'a ptr) empty_htd)" (is "?x = ?y")
proof (rule ext, cases)
fix x::"addr × s_heap_index"
assume "fst x ∈ {ptr_val p..+size_of TYPE('a)}"
thus "?x x = ?y x"
apply(cases x)
apply(clarsimp simp: lift_state_def map_add_def split: s_heap_index.splits)
apply(safe; clarsimp)
apply(drule ptr_retyp_d_empty, fast)
apply(frule_tac d=d in ptr_retyp_d_empty, clarsimp simp: map_add_def)
apply(clarsimp simp: restrict_map_def split: option.splits)
apply(drule ptr_retyp_d_empty, fast)
apply(drule ptr_retyp_d_empty, fast)
apply(frule_tac d=d in ptr_retyp_d_empty, clarsimp simp: map_add_def)
apply(clarsimp simp: restrict_map_def split: option.splits)
done
next
fix x::"addr × s_heap_index"
assume "fst x ∉ {ptr_val p..+size_of TYPE('a)}"
thus "?x x = ?y x"
by (cases x) (auto simp: lift_state_def ptr_retyp_None map_add_def split: s_heap_index.splits)
qed
lemmas typ_simps = lift_t_heap_update lift_t_heap_update_same lift_heap_update
lift_t_h_t_valid h_t_valid_ptr_safe lift_t_ptr_safe lift_lift_t lift_t_lift
tag_disj_def typ_tag_le_def typ_uinfo_t_def
declare field_desc_def [simp del]
lemma field_fd:
"field_fd (t::'a::c_type itself) n =
(case field_lookup (typ_info_t TYPE('a)) n 0 of
None ⇒ field_desc (fst (the (None::('a xtyp_info × nat) option)))
| Some x ⇒ field_desc (fst x))"
by (auto simp: field_fd_def field_typ_def field_typ_untyped_def split: option.splits)
declare field_desc_def [simp add]
lemma (in mem_type) super_field_update_lookup:
assumes "field_lookup (typ_info_t TYPE('b)) f 0 = Some (s,n)"
and "typ_uinfo_t TYPE('a) = export_uinfo s"
and "lift_t g h p = Some v'"
shows "super_field_update_t (Ptr (&(p→f))) (v::'a) (lift_t g h::'b::mem_type typ_heap) =
(lift_t g h)(p ↦ field_update (field_desc s) (to_bytes_p v) v')"
proof -
note unsigned_of_nat [simp del]
from assms have "size_of TYPE('b) < addr_card" by simp
with assms have [simp]: "unat (of_nat n :: addr_bitsize word) = n"
apply(subst unat_of_nat)
apply(subst mod_less)
apply(drule td_set_field_lookupD)+
apply(drule td_set_offset_size)+
apply(subst len_of_addr_card)
apply(subst (asm) c_type_class.size_of_def [symmetric, where t="TYPE('b)"])+
apply arith
apply simp
done
from assms show ?thesis
apply(clarsimp simp: super_field_update_t_def c_type_class.super_field_update_t_def)
apply(rule ext)
apply(clarsimp simp: field_lvalue_def c_type_class.field_lvalue_def split: option.splits)
apply(safe; clarsimp?)
apply(frule_tac v=v and v'=v' in update_field_update)
apply clarsimp
apply(thin_tac "P = update_ti_t x y z" for P x y z)
apply(clarsimp simp: field_of_t_def c_type_class.field_of_t_def field_of_def c_type_class.typ_uinfo_t_def typ_uinfo_t_def)
apply(frule_tac m=0 in field_names_SomeD2; clarsimp)
apply(simp add: field_typ_def c_type_class.field_typ_def field_typ_untyped_def)
apply(frule field_lookup_export_uinfo_Some)
apply(frule_tac s=k in field_lookup_export_uinfo_Some)
apply simp
apply(drule (1) field_lookup_inject)
apply(subst c_type_class.typ_uinfo_t_def [symmetric, where t="TYPE('b)"])
apply simp
apply simp
apply(drule field_of_t_mem)+
apply(cases h)
apply(clarsimp simp: lift_t_if c_type_class.lift_t_if split: if_split_asm)
apply(drule (1) h_t_valid_neq_disjoint)
apply simp
apply(fastforce simp: unat_eq_zero field_of_t_def c_type_class.field_of_t_def field_of_def dest!: td_set_size_lte)
apply fast
apply(clarsimp simp: field_of_t_def c_type_class.field_of_t_def field_of_def td_set_field_lookup)
apply(fastforce simp: typ_uinfo_t_def c_type_class.typ_uinfo_t_def dest: field_lookup_export_uinfo_Some)
apply(clarsimp simp: field_of_t_def c_type_class.field_of_t_def field_of_def td_set_field_lookup)
apply(fastforce simp: typ_uinfo_t_def c_type_class.typ_uinfo_t_def dest: field_lookup_export_uinfo_Some)
done
qed
lemmas typ_rewrs =
lift_lift_t
lift_t_heap_update
lift_t_heap_update_same
lift_t_heap_update [OF lift_t_h_t_valid]
lift_t_heap_update_same [OF lift_t_h_t_valid]
lift_lift_t [OF lift_t_h_t_valid]
end