Theory Misc

theory Misc
imports Quicksort Option_ord Product_Lexorder Infinite_Set List_More
(*  Title:       Miscellaneous Definitions and Lemmas
    Author:      Peter Lammich <peter.lammich@uni-muenster.de>
    Maintainer:  Peter Lammich <peter.lammich@uni-muenster.de>
                 Thomas Tuerk <tuerk@in.tum.de>
*)

(*
  CHANGELOG:
    2010-05-09: Removed AC, AI locales, they are superseeded by concepts
                  from OrderedGroups
    2010-09-22: Merges with ext/Aux

*)

section {* Miscellaneous Definitions and Lemmas *}

theory Misc
imports Main
  "~~/src/HOL/Library/Multiset"
  "~~/src/HOL/ex/Quicksort"
  "~~/src/HOL/Library/Option_ord"
  "~~/src/HOL/Library/Product_Lexorder"
  "~~/src/HOL/Library/Infinite_Set"
  "List_More"
begin
text_raw {*\label{thy:Misc}*}

text {* Here we provide a collection of miscellaneous definitions and helper lemmas *}

subsection "Miscellaneous (1)"

text {* This stuff is used in this theory itself, and thus occurs in first place or is simply not sorted into any other section of this theory. *}

lemma IdD: "(a,b)∈Id ⟹ a=b" by simp

subsubsection "AC-operators"

text {* Locale to declare AC-laws as simplification rules *}
locale Assoc =
  fixes f
  assumes assoc[simp]: "f (f x y) z = f x (f y z)"

locale AC = Assoc +
  assumes commute[simp]: "f x y = f y x"

lemma (in AC) left_commute[simp]: "f x (f y z) = f y (f x z)"
  by (simp only: assoc[symmetric]) simp

lemmas (in AC) AC_simps = commute assoc left_commute

text {* Locale to define functions from surjective, unique relations *}
locale su_rel_fun =
  fixes F and f
  assumes unique: "⟦(A,B)∈F; (A,B')∈F⟧ ⟹ B=B'"
  assumes surjective: "⟦!!B. (A,B)∈F ⟹ P⟧ ⟹ P"
  assumes f_def: "f A == THE B. (A,B)∈F"

lemma (in su_rel_fun) repr1: "(A,f A)∈F" proof (unfold f_def)
  obtain B where "(A,B)∈F" by (rule surjective)
  with theI[where P="λB. (A,B)∈F", OF this] show "(A, THE x. (A, x) ∈ F) ∈ F" by (blast intro: unique)
qed

lemma (in su_rel_fun) repr2: "(A,B)∈F ⟹ B=f A" using repr1
  by (blast intro: unique)

lemma (in su_rel_fun) repr: "(f A = B) = ((A,B)∈F)" using repr1 repr2
  by (blast)


lemma set_pair_flt_false[simp]: "{ (a,b). False } = {}"
  by simp

lemma in_pair_collect_simp[simp]: "(a,b)∈{(a,b). P a b} ⟷ P a b"
  by auto

    -- "Contract quantification over two variables to pair"
lemma Ex_prod_contract: "(∃a b. P a b) ⟷ (∃z. P (fst z) (snd z))"
  by auto

lemma All_prod_contract: "(∀a b. P a b) ⟷ (∀z. P (fst z) (snd z))"
  by auto


lemma nat_geq_1_eq_neqz: "x≥1 ⟷ x≠(0::nat)"
  by auto

lemma nat_in_between_eq:
  "(a<b ∧ b≤Suc a) ⟷ b = Suc a"
  "(a≤b ∧ b<Suc a) ⟷ b = a"
  by auto

lemma Suc_n_minus_m_eq: "⟦ n≥m; m>1 ⟧ ⟹ Suc (n - m) = n - (m - 1)"
  by simp

lemma Suc_to_right: "Suc n = m ⟹ n = m - Suc 0" by simp
lemma Suc_diff[simp]: "⋀n m. n≥m ⟹ m≥1 ⟹ Suc (n - m) = n - (m - 1)"
  by simp

lemma if_not_swap[simp]: "(if ¬c then a else b) = (if c then b else a)" by auto
lemma all_to_meta: "Trueprop (∀a. P a) ≡ (⋀a. P a)"
  apply rule
  by auto

lemma imp_to_meta: "Trueprop (P⟶Q) ≡ (P⟹Q)"
  apply rule
  by auto

lemma disjE1: "⟦ P ∨ Q; P ⟹ R; ⟦¬P;Q⟧ ⟹ R ⟧ ⟹ R"
  by metis
lemma disjE2: "⟦ P ∨ Q; ⟦P; ¬Q⟧ ⟹ R; Q ⟹ R ⟧ ⟹ R"
  by metis

lemma TERMI: "TERM x" unfolding Pure.term_def .

(* for some reason, there is no such rule in HOL *)
lemma iffI2: "⟦P ⟹ Q; ¬ P ⟹ ¬ Q⟧ ⟹ P ⟷ Q"
by metis

lemma iffExI:
  "⟦ ⋀x. P x ⟹ Q x; ⋀x. Q x ⟹ P x ⟧ ⟹ (∃x. P x) ⟷ (∃x. Q x)"
by metis

lemma bex2I[intro?]: "⟦ (a,b)∈S; (a,b)∈S ⟹ P a b ⟧ ⟹ ∃a b. (a,b)∈S ∧ P a b"
  by blast


subsection {* Sets *}

  lemma subset_minus_empty: "A⊆B ⟹ A-B = {}" by auto

  lemma set_notEmptyE: "⟦S≠{}; !!x. x∈S ⟹ P⟧ ⟹ P"
    by (metis equals0I)

  lemma inter_compl_diff_conv[simp]: "A ∩ -B = A - B" by auto

  lemma subset_Collect_conv: "S ⊆ Collect P ⟷ (∀x∈S. P x)"
    by auto

  lemma memb_imp_not_empty: "x∈S ⟹ S≠{}"
    by auto


  (* TODO: Groups_Big.comm_monoid_add_class.setsum.subset_diff*)
  lemma setsum_subset_split: assumes P: "finite A" "B⊆A" shows T: "setsum f A = setsum f (A-B) + setsum f B" proof -
    from P have 1: "A = (A-B) ∪ B" by auto
    have 2: "(A-B) ∩ B = {}" by auto
    from P have 3: "finite B" by (blast intro: finite_subset)
    from P have 4: "finite (A-B)" by simp
    from 2 3 4 setsum.union_disjoint have "setsum f ((A-B) ∪ B) = setsum f (A-B) + setsum f B" by blast
    with 1 show ?thesis by simp
  qed


  lemma disjoint_mono: "⟦ a⊆a'; b⊆b'; a'∩b'={} ⟧ ⟹ a∩b={}" by auto

  lemma disjoint_alt_simp1: "A-B = A ⟷ A∩B = {}" by auto
  lemma disjoint_alt_simp2: "A-B ≠ A ⟷ A∩B ≠ {}" by auto
  lemma disjoint_alt_simp3: "A-B ⊂ A ⟷ A∩B ≠ {}" by auto

  lemma disjointI[intro?]: "⟦ ⋀x. ⟦x∈a; x∈b⟧ ⟹ False ⟧ ⟹ a∩b={}"
    by auto


  lemmas set_simps = subset_minus_empty disjoint_alt_simp1 disjoint_alt_simp2 disjoint_alt_simp3 Un_absorb1 Un_absorb2

  lemma set_minus_singleton_eq: "x∉X ⟹ X-{x} = X"
    by auto

  lemma set_diff_diff_left: "A-B-C = A-(B∪C)"
    by auto


  lemma image_update[simp]: "x∉A ⟹ f(x:=n)`A = f`A"
    by auto

  lemma set_union_code [code_unfold]:
    "set xs ∪ set ys = set (xs @ ys)"
    by auto

  lemma pair_set_inverse[simp]: "{(a,b). P a b}¯ = {(b,a). P a b}"
    by auto

  lemma in_fst_imageE:
    assumes "x ∈ fst`S"
    obtains y where "(x,y)∈S"
    using assms by auto

  lemma in_snd_imageE:
    assumes "y ∈ snd`S"
    obtains x where "(x,y)∈S"
    using assms by auto

  lemma fst_image_mp: "⟦fst`A ⊆ B; (x,y)∈A ⟧ ⟹ x∈B"
    by (metis Domain.DomainI fst_eq_Domain in_mono)

  lemma snd_image_mp: "⟦snd`A ⊆ B; (x,y)∈A ⟧ ⟹ y∈B"
    by (metis Range.intros set_rev_mp snd_eq_Range)

  lemma inter_eq_subsetI: "⟦ S⊆S'; A∩S' = B∩S' ⟧ ⟹ A∩S = B∩S"
    by auto

text {*
  Decompose general union over sum types.
*}
lemma Union_plus:
  "(⋃ x ∈ A <+> B. f x) = (⋃ a ∈ A. f (Inl a)) ∪ (⋃b ∈ B. f (Inr b))"
by auto

lemma Union_sum:
  "(⋃x. f (x::'a+'b)) = (⋃l. f (Inl l)) ∪ (⋃r. f (Inr r))"
  (is "?lhs = ?rhs")
proof -
  have "?lhs = (⋃x ∈ UNIV <+> UNIV. f x)"
    by simp
  thus ?thesis
    by (simp only: Union_plus)
qed


  subsubsection {* Finite Sets *}

  lemma card_1_singletonI: "⟦finite S; card S = 1; x∈S⟧ ⟹ S={x}"
  proof (safe, rule ccontr, goal_cases)
    case prems: (1 x')
    hence "finite (S-{x})" "S-{x} ≠ {}" by auto
    hence "card (S-{x}) ≠ 0" by auto
    moreover from prems(1-3) have "card (S-{x}) = 0" by auto
    ultimately have False by simp
    thus ?case ..
  qed

  lemma card_insert_disjoint': "⟦finite A; x ∉ A⟧ ⟹ card (insert x A) - Suc 0 = card A"
    by (drule (1) card_insert_disjoint) auto

  lemma card_eq_UNIV[simp]: "card (S::'a::finite set) = card (UNIV::'a set) ⟷ S=UNIV"
  proof (auto)
    fix x
    assume A: "card S = card (UNIV::'a set)"
    show "x∈S" proof (rule ccontr)
      assume "x∉S" hence "S⊂UNIV" by auto
      with psubset_card_mono[of UNIV S] have "card S < card (UNIV::'a set)" by auto
      with A show False by simp
    qed
  qed

  lemma card_eq_UNIV2[simp]: "card (UNIV::'a set) = card (S::'a::finite set) ⟷ S=UNIV"
    using card_eq_UNIV[of S] by metis

  lemma card_ge_UNIV[simp]: "card (UNIV::'a::finite set) ≤ card (S::'a set) ⟷ S=UNIV"
    using card_mono[of "UNIV::'a::finite set" S, simplified]
    by auto

  lemmas length_remdups_card = length_remdups_concat[of "[l]", simplified] for l

  lemma fs_contract: "fst ` { p | p. f (fst p) (snd p) ∈ S } = { a . ∃b. f a b ∈ S }"
    by (simp add: image_Collect)

lemma finite_Collect: "finite S ⟹ inj f ⟹ finite {a. f a : S}"
by(simp add: finite_vimageI vimage_def[symmetric])

  -- "Finite sets have an injective mapping to an initial segments of the
      natural numbers"
  (* This lemma is also in the standard library (from Isabelle2009-1 on)
      as @{thm [source] Finite_Set.finite_imp_inj_to_nat_seg}. However, it is formulated with HOL's
      ∃ there rather then with the meta-logic obtain *)
  lemma finite_imp_inj_to_nat_seg':
    fixes A :: "'a set"
    assumes A: "finite A"
    obtains f::"'a ⇒ nat" and n::"nat" where
      "f`A = {i. i<n}"
      "inj_on f A"
    by (metis A finite_imp_inj_to_nat_seg)

  lemma lists_of_len_fin1: "finite P ⟹ finite (lists P ∩ { l. length l = n })"
  proof (induct n)
    case 0 thus ?case by auto
  next
    case (Suc n)
    have "lists P ∩ { l. length l = Suc n }
          = (λ(a,l). a#l) ` (P × (lists P ∩ {l. length l = n}))"
      apply auto
      apply (case_tac x)
      apply auto
      done
    moreover from Suc have "finite …" by auto
    ultimately show ?case by simp
  qed

  lemma lists_of_len_fin2: "finite P ⟹ finite (lists P ∩ { l. n = length l })"
  proof -
    assume A: "finite P"
    have S: "{ l. n = length l } = { l. length l = n }" by auto
    have "finite (lists P ∩ { l. n = length l })
      ⟷ finite (lists P ∩ { l. length l = n })"
      by (subst S) simp

    thus ?thesis using lists_of_len_fin1[OF A] by auto
  qed

  lemmas lists_of_len_fin = lists_of_len_fin1 lists_of_len_fin2


  (* Try (simp only: cset_fin_simps, fastforce intro: cset_fin_intros) when reasoning about finiteness of collected sets *)
  lemmas cset_fin_simps = Ex_prod_contract fs_contract[symmetric] image_Collect[symmetric]
  lemmas cset_fin_intros = finite_imageI finite_Collect inj_onI


lemma Un_interval:
  fixes b1 :: "'a::linorder"
  assumes "b1≤b2" and "b2≤b3"
  shows "{ f i | i. b1≤i ∧ i<b2 } ∪ { f i | i. b2≤i ∧ i<b3 }
    = {f i | i. b1≤i ∧ i<b3}"
  using assms
  apply -
  apply rule
  apply safe []
  apply (rule_tac x=i in exI, auto) []
  apply (rule_tac x=i in exI, auto) []
  apply rule
  apply simp
  apply (elim exE, simp)
  apply (case_tac "i<b2")
  apply (rule disjI1)
  apply (rule_tac x=i in exI, auto) []
  apply (rule disjI2)
  apply (rule_tac x=i in exI, auto) []
  done

text {*
  The standard library proves that a generalized union is finite
  if the index set is finite and if for every index the component
  set is itself finite. Conversely, we show that every component
  set must be finite when the union is finite.
*}
lemma finite_UNION_then_finite:
  "finite (UNION A B) ⟹ a ∈ A ⟹ finite (B a)"
by (metis Set.set_insert UN_insert Un_infinite)

lemma finite_if_eq_beyond_finite: "finite S ⟹ finite {s. s - S = s' - S}"
proof (rule finite_subset[where B="(λs. s ∪ (s' - S)) ` Pow S"], clarsimp)
  fix s
  have "s = (s ∩ S) ∪ (s - S)"
    by auto
  also assume "s - S = s' - S"
  finally show "s ∈ (λs. s ∪ (s' - S)) ` Pow S" by blast
qed blast

lemma distinct_finite_subset:
  assumes "finite x"
  shows "finite {ys. set ys ⊆ x ∧ distinct ys}" (is "finite ?S")
proof (rule finite_subset)
  from assms show "?S ⊆ {ys. set ys ⊆ x ∧ length ys ≤ card x}"
    by clarsimp (metis distinct_card card_mono)
  from assms show "finite ..." by (rule finite_lists_length_le)
qed

lemma distinct_finite_set:
  shows "finite {ys. set ys = x ∧ distinct ys}" (is "finite ?S")
proof (cases "finite x")
  case False hence "{ys. set ys = x} = {}" by auto
  thus ?thesis by simp
next
  case True show ?thesis
  proof (rule finite_subset)
    show "?S ⊆ {ys. set ys ⊆ x ∧ length ys ≤ card x}"
      using distinct_card by force
    from True show "finite ..." by (rule finite_lists_length_le)
  qed
qed

lemma finite_set_image:
  assumes f: "finite (set ` A)"
  and dist: "⋀xs. xs ∈ A ⟹ distinct xs"
  shows "finite A"
proof (rule finite_subset)
  from f show "finite (set -` (set ` A) ∩ {xs. distinct xs})"
  proof (induct rule: finite_induct)
    case (insert x F)
    have "finite (set -` {x} ∩ {xs. distinct xs})"
      apply (simp add: vimage_def)
      by (metis Collect_conj_eq distinct_finite_set)
    with insert show ?case
      apply (subst vimage_insert)
      apply (subst Int_Un_distrib2)
      apply (rule finite_UnI)
        apply simp_all
      done
  qed simp
  moreover from dist show "A ⊆ ..."
    by (auto simp add: vimage_image_eq)
qed


subsubsection {* Infinite Set *}
lemma INFM_nat_inductI:
  assumes P0: "P (0::nat)"
  assumes PS: "⋀i. P i ⟹ ∃j>i. P j ∧ Q j"
  shows "∃i. Q i"
proof -
  have "∀i. ∃j>i. P j ∧ Q j" proof
    fix i
    show "∃j>i. P j ∧ Q j"
      apply (induction i)
      using PS[OF P0] apply auto []
      by (metis PS Suc_lessI)
  qed
  thus ?thesis unfolding INFM_nat by blast
qed

subsection {* Functions *}

definition "inv_on f A x == SOME y. y∈A ∧ f y = x"

lemma inv_on_f_f[simp]: "⟦inj_on f A; x∈A⟧ ⟹ inv_on f A (f x) = x"
  by (auto simp add: inv_on_def inj_on_def)

lemma f_inv_on_f: "⟦ y∈f`A ⟧ ⟹ f (inv_on f A y) = y"
  by (auto simp add: inv_on_def intro: someI2)

lemma inv_on_f_range: "⟦ y ∈ f`A ⟧ ⟹ inv_on f A y ∈ A"
  by (auto simp add: inv_on_def intro: someI2)

lemma inj_on_map_inv_f [simp]: "⟦set l ⊆ A; inj_on f A⟧ ⟹ map (inv_on f A) (map f l) = l"
  apply (simp)
  apply (induct l)
  apply auto
  done

lemma comp_cong_right: "x = y ⟹ f o x = f o y" by (simp)
lemma comp_cong_left: "x = y ⟹ x o f = y o f" by (simp)

lemma fun_comp_eq_conv: "f o g = fg ⟷ (∀x. f (g x) = fg x)"
  by auto

abbreviation comp2 (infixl "oo" 55) where "f oo g ≡ λx. f o (g x)"
abbreviation comp3 (infixl "ooo" 55) where "f ooo g ≡ λx. f oo (g x)"

notation
  comp2  (infixl "∘∘" 55) and
  comp3  (infixl "∘∘∘" 55)


subsection {* Multisets *}

(*
  The following is a syntax extension for multisets. Unfortunately, it depends on a change in the Library/Multiset.thy, so it is commented out here, until it will be incorporated
  into Library/Multiset.thy by its maintainers.

  The required change in Library/Multiset.thy is removing the syntax for single:
     - single :: "'a => 'a multiset"    ("{#_#}")
     + single :: "'a => 'a multiset"

  And adding the following translations instead:

     + syntax
     + "_multiset" :: "args ⇒ 'a multiset" ("{#(_)#}")

     + translations
     +   "{#x, xs#}" == "{#x#} + {#xs#}"
     +   "{# x #}" == "single x"

  This translates "{# … #}" into a sum of singletons, that is parenthesized to the right. ?? Can we also achieve left-parenthesizing ??

