Theory Pairing_Heap_List1_Analysis2
subsection ‹Transfer of Tree Analysis to List Representation›
theory Pairing_Heap_List1_Analysis2
imports
Pairing_Heap_List1_Analysis
Pairing_Heap_Tree_Analysis
begin
text‹This theory transfers the amortized analysis of the tree-based
pairing heaps to Okasaki's pairing heaps.›
abbreviation "is_root' == Pairing_Heap_List1_Analysis.is_root"
abbreviation "del_min' == Pairing_Heap_List1.del_min"
abbreviation "insert' == Pairing_Heap_List1.insert"
abbreviation "merge' == Pairing_Heap_List1.merge"
abbreviation "pass⇩1' == Pairing_Heap_List1.pass⇩1"
abbreviation "pass⇩2' == Pairing_Heap_List1.pass⇩2"
abbreviation "T⇩p⇩a⇩s⇩s⇩1' == Pairing_Heap_List1_Analysis.T⇩p⇩a⇩s⇩s⇩1"
abbreviation "T⇩p⇩a⇩s⇩s⇩2' == Pairing_Heap_List1_Analysis.T⇩p⇩a⇩s⇩s⇩2"
fun homs :: "'a heap list ⇒ 'a tree" where
"homs [] = Leaf" |
"homs (Hp x lhs # rhs) = Node (homs lhs) x (homs rhs)"
fun hom :: "'a heap ⇒ 'a tree" where
"hom heap.Empty = Leaf" |
"hom (Hp x hs) = (Node (homs hs) x Leaf)"
lemma homs_pass1': "no_Emptys hs ⟹ homs(pass⇩1' hs) = pass⇩1 (homs hs)"
apply(induction hs rule: Pairing_Heap_List1.pass⇩1.induct)
subgoal for h1 h2
apply(case_tac h1)
apply simp
apply(case_tac h2)
apply (auto)
done
apply simp
subgoal for h
apply(case_tac h)
apply (auto)
done
done
lemma hom_merge': "⟦ no_Emptys lhs; Pairing_Heap_List1_Analysis.is_root h⟧
⟹ hom (merge' (Hp x lhs) h) = link ⟨homs lhs, x, hom h⟩"
by(cases h) auto
lemma hom_pass2': "no_Emptys hs ⟹ hom(pass⇩2' hs) = pass⇩2 (homs hs)"
by(induction hs rule: homs.induct) (auto simp: hom_merge' is_root_pass2)
lemma del_min': "is_root' h ⟹ hom(del_min' h) = del_min (hom h)"
by(cases h)
(auto simp: homs_pass1' hom_pass2' no_Emptys_pass1 is_root_pass2)
lemma insert': "is_root' h ⟹ hom(insert' x h) = insert x (hom h)"
by(cases h)(auto)
lemma merge':
"⟦ is_root' h1; is_root' h2 ⟧ ⟹ hom(merge' h1 h2) = merge (hom h1) (hom h2)"
apply(cases h1)
apply(simp)
apply(cases h2)
apply(auto)
done
lemma T_pass1': "no_Emptys hs ⟹ T⇩p⇩a⇩s⇩s⇩1' hs = T⇩p⇩a⇩s⇩s⇩1(homs hs)"
apply(induction hs rule: Pairing_Heap_List1.pass⇩1.induct)
subgoal for h1 h2
apply(case_tac h1)
apply simp
apply(case_tac h2)
apply (auto)
done
apply simp
subgoal for h
apply(case_tac h)
apply (auto)
done
done
lemma T_pass2': "no_Emptys hs ⟹ T⇩p⇩a⇩s⇩s⇩2' hs = T⇩p⇩a⇩s⇩s⇩2(homs hs)"
by(induction hs rule: homs.induct) (auto simp: hom_merge' is_root_pass2)
lemma size_hp: "is_root' h ⟹ size_hp h = size (hom h)"
proof(induction h)
case (Hp _ hs) thus ?case
apply(induction hs rule: homs.induct)
apply simp
apply force
apply simp
done
qed simp
interpretation Amortized2
where arity = arity and exec = exec and inv = is_root
and cost = cost and Φ = Φ and U = U
and hom = hom
and exec' = Pairing_Heap_List1_Analysis.exec
and cost' = Pairing_Heap_List1_Analysis.cost and inv' = "is_root'"
and U' = Pairing_Heap_List1_Analysis.U
proof (standard, goal_cases)
case (1 _ f) thus ?case
by (cases f)(auto simp: merge' del_min' numeral_eq_Suc)
next
case (2 ts f)
show ?case
proof(cases f)
case [simp]: Del_min
then obtain h where [simp]: "ts = [h]" using 2 by auto
show ?thesis using 2
by(cases h) (auto simp: is_root_pass2 no_Emptys_pass1)
qed (insert 2,
auto simp: Pairing_Heap_List1_Analysis.is_root_merge numeral_eq_Suc)
next
case (3 t) thus ?case by (cases t) (auto)
next
case (4 ts f) show ?case
proof (cases f)
case [simp]: Del_min
then obtain h where [simp]: "ts = [h]" using 4 by auto
show ?thesis using 4
by (cases h)(auto simp: T_pass1' T_pass2' no_Emptys_pass1 homs_pass1')
qed (insert 4, auto)
next
case (5 _ f) thus ?case by(cases f) (auto simp: size_hp numeral_eq_Suc)
qed
end