Theory Pairing_Heap_List1_Analysis
subsection ‹Okasaki's Pairing Heap›
theory Pairing_Heap_List1_Analysis
imports
Pairing_Heap.Pairing_Heap_List1
Amortized_Framework
Priority_Queue_ops_merge
Lemmas_log
begin
text
‹Amortized analysis of pairing heaps as defined by Okasaki \<^cite>‹"Okasaki"›.›
fun hps where
"hps (Hp _ hs) = hs"
lemma merge_Empty[simp]: "merge heap.Empty h = h"
by(cases h) auto
lemma merge2: "merge (Hp x lx) h = (case h of heap.Empty ⇒ Hp x lx | (Hp y ly) ⇒
(if x < y then Hp x (Hp y ly # lx) else Hp y (Hp x lx # ly)))"
by(auto split: heap.split)
lemma pass1_Nil_iff: "pass⇩1 hs = [] ⟷ hs = []"
by(cases hs rule: pass⇩1.cases) auto
subsubsection ‹Invariant›
fun no_Empty :: "'a :: linorder heap ⇒ bool" where
"no_Empty heap.Empty = False" |
"no_Empty (Hp x hs) = (∀h ∈ set hs. no_Empty h)"
abbreviation no_Emptys :: "'a :: linorder heap list ⇒ bool" where
"no_Emptys hs ≡ ∀h ∈ set hs. no_Empty h"
fun is_root :: "'a :: linorder heap ⇒ bool" where
"is_root heap.Empty = True" |
"is_root (Hp x hs) = no_Emptys hs"
lemma is_root_if_no_Empty: "no_Empty h ⟹ is_root h"
by(cases h) auto
lemma no_Emptys_hps: "no_Empty h ⟹ no_Emptys(hps h)"
by(induction h) auto
lemma no_Empty_merge: "⟦ no_Empty h1; no_Empty h2⟧ ⟹ no_Empty (merge h1 h2)"
by (cases "(h1,h2)" rule: merge.cases) auto
lemma is_root_merge: "⟦ is_root h1; is_root h2⟧ ⟹ is_root (merge h1 h2)"
by (cases "(h1,h2)" rule: merge.cases) auto
lemma no_Emptys_pass1:
"no_Emptys hs ⟹ no_Emptys (pass⇩1 hs)"
by(induction hs rule: pass⇩1.induct)(auto simp: no_Empty_merge)
lemma is_root_pass2: "no_Emptys hs ⟹ is_root(pass⇩2 hs)"
proof(induction hs)
case (Cons _ hs)
show ?case
proof cases
assume "hs = []" thus ?thesis using Cons by (auto simp: is_root_if_no_Empty)
next
assume "hs ≠ []" thus ?thesis using Cons by(auto simp: is_root_merge is_root_if_no_Empty)
qed
qed simp
subsubsection ‹Complexity›
fun size_hp :: "'a heap ⇒ nat" where
"size_hp heap.Empty = 0" |
"size_hp (Hp x hs) = sum_list(map size_hp hs) + 1"
abbreviation size_hps where
"size_hps hs ≡ sum_list(map size_hp hs)"
fun Φ_hps :: "'a heap list ⇒ real" where
"Φ_hps [] = 0" |
"Φ_hps (heap.Empty # hs) = Φ_hps hs" |
"Φ_hps (Hp x hsl # hsr) =
Φ_hps hsl + Φ_hps hsr + log 2 (size_hps hsl + size_hps hsr + 1)"
fun Φ :: "'a heap ⇒ real" where
"Φ heap.Empty = 0" |
"Φ (Hp _ hs) = Φ_hps hs + log 2 (size_hps(hs)+1)"
lemma Φ_hps_ge0: "Φ_hps hs ≥ 0"
by (induction hs rule: Φ_hps.induct) auto
lemma no_Empty_ge0: "no_Empty h ⟹ size_hp h > 0"
by(cases h) auto
declare algebra_simps[simp]
lemma Φ_hps1: "Φ_hps [h] = Φ h"
by(cases h) auto
lemma size_hp_merge: "size_hp(merge h1 h2) = size_hp h1 + size_hp h2"