*)


  (* Let's try what happens if declaring AC-rules for multiset union as simp-rules *)
(*declare union_ac[simp] -- don't do it !*)


lemma count_mset_set_finite_iff:
  "finite S ⟹ count (mset_set S) a = (if a ∈ S then 1 else 0)"
  by simp

lemma mset_set_set :
  "distinct l ⟹ mset_set (set l) = mset l"
proof (induct l)
  case Nil thus ?case by simp
next
  case (Cons e l)
  from Cons(2) have e_nin_l : "e ∉ set l" by simp
  from Cons(2) have dist_l: "distinct l" by simp
  note ind_hyp = Cons(1)[OF dist_l]
  from e_nin_l have "set l - {e} = set l" by auto
  with ind_hyp show ?case
    by (simp add: mset_set.insert_remove ac_simps)
qed

lemma ex_Melem_conv: "(∃x. x ∈# A) = (A ≠ {#})"
  by (simp add: ex_in_conv)

subsubsection {* Count *}
        lemma count_ne_remove: "⟦ x ~= t⟧ ⟹ count S x = count (S-{#t#}) x"
          by (auto)
  lemma mset_empty_count[simp]: "(∀p. count M p = 0) = (M={#})"
    by (auto simp add: multiset_eq_iff)

subsubsection {* Union, difference and intersection *}

  lemma size_diff_se: "t ∈# S ⟹ size S = size (S - {#t#}) + 1" proof (unfold size_multiset_overloaded_eq)
                let ?SIZE = "setsum (count S) (set_mset S)"
                assume A: "t ∈# S"
                from A have SPLITPRE: "finite (set_mset S) & {t}⊆(set_mset S)" by auto
                hence "?SIZE = setsum (count S) (set_mset S - {t}) + setsum (count S) {t}" by (blast dest: setsum_subset_split)
                hence "?SIZE = setsum (count S) (set_mset S - {t}) + count (S) t" by auto
                moreover with A have "count S t = count (S-{#t#}) t + 1" by auto
                ultimately have D: "?SIZE = setsum (count S) (set_mset S - {t}) + count (S-{#t#}) t + 1" by (arith)
                moreover have "setsum (count S) (set_mset S - {t}) = setsum (count (S-{#t#})) (set_mset S - {t})" proof -
                        have "ALL x:(set_mset S - {t}) . count S x = count (S-{#t#}) x" by (auto iff add: count_ne_remove)
                        thus ?thesis by simp
                qed
                ultimately have D: "?SIZE = setsum (count (S-{#t#})) (set_mset S - {t}) + count (S-{#t#}) t + 1" by (simp)
                moreover
                { assume CASE: "t ∉# S - {#t#}"
                        from CASE have "set_mset S - {t} = set_mset (S - {#t#})"
                          by (auto simp add: in_diff_count split: if_splits)
                        with CASE D have "?SIZE = setsum (count (S-{#t#})) (set_mset (S - {#t#})) + 1"
                          by (simp add: not_in_iff)
                }
                moreover
                { assume CASE: "t ∈# S - {#t#}"
                        from CASE have "t ∈# S" by (rule in_diffD)
                        with CASE have 1: "set_mset S = set_mset (S-{#t#})"
                          by (auto simp add: in_diff_count split: if_splits)
                        moreover from D have "?SIZE = setsum (count (S-{#t#})) (set_mset S - {t}) + setsum (count (S-{#t#})) {t} + 1" by simp
                        moreover from SPLITPRE setsum_subset_split have "setsum (count (S-{#t#})) (set_mset S) = setsum (count (S-{#t#})) (set_mset S - {t}) + setsum (count (S-{#t#})) {t}" by (blast)
                        ultimately have "?SIZE = setsum (count (S-{#t#})) (set_mset (S-{#t#})) + 1" by simp
                }
                ultimately show "?SIZE = setsum (count (S-{#t#})) (set_mset (S - {#t#})) + 1" by blast
        qed

  (* TODO: Check whether this proof can be done simpler *)
  lemma mset_union_diff_comm: "t ∈# S ⟹ T + (S - {#t#}) = (T + S) - {#t#}" proof -
    assume "t ∈# S"
    hence "count S t = count (S-{#t#}) t + 1" by auto
    hence "count (S+T) t = count (S-{#t#}+T) t + 1" by auto
    hence "count (S+T-{#t#}) t = count (S-{#t#}+T) t" by (simp)
    moreover have "ALL x. x~=t ⟶ count (S+T-{#t#}) x = count (S-{#t#}+T) x" by auto
    ultimately show ?thesis by (auto simp add: union_ac iff add: multiset_eq_iff)
  qed

  lemma mset_diff_union_cancel[simp]: "t ∈# S ⟹ (S - {#t#}) + {#t#} = S"
    by (auto simp add: mset_union_diff_comm union_ac)

(*  lemma mset_diff_diff_left: "A-B-C = A-((B::'a multiset)+C)" proof -
    have "ALL e . count (A-B-C) e = count (A-(B+C)) e" by auto
    thus ?thesis by (simp add: multiset_eq_conv_count_eq)
  qed

  lemma mset_diff_commute: "A-B-C = A-C-(B::'a multiset)" proof -
    have "A-B-C = A-(B+C)" by (simp add: mset_diff_diff_left)
    also have "… = A-(C+B)" by (simp add: union_commute)
    thus ?thesis by (simp add: mset_diff_diff_left)
  qed

  lemma mset_diff_same_empty[simp]: "(S::'a multiset) - S = {#}"
  proof -
    have "ALL e . count (S-S) e = 0" by auto
    hence "ALL e . ~ (e : set_mset (S-S))" by auto
    hence "set_mset (S-S) = {}" by blast
    thus ?thesis by (auto)
  qed
*)
  lemma mset_right_cancel_union: "⟦a ∈# A+B; ~(a ∈# B)⟧ ⟹ a∈#A"
    by (simp)
  lemma mset_left_cancel_union: "⟦a ∈# A+B; ~(a ∈# A)⟧ ⟹ a∈#B"
    by (simp)

  lemmas mset_cancel_union = mset_right_cancel_union mset_left_cancel_union

  lemma mset_right_cancel_elem: "⟦a ∈# A+{#b#}; a~=b⟧ ⟹ a∈#A"
    by simp

  lemma mset_left_cancel_elem: "⟦a ∈# {#b#}+A; a~=b⟧ ⟹ a∈#A"
    by simp

  lemmas mset_cancel_elem = mset_right_cancel_elem mset_left_cancel_elem

  lemma mset_diff_cancel1elem[simp]: "~(a ∈# B) ⟹ {#a#}-B = {#a#}"
    by (auto simp add: not_in_iff intro!: multiset_eqI)

(*  lemma diff_union_inverse[simp]: "A + B - B = (A::'a multiset)"
    by (auto iff add: multiset_eq_conv_count_eq)

  lemma diff_union_inverse2[simp]: "B + A - B = (A::'a multiset)"
    by (auto iff add: multiset_eq_conv_count_eq)
*)
        lemma union_diff_assoc_se: "t ∈# B ⟹ (A+B)-{#t#} = A + (B-{#t#})"
          by (auto simp add: Suc_le_eq intro!: multiset_eqI diff_add_assoc)
  (*lemma union_diff_assoc_se2: "t ∈# A ⟹ (A+B)-{#t#} = (A-{#t#}) + B"
    by (auto iff add: multiset_eq_conv_count_eq)
  lemmas union_diff_assoc_se = union_diff_assoc_se1 union_diff_assoc_se2*)

        lemma union_diff_assoc: "C-B={#} ⟹ (A+B)-C = A + (B-C)"
          by (simp add: multiset_eq_iff)

  lemma mset_union_1_elem1[simp]: "({#a#} = M+{#b#}) = (a=b & M={#})" proof
    assume A: "{#a#} = M+{#b#}"
    from A have "size {#a#} = size (M+{#b#})" by simp
    hence "1 = 1 + size M" by auto
    hence "M={#}" by auto
    moreover with A have "a=b" by auto
    ultimately show "a=b & M={#}" by auto
  next
    assume "a = b ∧ M = {#}"
    thus "{#a#} = M+{#b#}" by auto
  qed

  lemma mset_union_1_elem2[simp]: "({#a#} = {#b#}+M) = (a=b & M={#})" using mset_union_1_elem1
    by (simp add: union_ac)

  lemma mset_union_1_elem3[simp]: "(M+{#b#}={#a#}) = (b=a & M={#})" using mset_union_1_elem1
    by (auto dest: sym)

  lemma mset_union_1_elem4[simp]: "({#b#}+M={#a#}) = (b=a & M={#})" using mset_union_1_elem3
    by (simp add: union_ac)

  lemma mset_inter_1elem1[simp]: assumes A: "~(a ∈# B)" shows "{#a#} #∩ B = {#}" proof (unfold multiset_inter_def)
    from A have "{#a#} - B = {#a#}" by simp
    thus "{#a#} - ({#a#} - B) = {#}" by simp
  qed

  lemma mset_inter_1elem2[simp]: "~(a ∈# B) ⟹ B #∩ {#a#} = {#}" proof -
    assume "~(a ∈# B)"
    hence "{#a#} #∩ B = {#}" by simp
    thus ?thesis by (simp add: multiset_inter_commute)
  qed

  lemmas mset_neutral_cancel1 = union_left_cancel[where N="{#}", simplified] union_right_cancel[where N="{#}", simplified]
  declare mset_neutral_cancel1[simp]

  lemma mset_neutral_cancel2[simp]: "(c=n+c) = (n={#})" "(c=c+n) = (n={#})"
    apply (auto simp add: union_ac)
    done



  (* TODO: The proof seems too complicated, there should be an easier one ! *)
  lemma mset_union_2_elem: "{#a#}+{#b#} = M + {#c#} ⟹ {#a#}=M & b=c | a=c & {#b#}=M"
  proof -
    assume A: "{#a#}+{#b#} = M + {#c#}"
    hence "{#a#}+{#b#}-{#b#} = M + {#c#} - {#b#}" by auto
    hence AEQ: "{#a#} = M + {#c#} - {#b#}" by (auto simp add: union_assoc)
    { assume "c=b"
      with AEQ have "{#a#} = M" by auto
    } moreover {
      from A have "{#b#}+{#a#} = M + {#c#}" by (auto simp add: union_commute)
      moreover assume "a=c"
      ultimately have "{#b#} = M" by auto
    } moreover {
      assume NEQ: "c~=b & a~=c"
      from A have "{#a#}+{#b#}-{#c#} = M + {#c#}-{#c#}" by auto
      hence "{#a#}+{#b#}-{#c#} = M" by (auto simp add: union_assoc)
      with NEQ have "{#a#}-{#c#}+{#b#} = M" by (subgoal_tac "~ (c ∈# {#b#})", auto simp add: multiset_union_diff_commute)
      with NEQ have "{#a#}+{#b#} = M" by (subgoal_tac "~(a ∈# {#c#})", auto)
      hence S1: "size M = 2" by auto
      moreover from A have "size ({#a#}+{#b#}) = size (M + {#c#})" by auto
      hence "size M = 1" by auto
      ultimately have "False" by simp
    }
    ultimately show ?thesis by blast
  qed

  lemma mset_diff_union_s_inverse[simp]: "s ∈# S ⟹ {#s#} + (S - {# s #}) = S" proof -
    assume "s ∈# S"
    hence "S = S - {#s#} + {#s#}" by (auto simp add: mset_union_diff_comm)
    thus ?thesis by (auto simp add: union_ac)
  qed

  lemma mset_un_iff: "(a ∈# A + B) = (a ∈# A | a ∈# B)"
    by (simp)
  lemma mset_un_cases[cases set, case_names left right]:
    "⟦a ∈# A + B; a ∈# A ⟹ P; a ∈# B ⟹ P⟧ ⟹ P"
    by (auto)

  lemma mset_unplusm_dist_cases[cases set, case_names left right]:
    assumes A: "{#s#}+A = B+C"
    assumes L: "⟦B={#s#}+(B-{#s#}); A=(B-{#s#})+C⟧ ⟹ P"
    assumes R: "⟦C={#s#}+(C-{#s#}); A=B+(C-{#s#})⟧ ⟹ P"
    shows P
  proof -
    from A[symmetric] have "s ∈# B+C" by simp
    thus ?thesis proof (cases rule: mset_un_cases)
      case left hence 1: "B={#s#}+(B-{#s#})" by simp
      with A have "{#s#}+A = {#s#}+((B-{#s#})+C)" by (simp add: union_ac)
      hence 2: "A = (B-{#s#})+C" by (simp)
      from L[OF 1 2] show ?thesis .
    next
      case right hence 1: "C={#s#}+(C-{#s#})" by simp
      with A have "{#s#}+A = {#s#}+(B+(C-{#s#}))" by (simp add: union_ac)
      hence 2: "A = B+(C-{#s#})" by (simp)
      from R[OF 1 2] show ?thesis .
    qed
  qed

  lemma mset_unplusm_dist_cases2[cases set, case_names left right]:
    assumes A: "B+C = {#s#}+A"
    assumes L: "⟦B={#s#}+(B-{#s#}); A=(B-{#s#})+C⟧ ⟹ P"
    assumes R: "⟦C={#s#}+(C-{#s#}); A=B+(C-{#s#})⟧ ⟹ P"
    shows P
    using mset_unplusm_dist_cases[OF A[symmetric]] L R by blast

  lemma mset_single_cases[cases set, case_names loc env]:
    assumes A: "{#s#}+c = {#r'#}+c'"
    assumes CASES: "⟦s=r'; c=c'⟧ ⟹ P" "⟦c'={#s#}+(c'-{#s#}); c={#r'#}+(c-{#r'#}); c-{#r'#} = c'-{#s#} ⟧ ⟹ P"
    shows "P"
  proof -
    { assume CASE: "s=r'"
      with A have "c=c'" by simp
      with CASE CASES have ?thesis by auto
    } moreover {
      assume CASE: "s≠r'"
      have "s ∈# {#s#}+c" by simp
      with A have "s ∈# {#r'#}+c'" by simp
      with CASE have "s ∈# c'" by simp
      from mset_diff_union_s_inverse[OF this, symmetric] have 1: "c' = {#s#} + (c' - {#s#})" .
      with A have "{#s#}+c = {#s#}+({#r'#}+(c' - {#s#}))" by (auto simp add: union_ac)
      hence 2: "c={#r'#}+(c' - {#s#})" by (auto)
      hence 3: "c-{#r'#} = (c' - {#s#})" by auto
      from 1 2 3 CASES have ?thesis by auto
    } ultimately show ?thesis by blast
  qed

  lemma mset_single_cases'[cases set, case_names loc env]:
    assumes A: "{#s#}+c = {#r'#}+c'"
    assumes CASES: "⟦s=r'; c=c'⟧ ⟹ P" "!!cc. ⟦c'={#s#}+cc; c={#r'#}+cc; c'-{#s#}=cc; c-{#r'#}=cc⟧ ⟹ P"
    shows "P"
    using A  CASES by (auto elim!: mset_single_cases)

  lemma mset_single_cases2[cases set, case_names loc env]:
    assumes A: "c+{#s#} = c'+{#r'#}"
    assumes CASES: "⟦s=r'; c=c'⟧ ⟹ P" "⟦c'=(c'-{#s#})+{#s#}; c=(c-{#r'#})+{#r'#}; c-{#r'#} = c'-{#s#} ⟧ ⟹ P"
    shows "P"
  proof -
    from A have "{#s#}+c = {#r'#}+c'" by (simp add: union_ac)
    thus ?thesis proof (cases rule: mset_single_cases)
      case loc with CASES show ?thesis by simp
    next
      case env with CASES show ?thesis by (simp add: union_ac)
    qed
  qed

  lemma mset_single_cases2'[cases set, case_names loc env]:
    assumes A: "c+{#s#} = c'+{#r'#}"
    assumes CASES: "⟦s=r'; c=c'⟧ ⟹ P" "!!cc. ⟦c'=cc+{#s#}; c=cc+{#r'#}; c'-{#s#}=cc; c-{#r'#}=cc⟧ ⟹ P"
    shows "P"
    using A  CASES by (auto elim!: mset_single_cases2)

  lemma mset_un_single_un_cases [consumes 1, case_names left right]:
    assumes A: "A + {#a#} = B + C"
      and CASES: "a ∈# B ⟹ A = (B - {#a#}) + C ⟹ P"
        "a ∈# C ⟹ A = B + (C - {#a#}) ⟹ P" shows "P"
  proof -
    have "a ∈# A+{#a#}" by simp
    with A have "a ∈# B+C" by auto
    thus ?thesis proof (cases rule: mset_un_cases)
      case left hence "B=B-{#a#}+{#a#}" by auto
      with A have "A+{#a#} = (B-{#a#})+C+{#a#}" by (auto simp add: union_ac)
      hence "A=(B-{#a#})+C" by simp
      with CASES(1)[OF left] show ?thesis by blast
    next
      case right hence "C=C-{#a#}+{#a#}" by auto
      with A have "A+{#a#} = B+(C-{#a#})+{#a#}" by (auto simp add: union_ac)
      hence "A=B+(C-{#a#})" by simp
      with CASES(2)[OF right] show ?thesis by blast
    qed
  qed

      (* TODO: Can this proof be done more automatically ? *)
  lemma mset_distrib[consumes 1, case_names dist]: assumes A: "(A::'a multiset)+B = M+N" "!!Am An Bm Bn. ⟦A=Am+An; B=Bm+Bn; M=Am+Bm; N=An+Bn⟧ ⟹ P" shows "P"
  proof -
    {
      fix X
      have "!!A B M N P. ⟦ (X::'a multiset)=A+B; A+B = M+N; !!Am An Bm Bn. ⟦A=Am+An; B=Bm+Bn; M=Am+Bm; N=An+Bn⟧ ⟹ P⟧ ⟹ P"
      proof (induct X)
        case empty thus ?case by simp
      next
        case (add X x A B M N)
        from add(2,3) have MN: "X+{#x#} = M+N" by simp
        from add(2) show ?case proof (cases rule: mset_un_single_un_cases)
          case left from MN show ?thesis proof (cases rule: mset_un_single_un_cases[case_names left' right'])
            case left' with left have "X=A-{#x#}+B" "A-{#x#}+B = M-{#x#}+N" by simp_all
            from "add.hyps"[OF this] obtain Am An Bm Bn where "A - {#x#} = Am + An" "B = Bm + Bn" "M - {#x#} = Am + Bm" "N = An + Bn" .
            hence "A - {#x#} + {#x#} = Am+{#x#} + An" "B = Bm + Bn" "M - {#x#}+{#x#} = Am+{#x#} + Bm" "N = An + Bn" by (simp_all add: union_ac)
            with left(1) left'(1) show ?thesis using "add.prems"(3) by auto
          next
            case right' with left have "X=A-{#x#}+B" "A-{#x#}+B = M+(N-{#x#})" by simp_all
            from "add.hyps"[OF this] obtain Am An Bm Bn where "A - {#x#} = Am + An" "B = Bm + Bn" "M = Am + Bm" "N-{#x#} = An + Bn" .
            hence "A - {#x#} + {#x#} = Am + (An+{#x#})" "B = Bm + Bn" "M = Am + Bm" "N - {#x#}+{#x#} = (An+{#x#}) + Bn" by (simp_all add: union_ac)
            with left(1) right'(1) show ?thesis using "add.prems"(3) by auto
          qed
        next
          case right from MN show ?thesis proof (cases rule: mset_un_single_un_cases[case_names left' right'])
            case left' with right have "X=A+(B-{#x#})" "A+(B-{#x#}) = M-{#x#}+N" by simp_all
            from "add.hyps"[OF this] obtain Am An Bm Bn where "A = Am + An" "B-{#x#} = Bm + Bn" "M - {#x#} = Am + Bm" "N = An + Bn" .
            hence "A = Am + An" "B-{#x#}+{#x#} = Bm+{#x#} + Bn" "M - {#x#}+{#x#} = Am + (Bm+{#x#})" "N = An + Bn" by (simp_all add: union_ac)
            with right(1) left'(1) show ?thesis using "add.prems"(3) by auto
          next
            case right' with right have "X=A+(B-{#x#})" "A+(B-{#x#}) = M+(N-{#x#})" by simp_all
            from "add.hyps"[OF this] obtain Am An Bm Bn where "A = Am + An" "B-{#x#} = Bm + Bn" "M = Am + Bm" "N-{#x#} = An + Bn" .
            hence "A = Am + An" "B-{#x#}+{#x#} = Bm + (Bn+{#x#})" "M = Am + Bm" "N - {#x#}+{#x#} = An + (Bn+{#x#})" by (simp_all add: union_ac)
            with right(1) right'(1) show ?thesis using "add.prems"(3) by auto
          qed
        qed
      qed
    } with A show ?thesis by blast
  qed


subsubsection {* Singleton multisets *}
  lemma mset_singletonI[intro!]: "a ∈# {#a#}"
    by auto

