Theory L1Peephole
section ‹Peep-hole L1 optimisations›
theory L1Peephole
imports L1Defs
begin
named_theorems L1opt
lemma L1_seq_assoc [L1opt]: "(L1_seq (L1_seq X Y) Z) = (L1_seq X (L1_seq Y Z))"
apply (clarsimp simp: L1_seq_def bind_assoc)
done
lemma L1_seq_skip [L1opt]:
"L1_seq A L1_skip = A"
"L1_seq L1_skip A = A"
apply (clarsimp simp: L1_seq_def L1_skip_def)+
done
lemma L1_condition_true [L1opt]: "L1_condition (λ_. True) A B = A"
apply (clarsimp simp: L1_condition_def condition_def)
done
lemma L1_condition_false [L1opt]: "L1_condition (λ_. False) A B = B"
apply (clarsimp simp: L1_condition_def condition_def)
done
lemma L1_condition_same [L1opt]: "L1_condition C A A = A"
apply (clarsimp simp: L1_defs condition_def spec_monad_ext run_bind)
done
lemma L1_fail_seq [L1opt]: "L1_seq L1_fail X = L1_fail"
apply (clarsimp simp: L1_seq_def L1_fail_def spec_monad_ext run_bind)
done
lemma L1_throw_seq [L1opt]: "L1_seq L1_throw X = L1_throw"
apply (clarsimp simp: L1_seq_def L1_throw_def)
done
lemma L1_fail_propagates [L1opt]:
"L1_seq L1_skip L1_fail = L1_fail"
"L1_seq (L1_modify M) L1_fail = L1_fail"
"L1_seq (L1_spec S) L1_fail = L1_fail"
"L1_seq (L1_guard G) L1_fail = L1_fail"
"L1_seq (L1_init I) L1_fail = L1_fail"
"L1_seq L1_fail L1_fail = L1_fail"
apply (unfold L1_defs)
apply (rule spec_monad_eqI; auto simp add: runs_to_iff)+
done
lemma L1_condition_distrib:
"L1_seq (L1_condition C L R) X = L1_condition C (L1_seq L X) (L1_seq R X)"
apply (unfold L1_defs)
apply (rule spec_monad_eqI; auto simp add: runs_to_iff)
done
lemmas L1_fail_propagate_condition [L1opt] = L1_condition_distrib [where X=L1_fail]
lemma L1_fail_propagate_catch [L1opt]:
"(L1_seq (L1_catch L R) L1_fail) = (L1_catch (L1_seq L L1_fail) (L1_seq R L1_fail))"
apply (unfold L1_defs)
apply (rule spec_monad_eqI; auto simp add: runs_to_iff)
apply (fastforce simp add: runs_to_def_old Exn_def)+
done
lemma L1_guard_false [L1opt]:
"L1_guard (λ_. False) = L1_fail"
unfolding L1_defs
by (simp add: guard_False_fail)
lemma L1_guard_true [L1opt]:
"L1_guard (λ_. True) = L1_skip"
unfolding L1_defs
by (simp add: spec_monad_ext run_guard)
lemma L1_condition_fail_lhs [L1opt]:
"L1_condition C L1_fail A = L1_seq (L1_guard (λs. ¬ C s)) A"
apply (unfold L1_defs)
apply (rule spec_monad_eqI; auto simp add: runs_to_iff)
done
lemma L1_condition_fail_rhs [L1opt]:
"L1_condition C A L1_fail = L1_seq (L1_guard C) A"
apply (unfold L1_defs)
apply (rule spec_monad_eqI; auto simp add: runs_to_iff)
done
lemma L1_catch_fail [L1opt]: "L1_catch L1_fail A = L1_fail"
unfolding L1_defs
apply (rule spec_monad_eqI; auto simp add: runs_to_iff)
done
lemma L1_while_fail [L1opt]: "L1_while C L1_fail = L1_guard (λs. ¬ C s)"
unfolding L1_defs
apply (subst whileLoop_unroll)
apply (rule spec_monad_ext)
apply (auto simp add: run_condition run_bind run_guard)
done
lemma whileLoop_succeeds_terminates_infinite:
assumes "run (whileLoop (λ_. C) (λ_. skip) ()) s ≠ ⊤"
shows "C s ⟹ False"
using assms by (induct rule: whileLoop_ne_top_induct) auto
lemma run_whileLoop_infinite: "run (whileLoop (λ_. C) (λ_. skip) ()) s = run (guard (λs. ¬ C s)) s"
proof (cases "C s")
case True
show ?thesis
apply (rule antisym)
subgoal
apply (subst whileLoop_unroll)
apply (simp add: run_guard)
done
subgoal
proof -
have "run (whileLoop (λ_. C) (λ_. skip) ()) s = ⊤"
using True whileLoop_succeeds_terminates_infinite[of C s] by auto
hence "¬ succeeds (whileLoop (λ_. C) (λ_. skip) ()) s"
by (simp add: succeeds_def)
then show ?thesis
by (simp add: run_guard succeeds_def True top_post_state_def)
qed
done
next
case False
then show ?thesis apply (subst whileLoop_unroll) by (simp add: run_guard)
qed
lemma whileLoop_infinite: "whileLoop (λ_. C) (λ_. skip) () = guard (λs. ¬ C s)"
apply (rule spec_monad_ext)
apply (rule run_whileLoop_infinite)
done
lemma L1_while_infinite [L1opt]: "L1_while C L1_skip = L1_guard (λs. ¬ C s)"
unfolding L1_defs
apply (rule whileLoop_infinite)
done
lemma L1_while_false [L1opt]:
"L1_while (λ_. False) B = L1_skip"
apply (clarsimp simp: L1_while_def L1_skip_def)
apply (subst whileLoop_unroll)
apply clarsimp
done
declare ucast_id [L1opt]
declare scast_id [L1opt]
declare L1_set_to_pred_def [L1opt]
declare L1_rel_to_fun_def [L1opt]
lemma in_set_to_pred [L1opt]: "(λs. s ∈ {x. P x}) = P"
apply simp
done
lemma in_set_if_then [L1opt]: "(s ∈ (if P then A else B)) = (if P then (s ∈ A) else (s ∈ B))"
apply simp
done
lemma Pair_unit_Image[L1opt]: "Pair () ` S `` {x} = {(u, x'). (x, x') ∈ S}"
by auto
lemmas if_simps =
if_x_Not if_Not_x if_cancel if_True if_False if_bool_simps
declare empty_iff [L1opt]
declare UNIV_I [L1opt]
declare singleton_iff [L1opt]
declare if_simps [L1opt]
declare simp_thms [L1opt]
lemma L1_call_stop_cong: "(L1_call f n g r) = (L1_call f n g r)"
by simp
lemma L1_merge_assignments : " (L1_seq (L1_modify f)
(L1_seq (L1_modify g) X)) ≡ L1_seq (L1_modify (λs. g (f s))) X"
apply (subst atomize_eq)
apply (unfold L1_defs)
apply (rule spec_monad_eqI; auto simp add: runs_to_iff)
done
end