by (induction h1 h2 rule: merge.induct) simp_all
lemma pass⇩1_size[simp]: "size_hps (pass⇩1 hs) = size_hps hs"
by (induct hs rule: pass⇩1.induct) (simp_all add: size_hp_merge)
lemma ΔΦ_insert:
"Φ (Pairing_Heap_List1.insert x h) - Φ h ≤ log 2 (size_hp h + 1)"
by(cases h)(auto simp: size_hp_merge)
lemma ΔΦ_merge:
"Φ (merge h1 h2) - Φ h1 - Φ h2
≤ log 2 (size_hp h1 + size_hp h2 + 1) + 1"
proof(induction h1 h2 rule: merge.induct)
case (3 x lx y ly)
thus ?case
using ld_le_2ld[of "size_hps lx" "size_hps ly"]
log_le_cancel_iff[of 2 "size_hps lx + size_hps ly + 2" "size_hps lx + size_hps ly + 3"]
by (auto simp del: log_le_cancel_iff)
qed auto
fun sum_ub :: "'a heap list ⇒ real" where
"sum_ub [] = 0"
| "sum_ub [_] = 0"
| "sum_ub [h1, h2] = 2*log 2 (size_hp h1 + size_hp h2)"
| "sum_ub (h1 # h2 # hs) = 2*log 2 (size_hp h1 + size_hp h2 + size_hps hs)
- 2*log 2 (size_hps hs) - 2 + sum_ub hs"
lemma ΔΦ_pass1_sum_ub: "no_Emptys hs ⟹
Φ_hps (pass⇩1 hs) - Φ_hps hs ≤ sum_ub hs" (is "_ ⟹ ?P hs")
proof (induction hs rule: sum_ub.induct)
case (3 h1 h2)
then obtain x hsx y hsy where [simp]: "h1 = Hp x hsx" "h2 = Hp y hsy"
by simp (meson no_Empty.elims(2))
have 0: "⋀x y::real. 0 ≤ x ⟹ x ≤ y ⟹ x ≤ 2*y" by linarith
show ?case using 3 by (auto simp add: add_increasing 0)
next
case (4 h1 h2 h3 hs)
hence IH: "?P(h3#hs)" by auto
from "4.prems" obtain x hsx y hsy where [simp]: "h1 = Hp x hsx" "h2 = Hp y hsy"
by simp (meson no_Empty.elims(2))
from "4.prems" have s3: "size_hp h3 > 0"
apply auto using size_hp.elims by force
let ?ry = "h3 # hs"
let ?rx = "Hp y hsy # ?ry"
let ?h = "Hp x hsx # ?rx"
have "Φ_hps(pass⇩1 ?h) - Φ_hps ?h
≤ log 2 (1 + size_hps hsx + size_hps hsy) - log 2 (1 + size_hps hsy + size_hps ?ry) + sum_ub ?ry"
using IH by simp
also have "log 2 (1 + size_hps hsx + size_hps hsy) - log 2 (1 + size_hps hsy + size_hps ?ry)
≤ 2*log 2 (size_hps ?h) - 2*log 2 (size_hps ?ry) - 2"
proof -
have "log 2 (1 + size_hps hsx + size_hps hsy) + log 2 (size_hps ?ry) - 2*log 2 (size_hps ?h)
= log 2 ((1 + size_hps hsx + size_hps hsy)/(size_hps ?h) ) + log 2 (size_hps ?ry / size_hps ?h)"
using s3 by (simp add: log_divide)
also have "… ≤ -2"
proof -
have "2 + …
≤ 2*log 2 ((1 + size_hps hsx + size_hps hsy) / size_hps ?h + size_hps ?ry / size_hps ?h)"
using ld_sum_inequality [of "(1 + size_hps hsx + size_hps hsy) / size_hps ?h" "(size_hps ?ry / size_hps ?h)"] using s3 by simp
also have "… ≤ 0" by (simp add: field_simps log_divide add_pos_nonneg)
finally show ?thesis by linarith
qed
finally have "log 2 (1 + size_hps hsx + size_hps hsy) + log 2 (size_hps ?ry) + 2