  lemma mset_singletonD[dest!]: "b ∈# {#a#} ⟹ b=a"
    apply(cases "a=b")
    apply(auto)
  done

lemma mset_size_le1_cases[case_names empty singleton,consumes 1]: "⟦ size M ≤ Suc 0; M={#} ⟹ P; !!m. M={#m#} ⟹ P ⟧ ⟹ P"
  by (cases M) auto

lemma diff_union_single_conv2: "a ∈# J ⟹ J + I - {#a#} = (J - {#a#}) + I"
  using diff_union_single_conv [of a J I]
  by (simp add: union_ac)

lemmas diff_union_single_convs = diff_union_single_conv diff_union_single_conv2

lemma mset_contains_eq: "(m ∈# M) = ({#m#}+(M-{#m#})=M)" proof (auto)
  assume "{#m#} + (M - {#m#}) = M"
  moreover have "m ∈# {#m#} + (M - {#m#})" by simp
  ultimately show "m ∈# M" by simp
qed


subsubsection {* Pointwise ordering *}


  (*declare mset_le_trans[trans] Seems to be in there now. Why is this not done in Multiset.thy or order-class ? *)

  lemma mset_empty_minimal[simp, intro!]: "{#} ≤# c"
    using empty_le .
  lemma mset_empty_least[simp]: "c ≤# {#} = (c={#})"
    using le_empty .
  lemma mset_empty_leastI[intro!]: "c={#} ⟹ c ≤# {#}"
    by (simp only: mset_empty_least)

  lemma mset_le_incr_right1: "a≤#(b::'a multiset) ⟹ a≤#b+c" using mset_le_mono_add[of a b "{#}" c, simplified] .
  lemma mset_le_incr_right2: "a≤#(b::'a multiset) ⟹ a≤#c+b" using mset_le_incr_right1
    by (auto simp add: union_commute)
  lemmas mset_le_incr_right = mset_le_incr_right1 mset_le_incr_right2

  lemma mset_le_decr_left1: "a+c≤#(b::'a multiset) ⟹ a≤#b" using mset_le_incr_right1 mset_le_mono_add_right_cancel
    by blast
  lemma mset_le_decr_left2: "c+a≤#(b::'a multiset) ⟹ a≤#b" using mset_le_decr_left1
    by (auto simp add: union_ac)
  lemmas mset_le_decr_left = mset_le_decr_left1 mset_le_decr_left2

  lemma mset_le_single_conv[simp]: "({#e#}≤#M) = (e ∈# M)"
    by (auto simp add: subseteq_mset_def Suc_le_eq)

  lemma mset_le_trans_elem: "⟦e ∈# c; c ≤# c'⟧ ⟹ e ∈# c'" using subset_mset.order_trans[of "{#e#}" c c', simplified]
    by assumption

  lemma mset_le_subtract: "A≤#B ⟹ A-C ≤# B-(C::'a multiset)"
    apply (unfold subseteq_mset_def)
    apply auto
    apply (subgoal_tac "count A a ≤ count B a")
    apply arith
    apply simp
    done

  lemma mset_le_union: "A+B ≤# C ⟹ A≤#C ∧ B≤#(C::'a multiset)"
    by (auto dest: mset_le_decr_left)

  lemma mset_le_subtract_left: "A+B ≤# (X::'a multiset) ⟹ B ≤# X-A ∧ A≤#X"
    by (auto dest: mset_le_subtract[of "A+B" "X" "A"] mset_le_union)
  lemma mset_le_subtract_right: "A+B ≤# (X::'a multiset) ⟹ A ≤# X-B ∧ B≤#X"
    by (auto dest: mset_le_subtract[of "A+B" "X" "B"] mset_le_union)

  lemma mset_le_addE: "⟦ xs ≤# (ys::'a multiset); !!zs. ys=xs+zs ⟹ P ⟧ ⟹ P" using mset_le_exists_conv
    by blast

  lemma mset_le_sub_add_eq[simp,intro]: "A≤#(B::'a multiset) ⟹ B-A+A = B"
    by (auto elim: mset_le_addE simp add: union_ac)

  lemma mset_2dist2_cases:
    assumes A: "{#a#}+{#b#} ≤# A+B"
    assumes CASES: "{#a#}+{#b#} ≤# A ⟹ P" "{#a#}+{#b#} ≤# B ⟹ P" "⟦a ∈# A; b ∈# B⟧ ⟹ P" "⟦a ∈# B; b ∈# A⟧ ⟹ P"
    shows "P"
  proof -
    { assume C: "a ∈# A" "b ∈# A-{#a#}" 
      with mset_le_mono_add[of "{#a#}" "{#a#}" "{#b#}" "A-{#a#}"] have "{#a#}+{#b#} ≤# A" by auto
    } moreover {
      assume C: "a ∈# A" "¬ (b ∈# A-{#a#})"
      with A have "b ∈# B"
        by (smt diff_union_single_conv2 mset_le_subtract_left mset_le_trans_elem mset_un_iff union_single_eq_member)
    } moreover {
      assume C: "¬ (a ∈# A)" "b ∈# B-{#a#}"
      with A have "a ∈# B"
        by (meson mset_le_trans_elem mset_un_iff multi_member_this)
       with C mset_le_mono_add[of "{#a#}" "{#a#}" "{#b#}" "B-{#a#}"] have "{#a#}+{#b#} ≤# B" by auto
    } moreover {
      assume C: "¬ (a ∈# A)" "¬ (b ∈# B-{#a#})"
      with A have "a ∈# B ∧ b ∈# A"
        by (smt diff_single_trivial mset_inter_1elem2 mset_le_single_conv mset_le_subtract_left multi_drop_mem_not_eq multiset_union_diff_commute union_ac(2))
    } ultimately show P using CASES by blast
  qed

  lemma mset_union_subset: "A+B ≤# (C::'a multiset) ⟹ A≤#C ∧ B≤#C"
    apply (unfold subseteq_mset_def)
    apply auto
    apply (subgoal_tac "count A a + count B a ≤ count C a", arith, simp)+
    done

  lemma mset_union_subset_s: "{#a#}+B ≤# C ⟹ a ∈# C ∧ B ≤# C"
    by (auto dest: mset_union_subset)

  (* TODO: Check which of these lemmas are already introduced by order-classes ! *)
  lemma mset_le_eq_refl: "a=(b::'a multiset) ⟹ a≤#b"
    by simp

  lemma mset_singleton_eq[simplified,simp]: "a ∈# {#b#} = (a=b)"
    by auto -- {* The simplification is here due to the lemma @{thm [source] "Multiset.count_single"}, that will be applied first deleting any application potential for this rule*}
  lemma mset_le_single_single[simp]: "({#a#} ≤# {#b#}) = (a=b)"
    by auto

  lemma mset_le_single_conv1[simp]: "(M+{#a#} ≤# {#b#}) = (M={#} ∧ a=b)"
  proof (auto)
    assume A: "M+{#a#} ≤# {#b#}" thus "a=b" by (auto dest: mset_le_decr_left2)
    with A mset_le_mono_add_right_cancel[of M "{#a#}" "{#}", simplified] show "M={#}" by blast
  qed

  lemma mset_le_single_conv2[simp]: "({#a#}+M ≤# {#b#}) = (M={#} ∧ a=b)"
    by (simp add: union_ac)

  lemma mset_le_single_cases[consumes 1, case_names empty singleton]: "⟦M≤#{#a#}; M={#} ⟹ P; M={#a#} ⟹ P⟧ ⟹ P"
    by (induct M) auto

  lemma mset_le_distrib[consumes 1, case_names dist]: "⟦(X::'a multiset)≤#A+B; !!Xa Xb. ⟦X=Xa+Xb; Xa≤#A; Xb≤#B⟧ ⟹ P ⟧ ⟹ P"
    by (auto elim!: mset_le_addE mset_distrib)

  lemma mset_le_mono_add_single: "⟦a ∈# ys; b ∈# ws⟧ ⟹ {#a#} + {#b#} ≤# ys + ws" using mset_le_mono_add[of "{#a#}" _ "{#b#}", simplified] .

  lemma mset_size1elem: "⟦size P ≤ 1; q ∈# P⟧ ⟹ P={#q#}"
    by (auto elim: mset_size_le1_cases)
  lemma mset_size2elem: "⟦size P ≤ 2; {#q#}+{#q'#} ≤# P⟧ ⟹ P={#q#}+{#q'#}"
    by (auto elim: mset_le_addE)


subsubsection {* Image under function *}

inductive_set
  mset_map_Set :: "('a ⇒ 'b) ⇒ ('a multiset × 'b multiset) set"
  for f:: "'a ⇒ 'b"
  where
  mset_map_Set_empty: "({#},{#})∈mset_map_Set f"
  | mset_map_Set_add: "(A,B)∈mset_map_Set f ⟹ (A+{#a#},B+{#f a#})∈mset_map_Set f"

lemma mset_map_Set_empty_simps[simp]: "(({#},B)∈mset_map_Set f) = (B={#})" "((A,{#})∈mset_map_Set f) = (A={#})"
  by (auto elim: mset_map_Set.cases intro: mset_map_Set_empty)

lemma mset_map_Set_single_left[simp]: "(({#a#},B)∈mset_map_Set f) = (B={#f a#})"
  by (auto elim: mset_map_Set.cases intro: mset_map_Set_add[of "{#}" "{#}", simplified])
lemma mset_map_Set_single_rightE[cases set, case_names orig]: "⟦(A,{#b#})∈mset_map_Set f; !!a. ⟦A={#a#}; b=f a⟧ ⟹ P⟧ ⟹ P"
  by (auto elim: mset_map_Set.cases)

lemma mset_map_Set_sizes: "(A,B)∈mset_map_Set f ⟹ size A = size B"
  by (induct rule: mset_map_Set.induct) auto

text {* Intuitively, this lemma allows one to choose a single image element corresponding to an original element *}
lemma mset_map_Set_choose[cases set, case_names choice]: assumes A: "(A+{#a#},B)∈mset_map_Set f" "!!B'. ⟦B=B'+{#f a#}; (A,B')∈mset_map_Set f⟧ ⟹ P" shows "P"
proof -
  { fix n
    have "⟦size B=n; (A+{#a#},B)∈mset_map_Set f; !!B'. ⟦B=B'+{#f a#}; (A,B')∈mset_map_Set f⟧ ⟹ P ⟧ ⟹ P" proof (induct n arbitrary: A a B P)

    (*have "!!A a B P. ⟦size B=n; (A+{#a#},B)∈mset_map_Set f; !!B'. ⟦B=B'+{#f a#}; (A,B')∈mset_map_Set f⟧ ⟹ P ⟧ ⟹ P" proof (induct n)*)
      case 0 thus ?case by simp
    next
      case (Suc n') from Suc.prems(2) show ?case proof (cases rule: mset_map_Set.cases)
        case mset_map_Set_empty hence False by simp thus ?thesis ..
      next
        case (mset_map_Set_add A' B' a')
        hence "A+{#a#}=A'+{#a'#}" by simp
        thus ?thesis proof (cases rule: mset_single_cases2')
          case loc with mset_map_Set_add Suc.prems(3) show ?thesis by auto
        next
          case (env A'')
          from Suc.prems(1) mset_map_Set_add(2) have SIZE: "size B' = n'" by auto
          from mset_map_Set_add env have MM: "(A'' + {#a#}, B') ∈ mset_map_Set f" by simp
          from Suc.hyps[OF SIZE MM] obtain B'' where B'': "B'=B''+{#f a#}" "(A'',B'')∈mset_map_Set f" by blast
          from mset_map_Set.mset_map_Set_add[OF B''(2)] env(2) have "(A, B'' + {#f a'#}) ∈ mset_map_Set f" by simp
          moreover from B''(1) mset_map_Set_add have "B=B'' + {#f a'#} + {#f a#}" by (simp add: union_ac)
          ultimately show ?thesis using Suc.prems(3) by blast
        qed
      qed
    qed
  } with A show P by blast
qed

lemma mset_map_Set_unique: "!!B B'. ⟦(A,B)∈mset_map_Set f; (A,B')∈mset_map_Set f⟧ ⟹ B=B'"
  by (induct A) (auto elim!: mset_map_Set_choose)
lemma mset_map_Set_surjective: "⟦ !!B. (A,B)∈mset_map_Set f ⟹ P ⟧ ⟹ P"
  by (induct A) (auto intro: mset_map_Set_add)


definition
  mset_map :: "('a ⇒ 'b) ⇒ 'a multiset ⇒ 'b multiset" (infixr "`#" 90)
  where
  "f `# A == (THE B. (A,B)∈mset_map_Set f)"


interpretation mset_map: su_rel_fun "mset_map_Set f" "op `# f"
  apply (rule su_rel_fun.intro)
  apply (erule mset_map_Set_unique, assumption)
  apply (erule mset_map_Set_surjective)
  apply (rule mset_map_def)
  done

text {* Transfer the defining equations *}
lemma mset_map_empty[simp]: "f `# {#} = {#}"
  apply (subst mset_map.repr)
  apply (rule mset_map_Set_empty)
  done

lemma mset_map_add[simp]: "f `# (A+{#a#}) = f `# A + {#f a#}" "f `# ({#a#}+A) = {#f a#} + f `# A"
  by (auto simp add: mset_map.repr union_commute intro: mset_map_Set_add mset_map.repr1)

text {* Transfer some other lemmas *}
lemma mset_map_single_rightE[consumes 1, case_names orig]: "⟦f `# P = {#y#}; !!x. ⟦ P={#x#}; f x = y ⟧ ⟹ Q ⟧ ⟹ Q"
  by (auto simp add: mset_map.repr elim: mset_map_Set_single_rightE)

text {* And show some further equations *}
lemma mset_map_single[simp]: "f `# {#a#} = {#f a#}" using mset_map_add(1)[where A="{#}", simplified] .

lemma mset_map_union: "!!B. f `# (A+B) = f `# A + f `# B"
  by (induct A) (auto simp add: union_ac)

lemma mset_map_size: "size A = size (f `# A)"
  by (induct A) auto

lemma mset_map_empty_eq[simp]: "(f `# P = {#}) = (P={#})" using mset_map_size[of P f]
  by auto

lemma mset_map_le: "!!B. A ≤# B ⟹ f `# A ≤# f `# B" proof (induct A)
  case empty thus ?case by simp
next
  case (add A x B)
  hence "A≤#B-{#x#}" and SM: "{#x#}≤#B" using mset_le_subtract_right by (fastforce+)
  with "add.hyps" have "f `# A ≤# f `# (B-{#x#})" by blast
  hence "f `# (A+{#x#}) ≤# f `# (B-{#x#}) + {#f x#}" by auto
  also have "… = f `# (B-{#x#}+{#x#})" by simp
  also with SM have "… = f `# B" by simp
  finally show ?case .
qed

lemma mset_map_split_orig: "!!M1 M2. ⟦f `# P = M1+M2; !!P1 P2. ⟦P=P1+P2; f `# P1 = M1; f `# P2 = M2⟧ ⟹ Q ⟧ ⟹ Q"
  apply (induct P)
  apply fastforce
  apply (fastforce elim!: mset_un_single_un_cases simp add: union_ac) (* TODO: This proof need's quite long. Try to write a faster one. *)
  done

lemma mset_map_id: "⟦!!x. f (g x) = x⟧ ⟹ f `# g `# X = X"
  by (induct X) auto

text {* The following is a very specialized lemma. Intuitively, it splits the original multiset
  by a splitting of some pointwise supermultiset of its image.

  Application:
  This lemma came in handy when proving the correctness of a constraint system that collects at most k sized submultisets of the sets of spawned threads.
*}
lemma mset_map_split_orig_le: assumes A: "f `# P ≤# M1+M2" and EX: "!!P1 P2. ⟦P=P1+P2; f `# P1 ≤# M1; f `# P2 ≤# M2⟧ ⟹ Q" shows "Q"
  using A EX by (auto elim: mset_le_distrib mset_map_split_orig)


subsection {* Lists *}

  -- "Obtains a list from the pointwise characterization of its elements"
  (* Put here, because other lemmas depends on it *)
lemma obtain_list_from_elements:
  assumes A: "∀i<n. (∃li. P li i)"
  obtains l where
    "length l = n"
    "∀i<n. P (l!i) i"
proof -
  from A have "∃l. length l=n ∧ (∀i<n. P (l!i) i)"
  proof (induct n)
    case 0 thus ?case by simp
  next
    case (Suc n)
    then obtain l where IH: "length l = n" "(∀i<n. P(l!i) i)" by auto
    moreover from Suc.prems obtain ln where "P ln n" by auto
    ultimately have "length (l@[ln]) = Suc n" "(∀i<Suc n. P((l@[ln])!i) i)"
      by (auto simp add: nth_append dest: less_antisym)
    thus ?case by blast
  qed
  thus ?thesis using that by (blast)
qed

lemma len_greater_imp_nonempty[simp]: "length l > x ⟹ l≠[]"
  by auto

lemma list_take_induct_tl2:
  "⟦length xs = length ys; ∀n<length xs. P (ys ! n) (xs ! n)⟧
    ⟹ ∀n < length (tl xs). P ((tl ys) ! n) ((tl xs) ! n)"
by (induct xs ys rule: list_induct2) auto

lemma not_distinct_split_distinct:
  assumes "¬ distinct xs"
  obtains y ys zs where "distinct ys" "y ∈ set ys" "xs = ys@[y]@zs"
using assms
proof (induct xs rule: rev_induct)
  case Nil thus ?case by simp
next
  case (snoc x xs) thus ?case by (cases "distinct xs") auto
qed

lemma distinct_length_le:
  assumes d: "distinct ys"
  and eq: "set ys = set xs"
  shows "length ys ≤ length xs"
proof -
  from d have "length ys = card (set ys)" by (simp add: distinct_card)
  also from eq List.card_set have "card (set ys) = length (remdups xs)" by simp
  also have "... ≤ length xs" by simp
  finally show ?thesis .
qed

lemma find_SomeD:
  "List.find P xs = Some x ⟹ P x"
  "List.find P xs = Some x ⟹ x∈set xs"
  by (auto simp add: find_Some_iff)

lemma in_hd_or_tl_conv[simp]: "l≠[] ⟹ x=hd l ∨ x∈set (tl l) ⟷ x∈set l"
  by (cases l) auto

lemma length_dropWhile_takeWhile:
  assumes "x < length (dropWhile P xs)"
  shows "x + length (takeWhile P xs) < length xs"
  using assms
  by (induct xs) auto


subsubsection {* List Destructors *}
lemma not_hd_in_tl:
  "x ≠ hd xs ⟹ x ∈ set xs ⟹ x ∈ set (tl xs)"
by (induct xs) simp_all

lemma distinct_hd_tl:
  "distinct xs ⟹ x = hd xs ⟹ x ∉ set (tl (xs))"
by (induct xs) simp_all

lemma in_set_tlD: "x ∈ set (tl xs) ⟹ x ∈ set xs"
by (induct xs) simp_all

lemma nth_tl: "xs ≠ [] ⟹ tl xs ! n = xs ! Suc n"
by (induct xs) simp_all

lemma tl_subset:
  "xs ≠ [] ⟹ set xs ⊆ A ⟹ set (tl xs) ⊆ A"
by (metis in_set_tlD set_rev_mp subsetI)

lemma tl_last:
  "tl xs ≠ [] ⟹ last xs = last (tl xs)"
by (induct xs) simp_all

lemma tl_obtain_elem:
  assumes "xs ≠ []" "tl xs = []"
  obtains e where "xs = [e]"
using assms
by (induct xs rule: list_nonempty_induct) simp_all

lemma butlast_subset:
  "xs ≠ [] ⟹ set xs ⊆ A ⟹ set (butlast xs) ⊆ A"
by (metis in_set_butlastD set_rev_mp subsetI)

lemma butlast_rev_tl:
  "xs ≠ [] ⟹ butlast (rev xs) = rev (tl xs)"
by (induct xs rule: rev_induct) simp_all

lemma hd_butlast:
  "length xs > 1 ⟹ hd (butlast xs) = hd xs"
by (induct xs) simp_all

lemma butlast_upd_last_eq[simp]: "length l ≥ 2 ⟹
  butlast l [ length l - 2 := x ] = take (length l - 2) l @ [x]"
  apply (case_tac l rule: rev_cases)
  apply simp
  apply simp
  apply (case_tac ys rule: rev_cases)
  apply simp
  apply simp
  done


subsubsection {* @{text "list_all2"} *}
lemma list_all2_induct[consumes 1, case_names Nil Cons]:
  assumes "list_all2 P l l'"
  assumes "Q [] []"
  assumes "⋀x x' ls ls'. ⟦ P x x'; list_all2 P ls ls'; Q ls ls' ⟧
    ⟹ Q (x#ls) (x'#ls')"
  shows "Q l l'"
  using list_all2_lengthD[OF assms(1)] assms
  apply (induct rule: list_induct2)
  apply auto
  done


subsubsection {* Reverse lists *}
  lemma list_rev_decomp[rule_format]: "l~=[] ⟶ (EX ll e . l = ll@[e])"
    apply(induct_tac l)
    apply(auto)
  done

