Theory SimplConv

(*
 * Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
 * Copyright (c) 2022 Apple Inc. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-2-Clause
 *)

(*
 * Convert a SIMPL fragment into a monadic fragment.
 *)

theory SimplConv
imports L1Peephole
begin

(*
 * Lemmas to unfold prior to L1 conversion.
 *)
named_theorems L1unfold
declare creturn_def [L1unfold]
declare creturn_void_def [L1unfold]
declare cbreak_def [L1unfold]
declare cgoto_def [L1unfold]
declare whileAnno_def [L1unfold]
declare ccatchbrk_def [L1unfold]
declare ccatchgoto_def [L1unfold]
declare ccatchreturn_def [L1unfold]
declare cexit_def [L1unfold]

(* Alternative definitions of "Language.switch" *)
lemma switch_alt_defs [L1unfold]:
  "switch x []  SKIP"
  "switch v ((a, b) # vs)  Cond {s. v s  a} b (switch v vs)"
  by auto

lemma sless_positive [simp]:
  " a < n; n  (2 ^ (len_of TYPE('a) - 1)) - 1   (a :: ('a::{len}) word) <s n"
  apply (subst signed.less_le)
  apply safe
  apply (subst word_sle_msb_le)
  apply safe
    apply (force simp: not_msb_from_less)
   apply simp
  apply simp
  done

lemma sle_positive [simp]:
  " a  n; n  (2 ^ (len_of TYPE('a) - 1)) - 1   (a :: ('a::{len}) word) <=s n"
  apply (clarsimp simp: signed.le_less)
  done

(*
 * These "optimisation" rules are actually assumed by LocalVarExtract,
 * so better apply them even if L1opt rules are disabled by no_opt.
 *)

lemmas [L1except] =
  L1_set_to_pred_def in_set_to_pred in_set_if_then (* rewrite SIMPL set notation *)
  L1_rel_to_fun_def Pair_unit_Image (* rewrite SIMPL rel notation *)
  L1_seq_assoc (* Normalise seqs. Not strictly required, but useful *)

end