≤ 2*log 2 (size_hps ?h)" by simp
moreover have "log 2 (size_hps ?ry) ≤ log 2 (size_hps ?rx)" using s3 by simp
ultimately have "log 2 (1 + size_hps hsx + size_hps hsy) - …
≤ 2*log 2 (size_hps ?h) - 2*log 2 (size_hps ?ry) - 2" by linarith
thus ?thesis by simp
qed
finally show ?case by (simp)
qed simp_all
lemma ΔΦ_pass1: assumes "hs ≠ []" "no_Emptys hs"
shows "Φ_hps (pass⇩1 hs) - Φ_hps hs ≤ 2 * log 2 (size_hps hs) - length hs + 2"
proof -
have "sum_ub hs ≤ 2 * log 2 (size_hps hs) - length hs + 2"
using assms by (induct hs rule: sum_ub.induct) (auto dest: no_Empty_ge0)
thus ?thesis using ΔΦ_pass1_sum_ub[OF assms(2)] by linarith
qed
lemma size_hps_pass2: "hs ≠ [] ⟹ no_Emptys hs ⟹
no_Empty(pass⇩2 hs) & size_hps hs = size_hps(hps(pass⇩2 hs))+1"
apply(induction hs rule: Φ_hps.induct)
apply (fastforce simp: merge2 split: heap.split)+
done
lemma ΔΦ_pass2: "hs ≠ [] ⟹ no_Emptys hs ⟹
Φ (pass⇩2 hs) - Φ_hps hs ≤ log 2 (size_hps hs)"
proof (induction hs)
case (Cons h hs)
thus ?case
proof cases
assume "hs = []"
thus ?thesis using Cons by (auto simp add: Φ_hps1 dest: no_Empty_ge0)
next
assume *: "hs ≠ []"
obtain x hs2 where [simp]: "h = Hp x hs2"
using Cons.prems(2)by simp (meson no_Empty.elims(2))
show ?thesis
proof (cases "pass⇩2 hs")
case Empty thus ?thesis using Φ_hps_ge0[of hs]
by(simp add: add_increasing xt1(3)[OF mult_2, OF add_increasing])
next
case (Hp y hs3)
with Cons * size_hps_pass2[of hs] show ?thesis by(auto simp: add_mono)
qed
qed
qed simp
lemma ΔΦ_del_min: assumes "hps h ≠ []" "no_Empty h"
shows "Φ (del_min h) - Φ h
≤ 3 * log 2 (size_hps(hps h)) - length(hps h) + 2"
proof -
obtain x hs where [simp]: "h = Hp x hs" using assms(2) by (cases h) auto
let ?ΔΦ⇩1 = "Φ_hps(hps h) - Φ h"
let ?ΔΦ⇩2 = "Φ(pass⇩2(pass⇩1 (hps h))) - Φ_hps (hps h)"
let ?ΔΦ = "Φ (del_min h) - Φ h"
have "Φ(pass⇩2(pass⇩1(hps h))) - Φ_hps (pass⇩1(hps h)) ≤ log 2 (size_hps(hps h))"
using ΔΦ_pass2[of "pass⇩1(hps h)"] using assms
by (auto simp: pass1_Nil_iff no_Emptys_pass1 dest: no_Emptys_hps)
moreover have "Φ_hps (pass⇩1 (hps h)) - Φ_hps (hps h) ≤ 2*… - length (hps h) + 2"
using ΔΦ_pass1[OF assms(1) no_Emptys_hps[OF assms(2)]] by blast
moreover have "?ΔΦ⇩1 ≤ 0" by simp
moreover have "?ΔΦ = ?ΔΦ⇩1 + ?ΔΦ⇩2" by simp
ultimately show ?thesis by linarith
qed
fun exec :: "'a :: linorder op ⇒ 'a heap list ⇒ 'a heap" where
"exec Empty [] = heap.Empty" |
"exec Del_min [h] = del_min h" |
"exec (Insert x) [h] = Pairing_Heap_List1.insert x h" |
"exec Merge [h1,h2] = merge h1 h2"
fun T⇩p⇩a⇩s⇩s⇩1 :: "'a heap list ⇒ nat" where
"T⇩p⇩a⇩s⇩s⇩1 [] = 1"
| "T⇩p⇩a⇩s⇩s⇩1 [_] = 1"
| "T⇩p⇩a⇩s⇩s⇩1 (_ # _ # hs) = 1 + T⇩p⇩a⇩s⇩s⇩1 hs"