  (* Was already there as rev_induct
  lemma list_rev_induct: "⟦P []; !! l e . P l ⟹ P (l@[e]) ⟧ ⟹ P l"
    by (blast intro: rev_induct)
  proof (induct l rule: measure_induct[of length])
    fix x :: "'a list"
    assume A: "∀y. length y < length x ⟶ P [] ⟶ (∀x xa. P (x::'a list) ⟶ P (x @ [xa])) ⟶ P y" "P []" and IS: "⋀l e. P l ⟹ P (l @ [e])"
    show "P x" proof (cases "x=[]")
      assume "x=[]" with A show ?thesis by simp
    next
      assume CASE: "x~=[]"
      then obtain xx e where DECOMP: "x=xx@[e]" by (blast dest: list_rev_decomp)
      hence LEN: "length xx < length x" by auto
      with A IS have "P xx" by auto
      with IS have "P (xx@[e])" by auto
      with DECOMP show ?thesis by auto
    qed
  qed
  *)

  text {* Caution: Same order of case variables in snoc-case as @{thm [source] rev_exhaust}, the other way round than @{thm [source] rev_induct} ! *}
  lemma length_compl_rev_induct[case_names Nil snoc]: "⟦P []; !! l e . ⟦!! ll . length ll <= length l ⟹ P ll⟧ ⟹ P (l@[e])⟧ ⟹ P l"
    apply(induct_tac l rule: length_induct)
    apply(case_tac "xs" rule: rev_cases)
    apply(auto)
  done

  lemma list_append_eq_Cons_cases[consumes 1]: "⟦ys@zs = x#xs; ⟦ys=[]; zs=x#xs⟧ ⟹ P; !!ys'. ⟦ ys=x#ys'; ys'@zs=xs ⟧ ⟹ P ⟧ ⟹ P"
    by (auto iff add: append_eq_Cons_conv)
  lemma list_Cons_eq_append_cases[consumes 1]: "⟦x#xs = ys@zs; ⟦ys=[]; zs=x#xs⟧ ⟹ P; !!ys'. ⟦ ys=x#ys'; ys'@zs=xs ⟧ ⟹ P ⟧ ⟹ P"
    by (auto iff add: Cons_eq_append_conv)

lemma map_of_rev_distinct[simp]:
  "distinct (map fst m) ⟹ map_of (rev m) = map_of m"
  apply (induct m)
    apply simp

    apply simp
    apply (subst map_add_comm)
      apply force
      apply simp
  done


-- {* Tail-recursive, generalized @{const rev}. May also be used for
      tail-recursively getting a list with all elements of the two
      operands, if the order does not matter, e.g. when implementing
      sets by lists. *}
fun revg where
  "revg [] b = b" |
  "revg (a#as) b = revg as (a#b)"

lemma revg_fun[simp]: "revg a b = rev a @ b"
  by (induct a arbitrary: b)
      auto

lemma rev_split_conv[simp]:
  "l ≠ [] ⟹ rev (tl l) @ [hd l] = rev l"
by (induct l) simp_all

lemma neq_Nil_rev_conv: "l≠[] ⟷ (∃xs x. l = xs@[x])"
  by (cases l rule: rev_cases) auto

lemma rev_butlast_is_tl_rev: "rev (butlast l) = tl (rev l)"
  by (induct l) auto

lemma hd_last_singletonI:
  "⟦xs ≠ []; hd xs = last xs; distinct xs⟧ ⟹ xs = [hd xs]"
  by (induct xs rule: list_nonempty_induct) auto

lemma last_filter:
  "⟦xs ≠ []; P (last xs)⟧ ⟹ last (filter P xs) = last xs"
  by (induct xs rule: rev_nonempty_induct) simp_all

(* As the following two rules are similar in nature to list_induct2',
   they are named accordingly. *)
lemma rev_induct2' [case_names empty snocl snocr snoclr]:
  assumes empty: "P [] []"
  and snocl: "⋀x xs. P (xs@[x]) []"
  and snocr: "⋀y ys. P [] (ys@[y])"
  and snoclr: "⋀x xs y ys.  P xs ys  ⟹ P (xs@[x]) (ys@[y])"
  shows "P xs ys"
proof (induct xs arbitrary: ys rule: rev_induct)
  case Nil thus ?case using empty snocr
    by (cases ys rule: rev_exhaust) simp_all
next
  case snoc thus ?case using snocl snoclr
    by (cases ys rule: rev_exhaust) simp_all
qed

lemma rev_nonempty_induct2' [case_names single snocl snocr snoclr, consumes 2]:
  assumes "xs ≠ []" "ys ≠ []"
  assumes single': "⋀x y. P [x] [y]"
  and snocl: "⋀x xs y. xs ≠ [] ⟹ P (xs@[x]) [y]"
  and snocr: "⋀x y ys. ys ≠ [] ⟹ P [x] (ys@[y])"
  and snoclr: "⋀x xs y ys. ⟦P xs ys; xs ≠ []; ys≠[]⟧  ⟹ P (xs@[x]) (ys@[y])"
  shows "P xs ys"
  using assms(1,2)
proof (induct xs arbitrary: ys rule: rev_nonempty_induct)
  case single then obtain z zs where "ys = zs@[z]" by (metis rev_exhaust)
  thus ?case using single' snocr
    by (cases "zs = []") simp_all
next
  case (snoc x xs) then obtain z zs where zs: "ys = zs@[z]" by (metis rev_exhaust)
  thus ?case using snocl snoclr snoc
    by (cases "zs = []") simp_all
qed


subsubsection "Folding"

text "Ugly lemma about foldl over associative operator with left and right neutral element"
lemma foldl_A1_eq: "!!i. ⟦ !! e. f n e = e; !! e. f e n = e; !!a b c. f a (f b c) = f (f a b) c ⟧ ⟹ foldl f i ww = f i (foldl f n ww)"
proof (induct ww)
  case Nil thus ?case by simp
next
  case (Cons a ww i) note IHP[simplified]=this
  have "foldl f i (a # ww) = foldl f (f i a) ww" by simp
  also from IHP have "… = f (f i a) (foldl f n ww)" by blast
  also from IHP(4) have "… = f i (f a (foldl f n ww))" by simp
  also from IHP(1)[OF IHP(2,3,4), where i=a] have "… = f i (foldl f a ww)" by simp
  also from IHP(2)[of a] have "… = f i (foldl f (f n a) ww)" by simp
  also have "… = f i (foldl f n (a#ww))" by simp
  finally show ?case .
qed


lemmas foldl_conc_empty_eq = foldl_A1_eq[of "op @" "[]", simplified]
lemmas foldl_un_empty_eq = foldl_A1_eq[of "op ∪" "{}", simplified, OF Un_assoc[symmetric]]

lemma foldl_set: "foldl (op ∪) {} l = ⋃{x. x∈set l}"
  apply (induct l)
  apply simp_all
  apply (subst foldl_un_empty_eq)
  apply auto
  done

lemma (in monoid_mult) foldl_absorb1: "x*foldl (op *) 1 zs = foldl (op *) x zs"
  apply (rule sym)
  apply (rule foldl_A1_eq)
  apply (auto simp add: mult.assoc)
done

text {* Towards an invariant rule for foldl *}
lemma foldl_rule_aux:
  fixes I :: "'σ ⇒ 'a list ⇒ bool"
  assumes initial: "I σ0 l0"
  assumes step: "!!l1 l2 x σ. ⟦ l0=l1@x#l2; I σ (x#l2) ⟧ ⟹ I (f σ x) l2"
  shows "I (foldl f σ0 l0) []"
  using initial step
  apply (induct l0 arbitrary: σ0)
  apply auto
  done

lemma foldl_rule_aux_P:
  fixes I :: "'σ ⇒ 'a list ⇒ bool"
  assumes initial: "I σ0 l0"
  assumes step: "!!l1 l2 x σ. ⟦ l0=l1@x#l2; I σ (x#l2) ⟧ ⟹ I (f σ x) l2"
  assumes final: "!!σ. I σ [] ⟹ P σ"
  shows "P (foldl f σ0 l0)"
using foldl_rule_aux[of I σ0 l0, OF initial, OF step] final
by simp


lemma foldl_rule:
  fixes I :: "'σ ⇒ 'a list ⇒ 'a list ⇒ bool"
  assumes initial: "I σ0 [] l0"
  assumes step: "!!l1 l2 x σ. ⟦ l0=l1@x#l2; I σ l1 (x#l2) ⟧ ⟹ I (f σ x) (l1@[x]) l2"
  shows "I (foldl f σ0 l0) l0 []"
  using initial step
  apply (rule_tac I="λσ lr. ∃ll. l0=ll@lr ∧ I σ ll lr" in foldl_rule_aux_P)
  apply auto
  done

text {*
  Invariant rule for foldl. The invariant is parameterized with
  the state, the list of items that have already been processed and
  the list of items that still have to be processed.
*}
lemma foldl_rule_P:
  fixes I :: "'σ ⇒ 'a list ⇒ 'a list ⇒ bool"
  -- "The invariant holds for the initial state, no items processed yet and all items to be processed:"
  assumes initial: "I σ0 [] l0"
  -- "The invariant remains valid if one item from the list is processed"
  assumes step: "!!l1 l2 x σ. ⟦ l0=l1@x#l2; I σ l1 (x#l2) ⟧ ⟹ I (f σ x) (l1@[x]) l2"
  -- "The proposition follows from the invariant in the final state, i.e. all items processed and nothing to be processed"
  assumes final: "!!σ. I σ l0 [] ⟹ P σ"
  shows "P (foldl f σ0 l0)"
  using foldl_rule[of I, OF initial step] by (simp add: final)


text {* Invariant reasoning over @{const foldl} for distinct lists. Invariant rule makes no
  assumptions about ordering. *}
lemma distinct_foldl_invar:
  "⟦ distinct S; I (set S) σ0;
     ⋀x it σ. ⟦x ∈ it; it ⊆ set S; I it σ⟧ ⟹ I (it - {x}) (f σ x)
   ⟧ ⟹ I {} (foldl f σ0 S)"
proof (induct S arbitrary: σ0)
  case Nil thus ?case by auto
next
  case (Cons x S)

  note [simp] = Cons.prems(1)[simplified]

  show ?case
    apply simp
    apply (rule Cons.hyps)
  proof -
    from Cons.prems(1) show "distinct S" by simp
    from Cons.prems(3)[of x "set (x#S)", simplified,
                       OF Cons.prems(2)[simplified]]
    show "I (set S) (f σ0 x)" .
    fix xx it σ
    assume A: "xx∈it" "it ⊆ set S" "I it σ"
    show "I (it - {xx}) (f σ xx)" using A(2)
      apply (rule_tac Cons.prems(3))
      apply (simp_all add: A(1,3))
      apply blast
      done
  qed
qed

lemma foldl_length_aux: "foldl (λi x. Suc i) a l = a + length l"
  by (induct l arbitrary: a) auto

lemmas foldl_length[simp] = foldl_length_aux[where a=0, simplified]

lemma foldr_length_aux: "foldr (λx i. Suc i) l a = a + length l"
  by (induct l arbitrary: a rule: rev_induct) auto

lemmas foldr_length[simp] = foldr_length_aux[where a=0, simplified]

context comp_fun_commute begin

lemma foldl_f_commute: "f a (foldl (λa b. f b a) b xs) = foldl (λa b. f b a) (f a b) xs"
by(induct xs arbitrary: b)(simp_all add: fun_left_comm)

lemma foldr_conv_foldl: "foldr f xs a = foldl (λa b. f b a) a xs"
by(induct xs arbitrary: a)(simp_all add: foldl_f_commute)

end

lemma filter_conv_foldr:
  "filter P xs = foldr (λx xs. if P x then x # xs else xs) xs []"
by(induct xs) simp_all

lemma foldr_Cons: "foldr Cons xs [] = xs"
by(induct xs) simp_all

lemma foldr_snd_zip:
  "length xs ≥ length ys ⟹ foldr (λ(x, y). f y) (zip xs ys) b = foldr f ys b"
proof(induct ys arbitrary: xs)
  case (Cons y ys) thus ?case by(cases xs) simp_all
qed simp

lemma foldl_snd_zip:
  "length xs ≥ length ys ⟹ foldl (λb (x, y). f b y) b (zip xs ys) = foldl f b ys"
proof(induct ys arbitrary: xs b)
  case (Cons y ys) thus ?case by(cases xs) simp_all
qed simp

lemma fst_foldl: "fst (foldl (λ(a, b) x. (f a x, g a b x)) (a, b) xs) = foldl f a xs"
by(induct xs arbitrary: a b) simp_all

lemma foldl_foldl_conv_concat: "foldl (foldl f) a xs = foldl f a (concat xs)"
by(induct xs arbitrary: a) simp_all

lemma foldl_list_update:
  "n < length xs ⟹ foldl f a (xs[n := x]) = foldl f (f (foldl f a (take n xs)) x) (drop (Suc n) xs)"
by(simp add: upd_conv_take_nth_drop)

lemma map_by_foldl:
  fixes l :: "'a list" and f :: "'a ⇒ 'b"
  shows "foldl (λl x. l@[f x]) [] l = map f l"
proof -
  {
    fix l'
    have "foldl (λl x. l@[f x]) l' l = l'@map f l"
      by (induct l arbitrary: l') auto
  } thus ?thesis by simp
qed

subsubsection {* Sorting *}
  lemma sorted_in_between:
    assumes A: "0≤i" "i<j" "j<length l"
    assumes S: "sorted l"
    assumes E: "l!i ≤ x" "x<l!j"
    obtains k where "i≤k" and "k<j" and "l!k≤x" and "x<l!(k+1)"
  proof -
    from A E have "∃k. i≤k ∧ k<j ∧ l!k≤x ∧ x<l!(k+1)"
    proof (induct "j-i" arbitrary: i j)
      case (Suc d)
      show ?case proof (cases "l!(i+1) ≤ x")
        case True
        from True Suc.hyps have "d = j - (i + 1)" by simp
        moreover from True have "i+1 < j"
          by (metis Suc.prems Suc_eq_plus1 Suc_lessI not_less)
        moreover from True have "0≤i+1" by simp
        ultimately obtain k where
          "i+1≤k" "k<j" "l!k ≤ x" "x<l!(k+1)"
          using Suc.hyps(1)[of j "i+1"] Suc.prems True
          by auto
        thus ?thesis by (auto dest: Suc_leD)
      next
        case False
        show ?thesis proof (cases "x<(l!(j - 1))")
          case True
          from True Suc.hyps have "d = j - (i + 1)" by simp
          moreover from True Suc.prems have "i < j - 1"
            by (metis Suc_eq_plus1 Suc_lessI diff_Suc_1 less_diff_conv not_le)
          moreover from True Suc.prems have "j - 1 < length l" by simp
          ultimately obtain k where
            "i≤k" "k<j - 1" "l!k ≤ x" "x<l!(k+1)"
            using Suc.hyps(1)[of "j - 1" i] Suc.prems True
            by auto
          thus ?thesis by (auto dest: Suc_leD)
        next
          case False thus ?thesis using Suc
            apply clarsimp
            by (metis Suc_leI add_0_iff add_diff_inverse diff_Suc_1 le_add2 lessI
              not0_implies_Suc not_less)
        qed
      qed
    qed simp
    thus ?thesis by (blast intro: that)
  qed

lemma distinct_sorted_mono:
  assumes S: "sorted l"
  assumes D: "distinct l"
  assumes B: "i<j" "j<length l"
  shows "l!i < l!j"
proof -
  from S B have "l!i ≤ l!j"
    by (simp add: sorted_equals_nth_mono)
  also from nth_eq_iff_index_eq[OF D] B have "l!i ≠ l!j"
    by auto
  finally show ?thesis .
qed

lemma distinct_sorted_strict_mono_iff:
  assumes "distinct l" "sorted l"
  assumes "i<length l" "j<length l"
  shows "l!i<l!j ⟷ i<j"
  using assms
  by (metis distinct_sorted_mono leI less_le_not_le
    order.strict_iff_order)

lemma distinct_sorted_mono_iff:
  assumes "distinct l" "sorted l"
  assumes "i<length l" "j<length l"
  shows "l!i≤l!j ⟷ i≤j"
  by (metis assms distinct_sorted_strict_mono_iff leD le_less_linear)


lemma sorted_hd_last:
  "⟦sorted l; l≠[]⟧ ⟹ hd l ≤ last l"
  by (metis List.last_in_set eq_iff list.sel(1) last.simps sorted.cases)

lemma (in linorder) sorted_hd_min:
  "⟦xs ≠ []; sorted xs⟧ ⟹ ∀x ∈ set xs. hd xs ≤ x"
  by (induct xs, auto simp add: sorted_Cons)

lemma sorted_append_bigger:
  "⟦sorted xs; ∀x ∈ set xs. x ≤ y⟧ ⟹ sorted (xs @ [y])"
proof (induct xs)
  case Nil
  then show ?case by simp
next
  case (Cons x xs)
  then have s: "sorted xs" by (cases xs) simp_all
  from Cons have a: "∀x∈set xs. x ≤ y" by simp
  from Cons(1)[OF s a] Cons(2-) show ?case by (cases xs) simp_all
qed

lemma sorted_filter':
  "sorted l ⟹ sorted (filter P l)"
  using sorted_filter[where f=id, simplified] .

subsubsection {* Map *}
lemma map_eq_consE: "⟦map f ls = fa#fl; !!a l. ⟦ ls=a#l; f a=fa; map f l = fl ⟧ ⟹ P⟧ ⟹ P"
  by auto

lemma map_eq_concE: "⟦map f ls = fl@fl'; !!l l'. ⟦ ls=l@l'; map f l=fl; map f l' = fl' ⟧ ⟹ P⟧ ⟹ P"
proof (induction fl arbitrary: ls P)
  case (Cons x xs)
    then obtain l ls' where [simp]: "ls = l#ls'" "f l = x" by force
    with Cons.prems(1) have "map f ls' = xs @ fl'" by simp
    from Cons.IH[OF this] guess ll ll' .
    with Cons.prems(2)[of "l#ll" ll'] show P by simp
qed simp

lemma map_fst_mk_snd[simp]: "map fst (map (λx. (x,k)) l) = l" by (induct l) auto
lemma map_snd_mk_fst[simp]: "map snd (map (λx. (k,x)) l) = l" by (induct l) auto
lemma map_fst_mk_fst[simp]: "map fst (map (λx. (k,x)) l) = replicate (length l) k" by (induct l) auto
lemma map_snd_mk_snd[simp]: "map snd (map (λx. (x,k)) l) = replicate (length l) k" by (induct l) auto

lemma map_zip1: "map (λx. (x,k)) l = zip l (replicate (length l) k)" by (induct l) auto
lemma map_zip2: "map (λx. (k,x)) l = zip (replicate (length l) k) l" by (induct l) auto
lemmas map_zip=map_zip1 map_zip2

lemma map_append_res: "⟦ map f l = m1@m2; !!l1 l2. ⟦ l=l1@l2; map f l1 = m1; map f l2 = m2 ⟧ ⟹ P ⟧ ⟹ P"
proof (induction m1 arbitrary: l m2 P)
  case (Cons x xs)
    then obtain l' ls' where [simp]: "l = l'#ls'"
        "f l' = x" by force
    with Cons.prems(1) have "map f ls' = xs @ m2" by simp
    from Cons.IH[OF this] guess ll ll' .
    with Cons.prems(2)[of "l'#ll" ll'] show P by simp
qed simp

lemma map_id[simp]:
  "map id l = l" by (induct l, auto)

lemma map_id'[simp]:
  "map id = id"
  by (rule ext) simp

(* TODO/FIXME: hope nobody changes nth to be underdefined! *)
lemma map_eq_nth_eq:
  assumes A: "map f l = map f l'"
  shows "f (l!i) = f (l'!i)"
proof -
  from A have "length l = length l'"
    by (metis length_map)
  thus ?thesis using A
    apply (induct arbitrary: i rule: list_induct2)
    apply simp
    apply (simp add: nth_def split: nat.split)
    done
qed

lemma map_upd_eq:
  "⟦i<length l ⟹ f (l!i) = f x⟧ ⟹ map f (l[i:=x]) = map f l"
  by (metis list_update_beyond list_update_id map_update not_le_imp_less)




lemma inj_map_inv_f [simp]: "inj f ⟹ map (inv f) (map f l) = l"
  by (simp)

lemma inj_on_map_the: "⟦D ⊆ dom m; inj_on m D⟧ ⟹ inj_on (the∘m) D"
  apply (rule inj_onI)
  apply simp
  apply (case_tac "m x")
  apply (case_tac "m y")
  apply (auto intro: inj_onD) [1]
  apply (auto intro: inj_onD) [1]
  apply (case_tac "m y")
  apply (auto intro: inj_onD) [1]
  apply simp
  apply (rule inj_onD)
  apply assumption
  apply auto
  done

lemma distinct_mapI: "distinct (List.map f l) ⟹ distinct l"
  by (induct l) auto

lemma map_consI:
  "w=map f ww ⟹ f a#w = map f (a#ww)"
  "w@l=map f ww@l ⟹ f a#w@l = map f (a#ww)@l"
  by auto


lemma restrict_map_subset_eq:
  fixes R
  shows "⟦m |` R = m'; R'⊆R⟧ ⟹ m|` R' = m' |` R'"
  by (auto simp add: Int_absorb1)

lemma restrict_map_self[simp]: "m |` dom m = m"
  apply (rule ext)
  apply (case_tac "m x")
  apply (auto simp add: restrict_map_def)
  done

lemma restrict_map_UNIV[simp]: "f |` UNIV = f"
  by (auto simp add: restrict_map_def)

lemma restrict_map_inv[simp]: "f |` (- dom f) = Map.empty"
  by (auto simp add: restrict_map_def intro: ext)

lemma restrict_map_upd: "(f |` S)(k ↦ v) = f(k↦v) |` (insert k S)"
  by (auto simp add: restrict_map_def intro: ext)

    (* TODO: Should we, instead, add the symmetric version to the simpset *)
lemma map_upd_eq_restrict[simp]: "m (x:=None) = m |` (-{x})"
  by (auto intro: ext)

declare Map.finite_dom_map_of [simp, intro!]

lemma dom_const'[simp]: "dom (λx. Some (f x)) = UNIV"
  by auto

lemma restrict_map_eq :
  "((m |` A) k = None) ⟷ (k ∉ dom m ∩ A)"
  "((m |` A) k = Some v) ⟷ (m k = Some v ∧ k ∈ A)"
unfolding restrict_map_def
by (simp_all add: dom_def)


definition "rel_of m P == {(k,v). m k = Some v ∧ P (k, v)}"
lemma rel_of_empty[simp]: "rel_of Map.empty P = {}"
    by (auto simp add: rel_of_def)

lemma remove1_tl: "xs ≠ [] ⟹ remove1 (hd xs) xs = tl xs"
  by (cases xs) auto

subsubsection "Filter an Revert"
primrec filter_rev_aux where
  "filter_rev_aux a P [] = a"
| "filter_rev_aux a P (x#xs) = (
     if P x then filter_rev_aux (x#a) P xs else filter_rev_aux a P xs)"

lemma filter_rev_aux_alt: "filter_rev_aux a P l = filter P (rev l) @ a"
  by (induct l arbitrary: a) auto

definition "filter_rev == filter_rev_aux []"
lemma filter_rev_alt: "filter_rev P l = filter P (rev l)"
  unfolding filter_rev_def by (simp add: filter_rev_aux_alt)

definition "remove_rev x == filter_rev (Not o op = x)"
lemma remove_rev_alt_def :
  "remove_rev x xs = (filter (λy. y ≠ x) (rev xs))"
  unfolding remove_rev_def
  apply (simp add: filter_rev_alt comp_def)
  by metis

subsubsection "zip"
text {* Removing unnecessary premise from @{thm [display] zip_append}*}
lemma zip_append': "⟦length xs = length us⟧ ⟹ zip (xs @ ys) (us @ vs) = zip xs us @ zip ys vs"
  by (simp add: zip_append1)

lemma zip_map_parts[simp]: "zip (map fst l) (map snd l) = l" by (induct l) auto

lemma pair_list_split: "⟦ !!l1 l2. ⟦ l = zip l1 l2; length l1=length l2; length l=length l2 ⟧ ⟹ P ⟧ ⟹ P"
proof (induct l arbitrary: P)
  case Nil thus ?case by auto
next
  case (Cons a l) from Cons.hyps obtain l1 l2 where IHAPP: "l=zip l1 l2" "length l1 = length l2" "length l=length l2" .
  obtain a1 a2 where [simp]: "a=(a1,a2)" by (cases a) auto
  from IHAPP have "a#l = zip (a1#l1) (a2#l2)" "length (a1#l1) = length (a2#l2)" "length (a#l) = length (a2#l2)"
    by (simp_all only:) (simp_all (no_asm_use))
  with Cons.prems show ?case by blast
qed

lemma set_zip_cart: "x∈set (zip l l') ⟹ x∈set l × set l'"
  by (auto simp add: set_zip)

lemma zip_inj: "⟦length a = length b; length a' = length b'; zip a b = zip a' b'⟧ ⟹ a=a' ∧ b=b'"
  (* TODO: Clean up proof *)
  apply (induct a b arbitrary: a' b' rule: list_induct2)
  apply (case_tac a')
  apply (case_tac b')
  apply simp
  apply simp
  apply (case_tac b')
  apply simp
  apply simp
  apply (case_tac a')
  apply (case_tac b')
  apply simp
  apply simp
  apply (case_tac b')
  apply simp
  subgoal premises prems for x xs y ys a' b' a list aa lista
  proof -
    note [simp] = prems(5,6)
    from prems(4) have C: "x=a" "y=aa" "zip xs ys = zip list lista" by simp_all
    from prems(2)[OF _ C(3)] prems(3) have "xs=list ∧ ys = lista" by simp_all
    thus ?thesis using C(1,2) by simp
  qed
  done

lemma zip_eq_zip_same_len[simp]:
  "⟦ length a = length b; length a' = length b' ⟧ ⟹
  zip a b = zip a' b' ⟷ a=a' ∧ b=b'"
  by (auto dest: zip_inj)

lemma map_prod_fun_zip: "map (λ(x, y). (f x, g y)) (zip xs ys) = zip (map f xs) (map g ys)"
proof(induct xs arbitrary: ys)
  case Nil thus ?case by simp
next
  case (Cons x xs) thus ?case by(cases ys) simp_all
qed


subsubsection {* Generalized Zip*}
text {* Zip two lists element-wise, where the combination of two elements is specified by a function. Note that this function is underdefined for lists of different length. *}
fun zipf :: "('a⇒'b⇒'c) ⇒ 'a list ⇒ 'b list ⇒ 'c list" where
  "zipf f [] [] = []" |
  "zipf f (a#as) (b#bs) = f a b # zipf f as bs"


lemma zipf_zip: "⟦length l1 = length l2⟧ ⟹ zipf Pair l1 l2 = zip l1 l2"
  apply (induct l1 arbitrary: l2)
  apply auto
  apply (case_tac l2)
  apply auto
  done

  -- "All quantification over zipped lists"
fun list_all_zip where
  "list_all_zip P [] [] ⟷ True" |
  "list_all_zip P (a#as) (b#bs) ⟷ P a b ∧ list_all_zip P as bs" |
  "list_all_zip P _ _ ⟷ False"

lemma list_all_zip_alt: "list_all_zip P as bs ⟷ length as = length bs ∧ (∀i<length as. P (as!i) (bs!i))"
  apply (induct PP as bs rule: list_all_zip.induct)
  apply auto
  apply (case_tac i)
  apply auto
  done

lemma list_all_zip_map1: "list_all_zip P (List.map f as) bs ⟷ list_all_zip (λa b. P (f a) b) as bs"
  apply (induct as arbitrary: bs)
  apply (case_tac bs)
  apply auto [2]
  apply (case_tac bs)
  apply auto [2]
  done

lemma list_all_zip_map2: "list_all_zip P as (List.map f bs) ⟷ list_all_zip (λa b. P a (f b)) as bs"
  apply (induct as arbitrary: bs)
  apply (case_tac bs)
  apply auto [2]
  apply (case_tac bs)
  apply auto [2]
  done

declare list_all_zip_alt[mono]

lemma lazI[intro?]: "⟦ length a = length b; !!i. i<length b ⟹ P (a!i) (b!i) ⟧
  ⟹ list_all_zip P a b"
  by (auto simp add: list_all_zip_alt)

lemma laz_conj[simp]: "list_all_zip (λx y. P x y ∧ Q x y) a b
                       ⟷ list_all_zip P a b ∧ list_all_zip Q a b"
  by (auto simp add: list_all_zip_alt)

lemma laz_len: "list_all_zip P a b ⟹ length a = length b"
  by (simp add: list_all_zip_alt)

lemma laz_eq: "list_all_zip (op =) a b ⟷ a=b"
  apply (induct a arbitrary: b)
  apply (case_tac b)
  apply simp
  apply simp
  apply (case_tac b)
  apply simp
  apply simp
  done


lemma laz_swap_ex:
  assumes A: "list_all_zip (λa b. ∃c. P a b c) A B"
  obtains C where
    "list_all_zip (λa c. ∃b. P a b c) A C"
    "list_all_zip (λb c. ∃a. P a b c) B C"
proof -
  from A have
    [simp]: "length A = length B" and
    IC: "∀i<length B. ∃ci. P (A!i) (B!i) ci"
    by (auto simp add: list_all_zip_alt)
  from obtain_list_from_elements[OF IC] obtain C where
    "length C = length B"
    "∀i<length B. P (A!i) (B!i) (C!i)" .
  thus ?thesis
    by (rule_tac that) (auto simp add: list_all_zip_alt)
qed

lemma laz_weak_Pa[simp]:
  "list_all_zip (λa b. P a) A B ⟷ (length A = length B) ∧ (∀a∈set A. P a)"
  by (auto simp add: list_all_zip_alt set_conv_nth)

lemma laz_weak_Pb[simp]:
  "list_all_zip (λa b. P b) A B ⟷ (length A = length B) ∧ (∀b∈set B. P b)"
  by (force simp add: list_all_zip_alt set_conv_nth)



subsubsection "Collecting Sets over Lists"

definition "list_collect_set f l == ⋃{ f a | a. a∈set l }"
lemma list_collect_set_simps[simp]:
  "list_collect_set f [] = {}"
  "list_collect_set f [a] = f a"
  "list_collect_set f (a#l) = f a ∪ list_collect_set f l"
  "list_collect_set f (l@l') = list_collect_set f l ∪ list_collect_set f l'"
by (unfold list_collect_set_def) auto

lemma list_collect_set_map_simps[simp]:
  "list_collect_set f (map x []) = {}"
  "list_collect_set f (map x [a]) = f (x a)"
  "list_collect_set f (map x (a#l)) = f (x a) ∪ list_collect_set f (map x l)"
  "list_collect_set f (map x (l@l')) = list_collect_set f (map x l) ∪ list_collect_set f (map x l')"
by simp_all

lemma list_collect_set_alt: "list_collect_set f l = ⋃{ f (l!i) | i. i<length l }"
  apply (induct l)
  apply simp
  apply safe
  apply auto
  apply (rule_tac x="f (l!i)" in exI)
  apply simp
  apply (rule_tac x="Suc i" in exI)
  apply simp
  apply (case_tac i)
  apply auto
  done

lemma list_collect_set_as_map: "list_collect_set f l = ⋃set (map f l)"
  by (unfold list_collect_set_def) auto

subsubsection {* Sorted List with arbitrary Relations *}

inductive sorted_by_rel :: "('a ⇒ 'a ⇒ bool) ⇒ 'a list ⇒ bool" where
  Nil [iff]: "sorted_by_rel R []"
| Cons: "∀y∈set xs. R x y ⟹ sorted_by_rel R xs ⟹ sorted_by_rel R (x # xs)"

inductive_simps sorted_by_rel_Cons[iff] : "sorted_by_rel R (x # xs)"

lemma sorted_by_rel_single [iff]:
  "sorted_by_rel R [x]" by simp

lemma sorted_by_rel_weaken :
assumes R_weaken: "⋀x y. ⟦x ∈ set l0; y ∈ set l0; R x y⟧ ⟹ R' x y"
    and sort: "sorted_by_rel R l0"
shows "sorted_by_rel R' l0"
using assms
by (induct l0) (simp_all)


lemma sorted_by_rel_map :
  "sorted_by_rel R (map f xs) = sorted_by_rel (λx y. R (f x) (f y)) xs"
by (induct xs) auto

lemma sorted_by_rel_append :
  "sorted_by_rel R (xs @ ys) =
   (sorted_by_rel R xs ∧ sorted_by_rel R ys ∧
    (∀x ∈ set xs. ∀y∈ set ys. R x y))"
by (induct xs) auto

lemma sorted_by_rel_true [simp] :
  "sorted_by_rel (λ_ _. True) l0"
by (induct l0) (simp_all)

lemma (in linorder) sorted_by_rel_linord[simp]:
  "sorted_by_rel op ≤ l ⟷ sorted l"
  by (induct l) (auto simp: sorted_Cons)

lemma (in linorder) sorted_by_rel_rev_linord [simp] :
  "sorted_by_rel op ≥ l ⟷ sorted (rev l)"
  by (induct l) (auto simp add: sorted_Cons sorted_append)

lemma (in linorder) sorted_by_rel_map_linord [simp] :
  "sorted_by_rel (λ(x::'a × 'b) y. fst x ≤ fst y) l
  ⟷ sorted (map fst l)"
  by (induct l) (auto simp add: sorted_Cons sorted_append)

lemma (in linorder) sorted_by_rel_map_rev_linord [simp] :
  "sorted_by_rel (λ(x::'a × 'b) y. fst x ≥ fst y) l
  ⟷ sorted (rev (map fst l))"
  by (induct l) (auto simp add: sorted_Cons sorted_append)



subsection {* Quicksort by Relation *}

text {* A functional implementation of quicksort on lists. It it similar to the
one in Isabelle/HOL's example directory. However, it uses tail-recursion for append and arbitrary
relations. *}

fun partition_rev :: "('a ⇒ bool) ⇒ ('a list × 'a list) ⇒ 'a list ⇒ ('a list × 'a list)" where
   "partition_rev P (yes, no) [] = (yes, no)"
 | "partition_rev P (yes, no) (x # xs) =
      partition_rev P (if P x then (x # yes, no) else (yes, x # no)) xs"

lemma partition_rev_filter_conv :
  "partition_rev P (yes, no) xs = (rev (filter P xs) @ yes,  rev (filter (Not ∘ P) xs) @ no)"
by (induct xs arbitrary: yes no) (simp_all)

function quicksort_by_rel :: "('a ⇒ 'a ⇒ bool) ⇒ 'a list ⇒ 'a list ⇒ 'a list" where
  "quicksort_by_rel R sl [] = sl"
| "quicksort_by_rel R sl (x#xs) =
   (let (xs_s, xs_b) = partition_rev (λy. R y x) ([],[]) xs in
    quicksort_by_rel R (x # (quicksort_by_rel R sl xs_b)) xs_s)"
by pat_completeness simp_all
termination
by (relation "measure (λ(_, _, xs). length xs)")
   (simp_all add: partition_rev_filter_conv less_Suc_eq_le)

lemma quicksort_by_rel_remove_acc :
  "quicksort_by_rel R sl xs = (quicksort_by_rel R [] xs @ sl)"
proof (induct xs arbitrary: sl rule: measure_induct_rule[of "length"])
  case (less xs)
  note ind_hyp = this

  show ?case
  proof (cases xs)
    case Nil thus ?thesis by simp
  next
    case (Cons x xs') note xs_eq[simp] = this

    obtain xs1 xs2 where part_rev_eq[simp]: "partition_rev (λy. R y x) ([], []) xs' = (xs1, xs2)"
      by (rule prod.exhaust)

    from part_rev_eq[symmetric]
    have length_le: "length xs1 < length xs" "length xs2 < length xs"
      unfolding partition_rev_filter_conv by (simp_all add: less_Suc_eq_le)

    note ind_hyp1a = ind_hyp[OF length_le(1), of "x # quicksort_by_rel R [] xs2"]
    note ind_hyp1b = ind_hyp[OF length_le(1), of "x # quicksort_by_rel R [] xs2 @ sl"]
    note ind_hyp2 = ind_hyp[OF length_le(2), of sl]

    show ?thesis by (simp add: ind_hyp1a ind_hyp1b ind_hyp2)
  qed
qed

lemma quicksort_by_rel_remove_acc_guared :
  "sl ≠ [] ⟹ quicksort_by_rel R sl xs = (quicksort_by_rel R [] xs @ sl)"
by (metis quicksort_by_rel_remove_acc)

lemma quicksort_by_rel_permutes [simp]:
  "mset (quicksort_by_rel R sl xs) = mset (xs @ sl)"
proof (induct xs arbitrary: sl rule: measure_induct_rule[of "length"])
  case (less xs)
  note ind_hyp = this

  show ?case
  proof (cases xs)
    case Nil thus ?thesis by simp
  next
    case (Cons x xs') note xs_eq[simp] = this

    obtain xs1 xs2 where part_rev_eq[simp]: "partition_rev (λy. R y x) ([], []) xs' = (xs1, xs2)"
      by (rule prod.exhaust)

    from part_rev_eq[symmetric] have xs'_multi_eq : "mset xs' = mset xs1 + mset xs2"
      unfolding partition_rev_filter_conv
      by (simp add: mset_filter multiset_partition)

    from part_rev_eq[symmetric]
    have length_le: "length xs1 < length xs" "length xs2 < length xs"
      unfolding partition_rev_filter_conv by (simp_all add: less_Suc_eq_le)

    note ind_hyp[OF length_le(1)] ind_hyp[OF length_le(2)]
    thus ?thesis by (simp add: xs'_multi_eq union_assoc)
  qed
qed

lemma set_quicksort_by_rel [simp]: "set (quicksort_by_rel R sl xs) = set (xs @ sl)"
  unfolding set_mset_comp_mset [symmetric] o_apply by simp

lemma sorted_by_rel_quicksort_by_rel:
  fixes R:: "'x ⇒ 'x ⇒ bool"
  assumes lin : "⋀x y. (R x y) ∨ (R y x)"
      and trans_R: "⋀x y z. R x y ⟹ R y z ⟹ R x z"
  shows "sorted_by_rel R (quicksort_by_rel R [] xs)"
proof (induct xs rule: measure_induct_rule[of "length"])
  case (less xs)
  note ind_hyp = this

  show ?case
  proof (cases xs)
    case Nil thus ?thesis by simp
  next
    case (Cons x xs') note xs_eq[simp] = this

    obtain xs1 xs2 where part_rev_eq[simp]: "partition_rev (λy. R y x) ([], []) xs' = (xs1, xs2)"
      by (rule prod.exhaust)