fun T⇩p⇩a⇩s⇩s⇩2 :: "'a heap list ⇒ nat" where
"T⇩p⇩a⇩s⇩s⇩2 [] = 1"
| "T⇩p⇩a⇩s⇩s⇩2 (_ # hs) = 1 + T⇩p⇩a⇩s⇩s⇩2 hs"
fun cost :: "'a :: linorder op ⇒ 'a heap list ⇒ nat" where
"cost Empty _ = 1" |
"cost Del_min [heap.Empty] = 1" |
"cost Del_min [Hp x hs] = T⇩p⇩a⇩s⇩s⇩2 (pass⇩1 hs) + T⇩p⇩a⇩s⇩s⇩1 hs" |
"cost (Insert a) _ = 1" |
"cost Merge _ = 1"
fun U :: "'a :: linorder op ⇒ 'a heap list ⇒ real" where
"U Empty _ = 1" |
"U (Insert a) [h] = log 2 (size_hp h + 1) + 1" |
"U Del_min [h] = 3*log 2 (size_hp h + 1) + 4" |
"U Merge [h1,h2] = log 2 (size_hp h1 + size_hp h2 + 1) + 2"
interpretation pairing: Amortized
where arity = arity and exec = exec and cost = cost and inv = "is_root"
and Φ = Φ and U = U
proof (standard, goal_cases)
case (1 ss f) show ?case
proof (cases f)
case Empty with 1 show ?thesis by simp
next
case Insert thus ?thesis using 1 by(auto simp: is_root_merge)
next
case Merge
thus ?thesis using 1 by(auto simp: is_root_merge numeral_eq_Suc)
next
case [simp]: Del_min
then obtain h where [simp]: "ss = [h]" using 1 by auto
show ?thesis
proof (cases h)
case [simp]: (Hp _ hs)
show ?thesis
proof cases
assume "hs = []" thus ?thesis by simp
next
assume "hs ≠ []" thus ?thesis
using 1(1) no_Emptys_pass1 by (auto intro: is_root_pass2)
qed
qed simp
qed
next
case (2 s) show ?case by (cases s) (auto simp: Φ_hps_ge0)
next
case (3 ss f) show ?case
proof (cases f)
case Empty with 3 show ?thesis by(auto)
next
case Insert thus ?thesis using ΔΦ_insert 3 by auto
next
case [simp]: Del_min
then obtain h where [simp]: "ss = [h]" using 3 by auto
show ?thesis
proof (cases h)
case [simp]: (Hp x hs)
have "T⇩p⇩a⇩s⇩s⇩2 (pass⇩1 hs) + T⇩p⇩a⇩s⇩s⇩1 hs ≤ 2 + length hs"
by (induct hs rule: pass⇩1.induct) simp_all
hence "cost f ss ≤ …" by simp
moreover have "Φ (del_min h) - Φ h ≤ 3*log 2 (size_hp h + 1) - length hs + 2"
proof (cases "hs = []")
case False
hence "Φ (del_min h) - Φ h ≤ 3*log 2 (size_hps hs) - length hs + 2"
using ΔΦ_del_min[of h] 3(1) by simp
also have "… ≤ 3*log 2 (size_hp h + 1) - length hs + 2"
using False 3(1) size_hps_pass2 by fastforce
finally show ?thesis .
qed simp
ultimately show ?thesis by simp
qed simp
next
case [simp]: Merge
then obtain h1 h2 where [simp]: "ss = [h1, h2]"
using 3 by(auto simp: numeral_eq_Suc)
show ?thesis
proof (cases "h1 = heap.Empty ∨ h2 = heap.Empty")
case True thus ?thesis by auto
next
case False
then obtain x1 x2 hs1 hs2 where [simp]: "h1 = Hp x1 hs1" "h2 = Hp x2 hs2"
by (meson hps.cases)
have "Φ (merge h1 h2) - Φ h1 - Φ h2 ≤ log 2 (size_hp h1 + size_hp h2 + 1) + 1"
using ΔΦ_merge[of h1 h2] by simp
thus ?thesis by(simp)
qed
qed
qed
end