    from part_rev_eq[symmetric] have xs1_props: "⋀y. y ∈ set xs1 ⟹ (R y x)" and
                                     xs2_props: "⋀y. y ∈ set xs2 ⟹ ¬(R y x)"
      unfolding partition_rev_filter_conv
      by simp_all

    from xs2_props lin have xs2_props': "⋀y. y ∈ set xs2 ⟹ (R x y)" by blast
    from xs2_props' xs1_props trans_R have xs1_props':
      "⋀y1 y2. y1 ∈ set xs1 ⟹ y2 ∈ set xs2 ⟹ (R y1 y2)"
      by metis

    from part_rev_eq[symmetric]
    have length_le: "length xs1 < length xs" "length xs2 < length xs"
      unfolding partition_rev_filter_conv by (simp_all add: less_Suc_eq_le)

    note ind_hyps = ind_hyp[OF length_le(1)] ind_hyp[OF length_le(2)]
    thus ?thesis
      by (simp add: quicksort_by_rel_remove_acc_guared sorted_by_rel_append Ball_def
                    xs1_props xs2_props' xs1_props')
  qed
qed

lemma sorted_quicksort_by_rel:
  "sorted (quicksort_by_rel op≤ [] xs)"
unfolding sorted_by_rel_linord[symmetric]
by (rule sorted_by_rel_quicksort_by_rel) auto

lemma sort_quicksort_by_rel:
  "sort = quicksort_by_rel op≤ []"
  apply (rule ext, rule properties_for_sort)
  apply(simp_all add: sorted_quicksort_by_rel)
done

lemma [code]: "quicksort = quicksort_by_rel op≤ []"
  apply (subst sort_quicksort[symmetric])
  by (rule sort_quicksort_by_rel)

subsection {* Mergesort by Relation *}

text {* A functional implementation of mergesort on lists. It it similar to the
one in Isabelle/HOL's example directory. However, it uses tail-recursion for append and arbitrary
relations. *}

fun mergesort_by_rel_split :: "('a list × 'a list) ⇒ 'a list ⇒ ('a list × 'a list)" where
   "mergesort_by_rel_split (xs1, xs2) [] = (xs1, xs2)"
 | "mergesort_by_rel_split (xs1, xs2) [x] = (x # xs1, xs2)"
 | "mergesort_by_rel_split (xs1, xs2) (x1 # x2 # xs) =
    mergesort_by_rel_split (x1 # xs1, x2 # xs2) xs"

lemma list_induct_first2 [consumes 0, case_names Nil Sing Cons2]:
assumes "P []" "⋀x. P [x]" "⋀x1 x2 xs. P xs ⟹ P (x1 # x2 #xs)"
shows "P xs"
proof (induct xs rule: length_induct)
  case (1 xs) note ind_hyp = this

  show ?case
  proof (cases xs)
    case Nil thus ?thesis using assms(1) by simp
  next
    case (Cons x1 xs') note xs_eq[simp] = this
    thus ?thesis
    proof (cases xs')
      case Nil thus ?thesis using assms(2) by simp
    next
      case (Cons x2 xs'') note xs'_eq[simp] = this
      show ?thesis
        by (simp add: ind_hyp assms(3))
    qed
  qed
qed

lemma mergesort_by_rel_split_length :
  "length (fst (mergesort_by_rel_split (xs1, xs2) xs)) = length xs1 + (length xs div 2) + (length xs mod 2) ∧
   length (snd (mergesort_by_rel_split (xs1, xs2) xs)) = length xs2 + (length xs div 2)"
by (induct xs arbitrary: xs1 xs2 rule: list_induct_first2)
   (simp_all)

lemma mset_mergesort_by_rel_split [simp]:
  "mset (fst (mergesort_by_rel_split (xs1, xs2) xs)) +
   mset (snd (mergesort_by_rel_split (xs1, xs2) xs)) =
   mset xs + mset xs1 + mset xs2"
  apply (induct xs arbitrary: xs1 xs2 rule: list_induct_first2)
  apply (simp_all add: ac_simps)
done

fun mergesort_by_rel_merge :: "('a ⇒ 'a ⇒ bool) ⇒ 'a list ⇒ 'a list ⇒ 'a list"
where
  "mergesort_by_rel_merge R (x#xs) (y#ys) =
     (if R x y then x # mergesort_by_rel_merge R xs (y#ys) else y # mergesort_by_rel_merge R (x#xs) ys)"
| "mergesort_by_rel_merge R xs [] = xs"
| "mergesort_by_rel_merge R [] ys = ys"

declare mergesort_by_rel_merge.simps [simp del]

lemma mergesort_by_rel_merge_simps[simp] :
  "mergesort_by_rel_merge R (x#xs) (y#ys) =
     (if R x y then x # mergesort_by_rel_merge R xs (y#ys) else y # mergesort_by_rel_merge R (x#xs) ys)"
  "mergesort_by_rel_merge R xs [] = xs"
  "mergesort_by_rel_merge R [] ys = ys"
  apply (simp_all add: mergesort_by_rel_merge.simps)
  apply (cases ys)
  apply (simp_all add: mergesort_by_rel_merge.simps)
done

lemma mergesort_by_rel_merge_induct [consumes 0, case_names Nil1 Nil2 Cons1 Cons2]:
assumes "⋀xs::'a list. P xs []" "⋀ys::'b list. P [] ys"
        "⋀x xs y ys. R x y ⟹ P xs (y # ys) ⟹ P (x # xs) (y # ys)"
        "⋀x xs y ys. ¬(R x y) ⟹ P (x # xs) ys ⟹ P (x # xs) (y # ys)"
shows "P xs ys"
proof (induct xs arbitrary: ys)
  case Nil thus ?case using assms(2) by simp
next
  case (Cons x xs) note P_xs = this
  show ?case
  proof (induct ys)
    case Nil thus ?case using assms(1) by simp
  next
    case (Cons y ys) note P_x_xs_ys = this
    show ?case using assms(3,4)[of x y xs ys] P_x_xs_ys P_xs by metis
  qed
qed

lemma mset_mergesort_by_rel_merge [simp]:
  "mset (mergesort_by_rel_merge R xs ys) = mset xs + mset ys"
by (induct R xs ys rule: mergesort_by_rel_merge.induct) (simp_all add: ac_simps)

lemma set_mergesort_by_rel_merge [simp]:
  "set (mergesort_by_rel_merge R xs ys) = set xs ∪ set ys"
  by (induct R xs ys rule: mergesort_by_rel_merge.induct) auto

lemma sorted_by_rel_mergesort_by_rel_merge [simp]:
  assumes lin : "⋀x y. (R x y) ∨ (R y x)"
      and trans_R: "⋀x y z. R x y ⟹ R y z ⟹ R x z"
  shows  "sorted_by_rel R (mergesort_by_rel_merge R xs ys) ⟷
          sorted_by_rel R xs ∧ sorted_by_rel R ys"
proof (induct xs ys rule: mergesort_by_rel_merge_induct[where R = R])
  case Nil1 thus ?case by simp
next
  case Nil2 thus ?case by simp
next
  case (Cons1 x xs y ys) thus ?case
    by (simp add: Ball_def) (metis trans_R)
next
  case (Cons2 x xs y ys) thus ?case
    apply (auto simp add: Ball_def)
    apply (metis lin)
    apply (metis lin trans_R)
  done
qed

function mergesort_by_rel :: "('a ⇒ 'a ⇒ bool) ⇒ 'a list ⇒ 'a list"
where
  "mergesort_by_rel R xs =
    (if length xs < 2 then xs else
     (mergesort_by_rel_merge R
       (mergesort_by_rel R (fst (mergesort_by_rel_split ([], []) xs)))
       (mergesort_by_rel R (snd (mergesort_by_rel_split ([], []) xs)))))"
by auto
termination
  apply (relation "measure (λ(_, xs). length xs)")
  apply (simp_all add: mergesort_by_rel_split_length)
proof -
  fix xs :: "'a list"
  assume "¬(length xs < 2)"
  then obtain x1 x2 xs' where xs_eq: "xs = x1 # x2 # xs'"
    apply (cases xs, simp, rename_tac x1 xs0)
    apply (case_tac xs0, simp, rename_tac x2 xs')
    apply auto
  done
  show "length xs div 2 + length xs mod 2 < length xs" by (simp add: xs_eq)
qed

declare mergesort_by_rel.simps [simp del]

lemma mergesort_by_rel_simps [simp, code] :
  "mergesort_by_rel R [] = []"
  "mergesort_by_rel R [x] = [x]"
  "mergesort_by_rel R (x1 # x2 # xs) =
   (let (xs1, xs2) = (mergesort_by_rel_split ([x1], [x2]) xs) in
   mergesort_by_rel_merge R (mergesort_by_rel R xs1) (mergesort_by_rel R xs2))"
apply (simp add: mergesort_by_rel.simps)
apply (simp add: mergesort_by_rel.simps)
apply (simp add: mergesort_by_rel.simps[of _ "x1 # x2 # xs"] split: prod.splits)
done

lemma mergesort_by_rel_permutes [simp]:
  "mset (mergesort_by_rel R xs) = mset xs"
proof (induct xs rule: length_induct)
  case (1 xs) note ind_hyp = this

  show ?case
  proof (cases xs)
    case Nil thus ?thesis by simp
  next
    case (Cons x1 xs') note xs_eq[simp] = this
    show ?thesis
    proof (cases xs')
      case Nil thus ?thesis by simp
    next
      case (Cons x2 xs'') note xs'_eq[simp] = this

      have "length (fst (mergesort_by_rel_split ([], []) xs)) < length xs"
           "length (snd (mergesort_by_rel_split ([], []) xs)) < length xs"
        by (simp_all add: mergesort_by_rel_split_length)
      with ind_hyp show ?thesis
        unfolding mergesort_by_rel.simps[of _ xs]
        by (simp add: ac_simps)
    qed
  qed
qed

lemma set_mergesort_by_rel [simp]: "set (mergesort_by_rel R xs) = set xs"
  unfolding set_mset_comp_mset [symmetric] o_apply by simp

lemma sorted_by_rel_mergesort_by_rel:
  fixes R:: "'x ⇒ 'x ⇒ bool"
  assumes lin : "⋀x y. (R x y) ∨ (R y x)"
      and trans_R: "⋀x y z. R x y ⟹ R y z ⟹ R x z"
  shows "sorted_by_rel R (mergesort_by_rel R xs)"
proof (induct xs rule: measure_induct_rule[of "length"])
  case (less xs)
  note ind_hyp = this

  show ?case
  proof (cases xs)
    case Nil thus ?thesis by simp
  next
    case (Cons x xs') note xs_eq[simp] = this
    thus ?thesis
    proof (cases xs')
      case Nil thus ?thesis by simp
    next
      case (Cons x2 xs'') note xs'_eq[simp] = this

      have "length (fst (mergesort_by_rel_split ([], []) xs)) < length xs"
           "length (snd (mergesort_by_rel_split ([], []) xs)) < length xs"
        by (simp_all add: mergesort_by_rel_split_length)
      with ind_hyp show ?thesis
        unfolding mergesort_by_rel.simps[of _ xs]
        by (simp add: sorted_by_rel_mergesort_by_rel_merge[OF lin trans_R])
    qed
  qed
qed

lemma sorted_mergesort_by_rel:
  "sorted (mergesort_by_rel op≤ xs)"
unfolding sorted_by_rel_linord[symmetric]
by (rule sorted_by_rel_mergesort_by_rel) auto

lemma sort_mergesort_by_rel:
  "sort = mergesort_by_rel op≤"
  apply (rule ext, rule properties_for_sort)
  apply(simp_all add: sorted_mergesort_by_rel)
done

definition "mergesort = mergesort_by_rel op≤"

lemma sort_mergesort: "sort = mergesort"
  unfolding mergesort_def by (rule sort_mergesort_by_rel)

subsubsection {* Mergesort with Remdup *}
term merge

fun merge :: "'a::{linorder} list ⇒ 'a list ⇒ 'a list" where
   "merge [] l2 = l2"
 | "merge l1 [] = l1"
 | "merge (x1 # l1) (x2 # l2) =
    (if (x1 < x2) then x1 # (merge l1 (x2 # l2)) else
     (if (x1 = x2) then x1 # (merge l1 l2) else x2 # (merge (x1 # l1) l2)))"

lemma merge_correct :
assumes l1_OK: "distinct l1 ∧ sorted l1"
assumes l2_OK: "distinct l2 ∧ sorted l2"
shows "distinct (merge l1 l2) ∧ sorted (merge l1 l2) ∧ set (merge l1 l2) = set l1 ∪ set l2"
using assms
proof (induct l1 arbitrary: l2)
  case Nil thus ?case by simp
next
  case (Cons x1 l1 l2)
  note x1_l1_props = Cons(2)
  note l2_props = Cons(3)

  from x1_l1_props have l1_props: "distinct l1 ∧ sorted l1"
                    and x1_nin_l1: "x1 ∉ set l1"
                    and x1_le: "⋀x. x ∈ set l1 ⟹ x1 ≤ x"
    by (simp_all add: sorted_Cons Ball_def)

  note ind_hyp_l1 = Cons(1)[OF l1_props]

  show ?case
  using l2_props
  proof (induct l2)
    case Nil with x1_l1_props show ?case by simp
  next
    case (Cons x2 l2)
    note x2_l2_props = Cons(2)
    from x2_l2_props have l2_props: "distinct l2 ∧ sorted l2"
                    and x2_nin_l2: "x2 ∉ set l2"
                    and x2_le: "⋀x. x ∈ set l2 ⟹ x2 ≤ x"
    by (simp_all add: sorted_Cons Ball_def)

    note ind_hyp_l2 = Cons(1)[OF l2_props]
    show ?case
    proof (cases "x1 < x2")
      case True note x1_less_x2 = this

      from ind_hyp_l1[OF x2_l2_props] x1_less_x2 x1_nin_l1 x1_le x2_le
      show ?thesis
        apply (auto simp add: sorted_Cons Ball_def)
        apply (metis linorder_not_le)
        apply (metis linorder_not_less xt1(6) xt1(9))
      done
    next
      case False note x2_le_x1 = this

      show ?thesis
      proof (cases "x1 = x2")
        case True note x1_eq_x2 = this

        from ind_hyp_l1[OF l2_props] x1_le x2_le x2_nin_l2 x1_eq_x2 x1_nin_l1
        show ?thesis by (simp add: x1_eq_x2 sorted_Cons Ball_def)
      next
        case False note x1_neq_x2 = this
        with x2_le_x1 have x2_less_x1 : "x2 < x1" by auto

        from ind_hyp_l2 x2_le_x1 x1_neq_x2 x2_le x2_nin_l2 x1_le
        show ?thesis
          apply (simp add: x2_less_x1 sorted_Cons Ball_def)
          apply (metis linorder_not_le x2_less_x1 xt1(7))
        done
      qed
    qed
  qed
qed

function merge_list :: "'a::{linorder} list list ⇒ 'a list list ⇒ 'a list" where
   "merge_list [] [] = []"
 | "merge_list [] [l] = l"
 | "merge_list (la # acc2) [] = merge_list [] (la # acc2)"
 | "merge_list (la # acc2) [l] = merge_list [] (l # la # acc2)"
 | "merge_list acc2 (l1 # l2 # ls) =
    merge_list ((merge l1 l2) # acc2) ls"
by pat_completeness simp_all
termination
by (relation "measure (λ(acc, ls). 3 * length acc + 2 * length ls)") (simp_all)

lemma merge_list_correct :
assumes ls_OK: "⋀l. l ∈ set ls ⟹ distinct l ∧ sorted l"
assumes as_OK: "⋀l. l ∈ set as ⟹ distinct l ∧ sorted l"
shows "distinct (merge_list as ls) ∧ sorted (merge_list as ls) ∧
       set (merge_list as ls) = set (concat (as @ ls))"
using assms
proof (induct as ls rule: merge_list.induct)
  case 1 thus ?case by simp
next
  case 2 thus ?case by simp
next
  case 3 thus ?case by simp
next
  case 4 thus ?case by auto
next
  case (5 acc l1 l2 ls)
  note ind_hyp = 5(1)
  note l12_l_OK = 5(2)
  note acc_OK = 5(3)

  from l12_l_OK acc_OK merge_correct[of l1 l2]
    have set_merge_eq: "set (merge l1 l2) = set l1 ∪ set l2" by auto

  from l12_l_OK acc_OK merge_correct[of l1 l2]
  have "distinct (merge_list (merge l1 l2 # acc) ls) ∧
        sorted (merge_list (merge l1 l2 # acc) ls) ∧
        set (merge_list (merge l1 l2 # acc) ls) =
        set (concat ((merge l1 l2 # acc) @ ls))"
    by (rule_tac ind_hyp) auto
  with set_merge_eq show ?case by auto
qed


definition mergesort_remdups where
  "mergesort_remdups xs = merge_list [] (map (λx. [x]) xs)"

lemma mergesort_remdups_correct :
  "distinct (mergesort_remdups l)
  ∧ sorted (mergesort_remdups l)
  ∧ (set (mergesort_remdups l) = set l)"
proof -
  let ?l' = "map (λx. [x]) l"

  { fix xs
    assume "xs ∈ set ?l'"
    then obtain x where xs_eq: "xs = [x]" by auto
    hence "distinct xs ∧ sorted xs" by simp
  } note l'_OK = this

  from merge_list_correct[of "?l'" "[]", OF l'_OK]
  show ?thesis unfolding mergesort_remdups_def by simp
qed

(* TODO: Move *)
lemma ex1_eqI: "⟦∃!x. P x; P a; P b⟧ ⟹ a=b"
  by blast

lemma remdup_sort_mergesort_remdups:
  "remdups o sort = mergesort_remdups" (is "?lhs=?rhs")
proof
  fix l
  have "set (?lhs l) = set l" and "sorted (?lhs l)" and "distinct (?lhs l)"
    by simp_all
  moreover note mergesort_remdups_correct
  ultimately show "?lhs l = ?rhs l"
    by (auto intro!: ex1_eqI[OF finite_sorted_distinct_unique[OF finite_set]])
qed

subsubsection {* Take and Drop *}
  lemma drop_all_conc: "drop (length a) (a@b) = b"
    by (simp)

  lemma take_update[simp]: "take n (l[i:=x]) = (take n l)[i:=x]"
    apply (induct l arbitrary: n i)
    apply (auto split: nat.split)
    apply (case_tac n)
    apply simp_all
    apply (case_tac n)
    apply simp_all
    done

  lemma take_update_last: "length list>n ⟹ take (Suc n) list [n:=x] = take n list @ [x]"
    by (induct list arbitrary: n)
       (auto split: nat.split)

  lemma drop_upd_irrelevant: "m < n ⟹ drop n (l[m:=x]) = drop n l"
    apply (induct n arbitrary: l m)
    apply simp
    apply (case_tac l)
    apply (auto split: nat.split)
    done

lemma set_drop_conv:
  "set (drop n l) =  { l!i | i. n≤i ∧ i < length l }" (is "?L=?R")
proof (intro equalityI subsetI)
  fix x
  assume "x∈?L"
  then obtain i where L: "i<length l - n" and X: "x = drop n l!i"
    by (auto simp add: in_set_conv_nth)
  note X
  also have "… = l!(n+i)" using L by simp
  finally show "x∈?R" using L by auto
next
  fix x
  assume "x∈?R"
  then obtain i where L: "n≤i" "i<length l" and X: "x=l!i" by blast
  note X
  moreover have "l!i = drop n l ! (i - n)" and "(i-n) < length l - n" using L
    by (auto)
  ultimately show "x∈?L"
    by (auto simp add: in_set_conv_nth)
qed

lemma filter_upt_take_conv:
  "[i←[n..<m]. P (take m l ! i) ] = [i←[n..<m]. P (l ! i) ]"
  by (rule filter_cong) (simp_all)

lemma in_set_drop_conv_nth: "x∈set (drop n l) ⟷ (∃i. n≤i ∧ i<length l ∧ x = l!i)"
  apply (clarsimp simp: in_set_conv_nth)
  apply safe
  apply simp
  apply (metis le_add2 less_diff_conv add.commute)
  apply (rule_tac x="i-n" in exI)
  apply auto []
  done

lemma Union_take_drop_id: "⋃set (drop n l) ∪ ⋃set (take n l) = ⋃set l"
  by (metis Union_Un_distrib append_take_drop_id set_union_code sup_commute)


lemma Un_set_drop_extend: "⟦j≥Suc 0; j < length l⟧
  ⟹ l ! (j - Suc 0) ∪ ⋃set (drop j l) = ⋃set (drop (j - Suc 0) l)"
  apply safe
  apply simp_all
  apply (metis diff_Suc_Suc diff_zero gr0_implies_Suc in_set_drop_conv_nth
    le_refl less_eq_Suc_le order.strict_iff_order)
  apply (metis Nat.diff_le_self set_drop_subset_set_drop subset_code(1))
  by (metis diff_Suc_Suc gr0_implies_Suc in_set_drop_conv_nth
    less_eq_Suc_le order.strict_iff_order minus_nat.diff_0)

lemma drop_take_drop_unsplit:
  "i≤j ⟹ drop i (take j l) @ drop j l = drop i l"
proof -
  assume "i ≤ j"
  then obtain skf where "i + skf = j"
    by (metis le_iff_add)
  thus "drop i (take j l) @ drop j l = drop i l"
    by (metis append_take_drop_id diff_add_inverse drop_drop drop_take
      add.commute)
qed

lemma drop_last_conv[simp]: "l≠[] ⟹ drop (length l - Suc 0) l = [last l]"
  by (cases l rule: rev_cases) auto

lemma take_butlast_conv[simp]: "take (length l - Suc 0) l = butlast l"
  by (cases l rule: rev_cases) auto


subsubsection {* Last and butlast *}
(* Maybe this should go into List.thy, next to snoc_eq_iff_butlast *)
lemma snoc_eq_iff_butlast':
  "(ys = xs @ [x]) ⟷ (ys ≠ [] ∧ butlast ys = xs ∧ last ys = x)"
  by auto

lemma butlast_upt: "butlast [m..<n] = [m..<n - 1]"
  apply (cases "m<n")
    apply (cases n)
      apply simp
    apply simp
  apply simp
  done

(*lemma butlast_upt: "n<m ⟹ butlast [n..<m] = [n..<m - 1]"
  apply (cases "[n..<m]" rule: rev_cases)
  apply simp
  apply (cases m)
  apply simp
  apply simp
  done*)

lemma butlast_update': "butlast l [i:=x] = butlast (l[i:=x])"
  by (metis butlast_conv_take butlast_list_update length_butlast take_update)


lemma take_minus_one_conv_butlast:
  "n≤length l ⟹ take (n - Suc 0) l = butlast (take n l)"
  by (simp add: butlast_take)

lemma butlast_eq_cons_conv: "butlast l = x#xs ⟷ (∃xl. l=x#xs@[xl])"
  by (metis Cons_eq_appendI append_butlast_last_id butlast.simps
    butlast_snoc eq_Nil_appendI)

lemma butlast_eq_consE:
  assumes "butlast l = x#xs"
  obtains xl where "l=x#xs@[xl]"
  using assms
  by (auto simp: butlast_eq_cons_conv)

lemma drop_eq_ConsD: "drop n xs = x # xs' ⟹ drop (Suc n) xs = xs'"
by(induct xs arbitrary: n)(simp_all add: drop_Cons split: nat.split_asm)

subsubsection {* Miscellaneous *}
  lemma length_compl_induct[case_names Nil Cons]: "⟦P []; !! e l . ⟦!! ll . length ll <= length l ⟹ P ll⟧ ⟹ P (e#l)⟧ ⟹ P l"
    apply(induct_tac l rule: length_induct)
    apply(case_tac "xs")
    apply(auto)
  done

  lemma list_size_conc[simp]: "size_list f (a@b) = size_list f a + size_list f b"
    by (induct a) auto


  lemma in_set_list_format: "⟦ e∈set l; !!l1 l2. l=l1@e#l2 ⟹ P ⟧ ⟹ P"
  proof (induct l arbitrary: P)
    case Nil thus ?case by auto
  next
    case (Cons a l) show ?case proof (cases "a=e")
      case True with Cons show ?thesis by force
    next
      case False with Cons.prems(1) have "e∈set l" by auto
      with Cons.hyps obtain l1 l2 where "l=l1@e#l2" by blast
      hence "a#l = (a#l1)@e#l2" by simp
      with Cons.prems(2) show P by blast
    qed
  qed

lemma in_set_upd_cases:
  assumes "x∈set (l[i:=y])"
  obtains "i<length l" and "x=y" | "x∈set l"
  by (metis assms in_set_conv_nth length_list_update nth_list_update_eq
    nth_list_update_neq)

lemma in_set_upd_eq_aux:
  assumes "i<length l"
  shows "x∈set (l[i:=y]) ⟷ x=y ∨ (∀y. x∈set (l[i:=y]))"
  by (metis in_set_upd_cases assms list_update_overwrite
    set_update_memI)

lemma in_set_upd_eq:
  assumes "i<length l"
  shows "x∈set (l[i:=y]) ⟷ x=y ∨ (x∈set l ∧ (∀y. x∈set (l[i:=y])))"
  by (metis in_set_upd_cases in_set_upd_eq_aux assms)


  text {* Simultaneous induction over two lists, prepending an element to one of the lists in each step *}
  lemma list_2pre_induct[case_names base left right]: assumes BASE: "P [] []" and LEFT: "!!e w1' w2. P w1' w2 ⟹ P (e#w1') w2" and RIGHT: "!!e w1 w2'. P w1 w2' ⟹ P w1 (e#w2')" shows "P w1 w2"
  proof -
    { -- "The proof is done by induction over the sum of the lengths of the lists"
      fix n
      have "!!w1 w2. ⟦length w1 + length w2 = n; P [] []; !!e w1' w2. P w1' w2 ⟹ P (e#w1') w2; !!e w1 w2'. P w1 w2' ⟹ P w1 (e#w2') ⟧ ⟹ P w1 w2 "
        apply (induct n)
        apply simp
        apply (case_tac w1)
        apply auto
        apply (case_tac w2)
        apply auto
        done
    } from this[OF _ BASE LEFT RIGHT] show ?thesis by blast
  qed


  lemma list_decomp_1: "length l=1 ⟹ EX a . l=[a]"
    by (case_tac l, auto)

  lemma list_decomp_2: "length l=2 ⟹ EX a b . l=[a,b]"
    by (case_tac l, auto simp add: list_decomp_1)



  lemma list_rest_coinc: "⟦length s2 <= length s1; s1@r1 = s2@r2⟧ ⟹ EX r1p . r2=r1p@r1"
  proof -
    assume A: "length s2 <= length s1" "s1@r1 = s2@r2"
    hence "r1 = drop (length s1) (s2@r2)" by (auto simp only:drop_all_conc dest: sym)
    moreover from A have "length s1 = length s1 - length s2 + length s2" by arith
    ultimately have "r1 = drop ((length s1 - length s2)) r2" by (auto)
    hence "r2 = take ((length s1 - length s2)) r2 @ r1" by auto
    thus ?thesis by auto
  qed

  lemma list_tail_coinc: "n1#r1 = n2#r2 ⟹ n1=n2 & r1=r2"
    by (auto)


  lemma last_in_set[intro]: "⟦l≠[]⟧ ⟹ last l ∈ set l"
    by (induct l) auto

  lemma map_ident_id[simp]: "map id = id" "map id x = x"
    by (unfold id_def) auto

  lemma op_conc_empty_img_id[simp]: "(op @ [] ` L) = L" by auto


  lemma distinct_match: "⟦ distinct (al@e#bl) ⟧ ⟹ (al@e#bl = al'@e#bl') ⟷ (al=al' ∧ bl=bl')"
  proof (rule iffI, induct al arbitrary: al')
    case Nil thus ?case by (cases al') auto
  next
    case (Cons a al) note Cprems=Cons.prems note Chyps=Cons.hyps
    show ?case proof (cases al')
      case Nil with Cprems have False by auto
      thus ?thesis ..
    next
      case [simp]: (Cons a' all')
      with Cprems have [simp]: "a=a'" and P: "al@e#bl = all'@e#bl'" by auto
      from Cprems(1) have D: "distinct (al@e#bl)" by auto
      from Chyps[OF D P] have [simp]: "al=all'" "bl=bl'" by auto
      show ?thesis by simp
    qed
  qed simp


  lemma prop_match: "⟦ list_all P al; ¬P e; ¬P e'; list_all P bl ⟧ ⟹ (al@e#bl = al'@e'#bl') ⟷ (al=al' ∧ e=e' ∧ bl=bl')"
    apply (rule iffI, induct al arbitrary: al')
    apply (case_tac al', fastforce, fastforce)+
    done

  lemmas prop_matchD = rev_iffD1[OF _ prop_match[where P=P]] for P

  lemma list_match_lel_lel: "⟦
    c1 @ qs # c2 = c1' @ qs' # c2';
    ⋀c21'. ⟦c1 = c1' @ qs' # c21'; c2' = c21' @ qs # c2⟧ ⟹ P;
    ⟦c1' = c1; qs' = qs; c2' = c2⟧ ⟹ P;
    ⋀c21. ⟦c1' = c1 @ qs # c21; c2 = c21 @ qs' # c2'⟧ ⟹ P
    ⟧ ⟹ P"
    apply (auto simp add: append_eq_append_conv2)
    apply (case_tac us)
    apply auto
    apply (case_tac us)
    apply auto
    done

  lemma distinct_tl[simp]: "l≠[] ⟹ distinct l ⟹ distinct (tl l)"
    by (cases l) auto

lemma list_e_eq_lel[simp]:
  "[e] = l1@e'#l2 ⟷ l1=[] ∧ e'=e ∧ l2=[]"
  "l1@e'#l2 = [e] ⟷ l1=[] ∧ e'=e ∧ l2=[]"
  apply (cases l1, auto) []
  apply (cases l1, auto) []
  done

lemma list_ee_eq_leel[simp]:
  "([e1,e2] = l1@e1'#e2'#l2) ⟷ (l1=[] ∧ e1=e1' ∧ e2=e2' ∧ l2=[])"
  "(l1@e1'#e2'#l2 = [e1,e2]) ⟷ (l1=[] ∧ e1=e1' ∧ e2=e2' ∧ l2=[])"
  apply (cases l1, auto) []
  apply (cases l1, auto) []
  done

lemma list_se_match[simp]:
  "l1 ≠ [] ⟹ l1@l2 = [a] ⟷ l1 = [a] ∧ l2 = []"
  "l2 ≠ [] ⟹ l1@l2 = [a] ⟷ l1 = [] ∧ l2 = [a]"
  "l1 ≠ [] ⟹ [a] = l1@l2 ⟷ l1 = [a] ∧ l2 = []"
  "l2 ≠ [] ⟹ [a] = l1@l2 ⟷ l1 = [] ∧ l2 = [a]"
  apply (cases l1, simp_all)
  apply (cases l1, simp_all)
  apply (cases l1, auto) []
  apply (cases l1, auto) []
  done



lemma xy_in_set_cases[consumes 2, case_names EQ XY YX]:
  assumes A: "x∈set l" "y∈set l"
  and C:
  "!!l1 l2. ⟦ x=y; l=l1@y#l2 ⟧ ⟹ P"
  "!!l1 l2 l3. ⟦ x≠y; l=l1@x#l2@y#l3 ⟧ ⟹ P"
  "!!l1 l2 l3. ⟦ x≠y; l=l1@y#l2@x#l3 ⟧ ⟹ P"
  shows P
proof (cases "x=y")
  case True with A(1) obtain l1 l2 where "l=l1@y#l2" by (blast dest: split_list)
  with C(1) True show ?thesis by blast
next
  case False
  from A(1) obtain l1 l2 where S1: "l=l1@x#l2" by (blast dest: split_list)
  from A(2) obtain l1' l2' where S2: "l=l1'@y#l2'" by (blast dest: split_list)
  from S1 S2 have M: "l1@x#l2 = l1'@y#l2'" by simp
  thus P proof (cases rule: list_match_lel_lel[consumes 1, case_names 1 2 3])
    case (1 c) with S1 have "l=l1'@y#c@x#l2" by simp
    with C(3) False show ?thesis by blast
  next
    case 2 with False have False by blast
    thus ?thesis ..
  next
    case (3 c) with S1 have "l=l1@x#c@y#l2'" by simp
    with C(2) False show ?thesis by blast
  qed
qed


    (* Placed here because it depends on xy_in_set_cases *)
lemma distinct_map_eq: "⟦ distinct (List.map f l); f x = f y; x∈set l; y∈set l ⟧ ⟹ x=y"
  by (erule (2) xy_in_set_cases) auto



lemma upt_append:
  assumes "i<j"
  shows "[0..<i]@[i..<j] = [0..<j]"
  using assms
  apply (induct j)
  apply simp
  apply (case_tac "i=j")
  apply auto
  done



lemma upt_filter_extend:
  assumes LE: "u≤u'"
  assumes NP: "∀i. u≤i ∧ i<u' ⟶ ¬P i"
  shows "[i←[0..<u]. P i] = [i←[0..<u']. P i]"
proof (cases "u=u'")
  case True thus ?thesis by simp
next
  case False hence "u<u'" using LE by simp
  hence "[0..<u'] = [0..<u]@[u ..<u']"
    by (simp add: upt_append)
  hence "[i←[0..<u']. P i] = [i←[0..<u]. P i] @ [i←[u..<u']. P i]"
    by simp
  also have "[i←[u..<u']. P i] = []" using NP
    by (auto simp: filter_empty_conv)
  finally show ?thesis by simp
qed


lemma filter_upt_last:
  assumes E: "[k←[0..<length l] . P (l!k)] = js @ [j]"
  assumes "j<i" and "i<length l"
  shows "¬ P (l!i)"
proof
  assume A: "P (l!i)"
  have "[0..<length l] = [0..<i]@[i..<length l]" using `i<length l`
    by (simp add: upt_append)
  also have "[i..<length l] = i#[Suc i..<length l]" using `i<length l`
    by (auto simp: upt_conv_Cons)
  finally
  have "[k←[0..<i] . P (l!k)]@i#[k←[Suc i..<length l] . P (l!k)] = js@[j]"
    unfolding E[symmetric]
    using `P (l!i)` by simp
  hence "j = last (i#[k←[Suc i..<length l] . P (l!k)])"
    by (metis last_appendR last_snoc list.distinct(1))
  also have "… ≥ i"
  proof -
    have "sorted (i#[k←[Suc i..<length l] . P (l!k)])" (is "sorted ?l")
      by (simp add: sorted_Cons sorted_filter[where f=id, simplified])
    hence "hd ?l ≤ last ?l"
      by (rule sorted_hd_last) simp
    thus ?thesis by simp
  qed
  finally have "i≤j" . thus False using `j<i` by simp
qed

lemma all_set_conv_nth: "(∀x∈set l. P x) ⟷ (∀i<length l. P (l!i))"
  by (auto intro: all_nth_imp_all_set)

lemma upt_0_eq_Nil_conv[simp]: "[0..<j] = [] ⟷ j=0"
  by auto

lemma filter_eq_snocD: "filter P l = l'@[x] ⟹ x∈set l ∧ P x"
proof -
  assume A: "filter P l = l'@[x]"
  hence "x∈set (filter P l)" by simp
  thus ?thesis by simp
qed



-- {* Congruence rules for @{const list_all} and @{const list_ex} *}
lemma list_all_cong[fundef_cong]: "⟦ xs=ys; !!x. x∈set ys ⟹ f x ⟷ g x ⟧ ⟹ list_all f xs = list_all g ys"
  apply (induct xs arbitrary: ys)
  apply auto
  done

lemma list_ex_cong[fundef_cong]: "⟦ xs=ys; !!x. x∈set ys ⟹ f x ⟷ g x ⟧ ⟹ list_ex f xs = list_ex g ys"
  apply (induct xs arbitrary: ys)
  apply auto
  done


lemma lists_image_witness:
  assumes A: "x∈lists (f`Q)"
  obtains xo where "xo∈lists Q" "x=map f xo"
proof -
  have "⟦ x∈lists (f`Q) ⟧ ⟹ ∃xo∈lists Q. x=map f xo"
  proof (induct x)
    case Nil thus ?case by auto
  next
    case (Cons x xs)
    then obtain xos where "xos∈lists Q" "xs=map f xos" by force
    moreover from Cons.prems have "x∈f`Q" by auto
    then obtain xo where "xo∈Q" "x=f xo" by auto
    ultimately show ?case
      by (rule_tac x="xo#xos" in bexI) auto
  qed
  thus ?thesis
    apply (simp_all add: A)
    apply (erule_tac bexE)
    apply (rule_tac that)
    apply assumption+
    done
qed

lemma map_of_eq_empty_iff [simp]:
  "map_of xs = Map.empty ⟷ xs=[]"
proof
  assume "map_of xs = Map.empty"
  thus "xs = []" by (induct xs) simp_all
qed auto

lemma map_of_None_filterD:
  "map_of xs x = None ⟹ map_of (filter P xs) x = None"
by(induct xs) auto

lemma map_of_concat: "map_of (concat xss) = foldr (λxs f. f ++ map_of xs) xss empty"
by(induct xss) simp_all

lemma map_of_Some_split:
  "map_of xs k = Some v ⟹ ∃ys zs. xs = ys @ (k, v) # zs ∧ map_of ys k = None"
proof(induct xs)
  case (Cons x xs)
  obtain k' v' where x: "x = (k', v')" by(cases x)
  show ?case
  proof(cases "k' = k")
    case True
    with `map_of (x # xs) k = Some v` x have "x # xs = [] @ (k, v) # xs" "map_of [] k = None" by simp_all
    thus ?thesis by blast
  next
    case False
    with `map_of (x # xs) k = Some v` x
    have "map_of xs k = Some v" by simp
    from `map_of xs k = Some v ⟹ ∃ys zs. xs = ys @ (k, v) # zs ∧ map_of ys k = None`[OF this]
    obtain ys zs where "xs = ys @ (k, v) # zs" "map_of ys k = None" by blast
    with False x have "x # xs = (x # ys) @ (k, v) # zs" "map_of (x # ys) k = None" by simp_all
    thus ?thesis by blast
  qed
qed simp

lemma map_add_find_left:
  "g k = None ⟹ (f ++ g) k = f k"
by(simp add: map_add_def)

lemma map_add_left_None:
  "f k = None ⟹ (f ++ g) k = g k"
by(simp add: map_add_def split: option.split)

lemma map_of_Some_filter_not_in:
  "⟦ map_of xs k = Some v; ¬ P (k, v); distinct (map fst xs) ⟧ ⟹ map_of (filter P xs) k = None"
apply(induct xs)
apply(auto)
apply(auto simp add: map_of_eq_None_iff)
done

lemma distinct_map_fst_filterI: "distinct (map fst xs) ⟹ distinct (map fst (filter P xs))"
by(induct xs) auto

lemma distinct_map_fstD: "⟦ distinct (map fst xs); (x, y) ∈ set xs; (x, z) ∈ set xs ⟧ ⟹ y = z"
by(induct xs)(fastforce elim: notE rev_image_eqI)+



lemma concat_filter_neq_Nil:
  "concat [ys←xs. ys ≠ Nil] = concat xs"
by(induct xs) simp_all

lemma distinct_concat':
  "⟦distinct [ys←xs. ys ≠ Nil]; ⋀ys. ys ∈ set xs ⟹ distinct ys;
   ⋀ys zs. ⟦ys ∈ set xs; zs ∈ set xs; ys ≠ zs⟧ ⟹ set ys ∩ set zs = {}⟧
  ⟹ distinct (concat xs)"
by(erule distinct_concat[of "[ys←xs. ys ≠ Nil]", unfolded concat_filter_neq_Nil]) auto

lemma distinct_idx:
  assumes "distinct (map f l)"
  assumes "i<length l"
  assumes "j<length l"
  assumes "f (l!i) = f (l!j)"
  shows "i=j"
  by (metis assms distinct_conv_nth length_map nth_map)

lemma replicate_Suc_conv_snoc:
  "replicate (Suc n) x = replicate n x @ [x]"
by (metis replicate_Suc replicate_append_same)


lemma filter_nth_ex_nth:
  assumes "n < length (filter P xs)"
  shows "∃m. n ≤ m ∧ m < length xs ∧ filter P xs ! n = xs ! m ∧ filter P (take m xs) = take n (filter P xs)"
using assms
proof(induct xs rule: rev_induct)
  case Nil thus ?case by simp
next
  case (snoc x xs)
  show ?case
  proof(cases "P x")
    case [simp]: False
    from `n < length (filter P (xs @ [x]))` have "n < length (filter P xs)" by simp
    hence "∃m≥n. m < length xs ∧ filter P xs ! n = xs ! m ∧ filter P (take m xs) = take n (filter P xs)" by(rule snoc)
    thus ?thesis by(auto simp add: nth_append)
  next
    case [simp]: True
    show ?thesis
    proof(cases "n = length (filter P xs)")
      case False
      with `n < length (filter P (xs @ [x]))` have "n < length (filter P xs)" by simp
      moreover hence "∃m≥n. m < length xs ∧ filter P xs ! n = xs ! m ∧ filter P (take m xs) = take n (filter P xs)"
        by(rule snoc)
      ultimately show ?thesis by(auto simp add: nth_append)
    next
      case [simp]: True
      hence "filter P (xs @ [x]) ! n = (xs @ [x]) ! length xs" by simp
      moreover have "length xs < length (xs @ [x])" by simp
      moreover have "length xs ≥ n" by simp
      moreover have "filter P (take (length xs) (xs @ [x])) = take n (filter P (xs @ [x]))" by simp
      ultimately show ?thesis by blast
    qed
  qed
qed

lemma set_map_filter:
  "set (List.map_filter g xs) = {y. ∃x. x ∈ set xs ∧ g x = Some y}"
  by (induct xs) (auto simp add: List.map_filter_def set_eq_iff)

subsection "Natural Numbers"
text {*
  The standard library contains theorem @{text less_iff_Suc_add}

  @{thm less_iff_Suc_add [no_vars]}

  that can be used to reduce ``less than'' to addition and successor.
  The following lemma is the analogous result for ``less or equal''.
*}
lemma le_iff_add:
  "(m::nat) ≤ n = (∃ k. n = m+k)"
proof
  assume le: "m ≤ n"
  thus "∃ k. n = m+k"
  proof (auto simp add: order_le_less)
    assume "m<n"
    then obtain k where "n = Suc(m+k)"
      by (auto simp add: less_iff_Suc_add)
    thus ?thesis by auto
  qed
next
  assume "∃ k. n = m+k"
  thus "m ≤ n" by auto
qed

lemma exists_leI:
  assumes hyp: "(∀n' < n. ¬ P n') ⟹ P (n::nat)"
  shows "∃n' ≤ n. P n'"
proof (rule classical)
  assume contra: "¬ (∃n'≤n. P n')"
  hence "∀n' < n. ¬ P n'" by auto
  hence "P n" by (rule hyp)
  thus "∃n'≤n. P n'" by auto
qed

subsubsection {* Induction on nat *}
  lemma nat_compl_induct[case_names 0 Suc]: "⟦P 0; !! n . ALL nn . nn <= n ⟶ P nn ⟹ P (Suc n)⟧ ⟹ P n"
    apply(induct_tac n rule: nat_less_induct)
    apply(case_tac n)
    apply(auto)
  done

  lemma nat_compl_induct'[case_names 0 Suc]: "⟦P 0; !! n . ⟦!! nn . nn ≤ n ⟹ P nn⟧ ⟹ P (Suc n)⟧ ⟹ P n"
    apply(induct_tac n rule: nat_less_induct)
    apply(case_tac n)
    apply(auto)
  done

subsection {* Mod *}
text {*
  An ``induction'' law for modulus arithmetic: if $P$ holds for some
  $i<p$ and if $P(i)$ implies $P((i+1) \bmod p)$, for all $i<p$, then
  $P(i)$ holds for all $i<p$.
*}

lemma mod_induct_0:
  assumes step: "∀i<p. P i ⟶ P ((Suc i) mod p)"
  and base: "P i" and i: "i<p"
  shows "P 0"
proof (rule ccontr)
  assume contra: "¬(P 0)"
  from i have p: "0<p" by simp
  have "∀k. 0<k ⟶ ¬ P (p-k)" (is "∀k. ?A k")
  proof
    fix k
    show "?A k"
    proof (induct k)
      show "?A 0" by simp  -- "by contradiction"
    next
      fix n
      assume ih: "?A n"
      show "?A (Suc n)"
      proof (clarsimp)
        assume y: "P (p - Suc n)"
        have n: "Suc n < p"
        proof (rule ccontr)
          assume "¬(Suc n < p)"
          hence "p - Suc n = 0"
            by simp
          with y contra show "False"
            by simp
        qed
        hence n2: "Suc (p - Suc n) = p-n" by arith
        from p have "p - Suc n < p" by arith
        with y step have z: "P ((Suc (p - Suc n)) mod p)"
          by blast
        show "False"
        proof (cases "n=0")
          case True
          with z n2 contra show ?thesis by simp
        next
          case False
          with p have "p-n < p" by arith
          with z n2 False ih show ?thesis by simp
        qed
      qed
    qed
  qed
  moreover
  from i obtain k where "0<k ∧ i+k=p"
    by (blast dest: less_imp_add_positive)
  hence "0<k ∧ i=p-k" by auto
  moreover
  note base
  ultimately
  show "False" by blast
qed

lemma mod_induct:
  assumes step: "∀i<p. P i ⟶ P ((Suc i) mod p)"
  and base: "P i" and i: "i<p" and j: "j<p"
  shows "P j"
proof -
  have "∀j<p. P j"
  proof
    fix j
    show "j<p ⟶ P j" (is "?A j")
    proof (induct j)
      from step base i show "?A 0"
        by (auto elim: mod_induct_0)
    next
      fix k
      assume ih: "?A k"
      show "?A (Suc k)"
      proof
        assume suc: "Suc k < p"
        hence k: "k<p" by simp
        with ih have "P k" ..
        with step k have "P (Suc k mod p)"
          by blast
        moreover
        from suc have "Suc k mod p = Suc k"
          by simp
        ultimately
        show "P (Suc k)" by simp
      qed
    qed
  qed
  with j show ?thesis by blast
qed

lemma mod_le:
  "(a::'a::semiring_numeral_div) ≤ b ⟹ 0 < a ⟹ x mod (a + 1) ≤ b"
  by (metis add_pos_nonneg discrete not_less order.strict_trans2
    semiring_numeral_div_class.pos_mod_bound zero_le_one)

lemma mod_ge:
  "(b::'a::semiring_numeral_div) ≤ 0 ⟹ 0 < a ⟹ b ≤ x mod (a+1)"
  by (metis dual_order.trans less_add_one order.strict_trans
    semiring_numeral_div_class.pos_mod_sign)

subsection {* Integer *}
text {* Some setup from @{text "int"} transferred to @{text "integer"} *}

lemma atLeastLessThanPlusOne_atLeastAtMost_integer: "{l..<u+1} = {l..(u::integer)}"
  apply (auto simp add: atLeastAtMost_def atLeastLessThan_def)
  including integer.lifting
  apply transfer
  apply simp
  done

lemma atLeastPlusOneAtMost_greaterThanAtMost_integer: "{l+1..u} = {l<..(u::integer)}"
  including integer.lifting
  by (auto simp add: atLeastAtMost_def greaterThanAtMost_def, transfer, simp)

lemma atLeastPlusOneLessThan_greaterThanLessThan_integer:
    "{l+1..<u} = {l<..<u::integer}"
  including integer.lifting
  by (auto simp add: atLeastLessThan_def greaterThanLessThan_def, transfer, simp)

lemma image_atLeastZeroLessThan_integer: "0 ≤ u ⟹
    {(0::integer)..<u} = of_nat ` {..<nat_of_integer u}"
  including integer.lifting
  apply (unfold image_def lessThan_def)
  apply auto
  apply (rule_tac x = "nat_of_integer x" in exI)
  apply transfer
  apply (auto simp add: zless_nat_eq_int_zless [THEN sym])
  apply transfer
  apply simp
  done

lemma image_add_integer_atLeastLessThan:
    "(%x. x + (l::integer)) ` {0..<u-l} = {l..<u}"
  apply (auto simp add: image_def)
  apply (rule_tac x = "x - l" in bexI)
  apply auto
  done

lemma finite_atLeastZeroLessThan_integer: "finite {(0::integer)..<u}"
  apply (cases "0 ≤ u")
  apply (subst image_atLeastZeroLessThan_integer, assumption)
  apply (rule finite_imageI)
  apply auto
  done

lemma finite_atLeastLessThan_integer [iff]: "finite {l..<u::integer}"
  apply (subgoal_tac "(%x. x + l) ` {0..<u-l} = {l..<u}")
  apply (erule subst)
  apply (rule finite_imageI)
  apply (rule finite_atLeastZeroLessThan_integer)
  apply (rule image_add_integer_atLeastLessThan)
  done

lemma finite_atLeastAtMost_integer [iff]: "finite {l..(u::integer)}"
  by (subst atLeastLessThanPlusOne_atLeastAtMost_integer [THEN sym], simp)

lemma finite_greaterThanAtMost_integer [iff]: "finite {l<..(u::integer)}"
  by (subst atLeastPlusOneAtMost_greaterThanAtMost_integer [THEN sym], simp)

lemma finite_greaterThanLessThan_integer [iff]: "finite {l<..<u::integer}"
  by (subst atLeastPlusOneLessThan_greaterThanLessThan_integer [THEN sym], simp)


subsection {* Functions of type @{typ "bool⇒bool"}*}
  lemma boolfun_cases_helper: "g=(λx. False) | g=(λx. x) | g=(λx. True) | g= (λx. ¬x)"
  proof -
    { assume "g False" "g True"
      hence "g = (λx. True)" by (rule_tac ext, case_tac x, auto)
    } moreover {
      assume "g False" "¬g True"
      hence "g = (λx. ¬x)" by (rule_tac ext, case_tac x, auto)
    } moreover {
      assume "¬g False" "g True"
      hence "g = (λx. x)" by (rule_tac ext, case_tac x, auto)
    } moreover {
      assume "¬g False" "¬g True"
      hence "g = (λx. False)" by (rule_tac ext, case_tac x, auto)
    } ultimately show ?thesis by fast
  qed

  lemma boolfun_cases[case_names False Id True Neg]: "⟦g=(λx. False) ⟹ P g; g=(λx. x) ⟹ P g; g=(λx. True) ⟹ P g; g=(λx. ¬x) ⟹ P g⟧ ⟹ P g"
  proof -
    note boolfun_cases_helper[of g]
    moreover assume "g=(λx. False) ⟹ P g" "g=(λx. x) ⟹ P g" "g=(λx. True) ⟹ P g" "g=(λx. ¬x) ⟹ P g"
    ultimately show ?thesis by fast
  qed


subsection {* Definite and indefinite description *}
        text "Combined definite and indefinite description for binary predicate"
  lemma some_theI: assumes EX: "∃a b . P a b" and BUN: "!! b1 b2 . ⟦∃a . P a b1; ∃a . P a b2⟧ ⟹ b1=b2"
    shows "P (SOME a . ∃b . P a b) (THE b . ∃a . P a b)"
  proof -
                from EX have "EX b . P (SOME a . EX b . P a b) b" by (rule someI_ex)
                moreover from EX have "EX b . EX a . P a b" by blast
    with BUN theI'[of "λb . EX a . P a b"] have "EX a . P a (THE b . EX a . P a b)" by (unfold Ex1_def, blast)
                moreover note BUN
                ultimately show ?thesis by (fast)
        qed

  lemma some_insert_self[simp]: "S≠{} ⟹ insert (SOME x. x∈S) S = S"
    by (auto intro: someI)

  lemma some_elem[simp]: "S≠{} ⟹ (SOME x. x∈S) ∈ S"
    by (auto intro: someI)

subsubsection{* Hilbert Choice with option *}

definition Eps_Opt where
  "Eps_Opt P = (if (∃x. P x) then Some (SOME x. P x) else None)"

lemma some_opt_eq_trivial[simp] :
  "Eps_Opt (λy. y = x) = Some x"
unfolding Eps_Opt_def by simp

lemma some_opt_sym_eq_trivial[simp] :
  "Eps_Opt (op = x) = Some x"
unfolding Eps_Opt_def by simp

lemma some_opt_false_trivial[simp] :
  "Eps_Opt (λ_. False) = None"
unfolding Eps_Opt_def by simp

lemma Eps_Opt_eq_None[simp] :
  "Eps_Opt P = None ⟷ ¬(Ex P)"
unfolding Eps_Opt_def by simp

lemma Eps_Opt_eq_Some_implies :
  "Eps_Opt P = Some x ⟹ P x"
unfolding Eps_Opt_def
by (metis option.inject option.simps(2) someI_ex)

lemma Eps_Opt_eq_Some :
assumes P_prop: "⋀x'. P x ⟹ P x' ⟹ x' = x"
shows "Eps_Opt P = Some x ⟷ P x"
using P_prop
unfolding Eps_Opt_def
by (metis option.inject option.simps(2) someI_ex)

subsection {* Product Type *}

lemma nested_case_prod_simp: "(λ(a,b) c. f a b c) x y =
  (case_prod (λa b. f a b y) x)"
  by (auto split: prod.split)

lemma fn_fst_conv: "(λx. (f (fst x))) = (λ(a,_). f a)"
  by auto
lemma fn_snd_conv: "(λx. (f (snd x))) = (λ(_,b). f b)"
  by auto

fun pairself where
  "pairself f (a,b) = (f a, f b)"

lemma pairself_image_eq[simp]:
  "pairself f ` {(a,b). P a b} = {(f a, f b)| a b. P a b}"
  by force

lemma pairself_image_cart[simp]: "pairself f ` (A×B) = f`A × f`B"
  by (auto simp: image_def)

lemma in_prod_fst_sndI: "fst x ∈ A ⟹ snd x ∈ B ⟹ x∈A×B"
  by (cases x) auto

lemma inj_Pair[simp]:
  "inj_on (λx. (x,c x)) S"
  "inj_on (λx. (c x,x)) S"
  by (auto intro!: inj_onI)

declare Product_Type.swap_inj_on[simp]

lemma img_fst [intro]:
  assumes "(a,b) ∈ S"
  shows "a ∈ fst ` S"
by (rule image_eqI[OF _ assms]) simp

lemma img_snd [intro]:
  assumes "(a,b) ∈ S"
  shows "b ∈ snd ` S"
by (rule image_eqI[OF _ assms]) simp

lemma range_prod:
  "range f ⊆ (range (fst ∘ f)) × (range (snd ∘ f))"
proof
  fix y
  assume "y ∈ range f"
  then obtain x where y: "y = f x" by auto
  hence "y = (fst(f x), snd(f x))"
    by simp
  thus "y ∈ (range (fst ∘ f)) × (range (snd ∘ f))"
    by (fastforce simp add: image_def)
qed

lemma finite_range_prod:
  assumes fst: "finite (range (fst ∘ f))"
  and     snd: "finite (range (snd ∘ f))"
  shows "finite (range f)"
proof -
  from fst snd have "finite (range (fst ∘ f) × range (snd ∘ f))"
    by (rule finite_SigmaI)
  thus ?thesis
    by (rule finite_subset[OF range_prod])
qed

lemma fstE:
  "x = (a,b) ⟹ P (fst x) ⟹ P a"
by (metis fst_conv)

lemma sndE:
  "x = (a,b) ⟹ P (snd x) ⟹ P b"
by (metis snd_conv)



subsection {* Directed Graphs and Relations *}

  subsubsection "Reflexive-Transitive Closure"
  lemma r_le_rtrancl[simp]: "S⊆S*" by auto
  lemma rtrancl_mono_rightI: "S⊆S' ⟹ S⊆S'*" by auto

  lemma trancl_sub:
    "R ⊆ R+"
  by auto

  lemma trancl_single[simp]:
    "{(a,b)}+ = {(a,b)}"
  proof -
    {
      fix x y
      assume "(x,y) ∈ {(a,b)}+"
      hence "(x,y) ∈ {(a,b)}"
        by (induct rule: trancl.induct) auto
    }
    with trancl_sub show ?thesis by auto
  qed


  text {* Pick first non-reflexive step *}
  lemma converse_rtranclE'[consumes 1, case_names base step]:
    assumes "(u,v)∈R*"
    obtains "u=v"
    | vh where "u≠vh" and "(u,vh)∈R" and "(vh,v)∈R*"
    using assms
    apply (induct rule: converse_rtrancl_induct)
    apply auto []
    apply (case_tac "y=z")
    apply auto
    done

  lemma in_rtrancl_insert: "x∈R* ⟹ x∈(insert r R)*"
    by (metis in_mono rtrancl_mono subset_insertI)


  lemma rtrancl_apply_insert: "R*``(insert x S) = insert x (R*``(S∪R``{x}))"
    apply (auto)
    apply (erule converse_rtranclE)
    apply auto [2]
    apply (erule converse_rtranclE)
    apply (auto intro: converse_rtrancl_into_rtrancl) [2]
    done

  text {* A point-free induction rule for elements reachable from an initial set *}
  lemma rtrancl_reachable_induct[consumes 0, case_names base step]:
    assumes I0: "I ⊆ INV"
    assumes IS: "E``INV ⊆ INV"
    shows "E*``I ⊆ INV"
    by (metis I0 IS Image_closed_trancl Image_mono subset_refl)



  text {* A path in a graph either does not use nodes from S at all, or it has a prefix leading to a node in S and a suffix that does not use nodes in S *}
  lemma rtrancl_last_visit[cases set, case_names no_visit last_visit_point]:
    shows
    "⟦ (q,q')∈R*;
       (q,q')∈(R-UNIV×S)* ⟹ P;
       !!qt. ⟦ qt∈S; (q,qt)∈R+; (qt,q')∈(R-UNIV×S)* ⟧ ⟹ P
     ⟧ ⟹ P"
  proof (induct rule: converse_rtrancl_induct[case_names refl step])
    case refl thus ?case by auto
  next
    case (step q qh)
    show P proof (rule step.hyps(3))
      assume A: "(qh,q')∈(R-UNIV×S)*"
      show P proof (cases "qh∈S")
        case False
        with step.hyps(1) A have "(q,q')∈(R-UNIV×S)*"
          by (auto intro: converse_rtrancl_into_rtrancl)
        with step.prems(1) show P .
      next
        case True
        from step.hyps(1) have "(q,qh)∈R+" by auto
        with step.prems(2) True A show P by blast
      qed
    next
      fix qt
      assume A: "qt∈S" "(qh,qt)∈R+" "(qt,q')∈(R-UNIV×S)*"
      with step.hyps(1) have "(q,qt)∈R+" by auto
      with step.prems(2) A(1,3) show P by blast
    qed
  qed

  text {* Less general version of @{text rtrancl_last_visit}, but there's a short automatic proof *}
  lemma rtrancl_last_visit': "⟦ (q,q')∈R*; (q,q')∈(R-UNIV×S)* ⟹ P; !!qt. ⟦ qt∈S; (q,qt)∈R*; (qt,q')∈(R-UNIV×S)* ⟧ ⟹ P ⟧ ⟹ P"
    by (induct rule: converse_rtrancl_induct) (auto intro: converse_rtrancl_into_rtrancl)

  lemma rtrancl_last_visit_node:
    assumes "(s,s')∈R*"
    shows "s≠sh ∧ (s,s')∈(R ∩ (UNIV × (-{sh})))* ∨
            (s,sh)∈R* ∧ (sh,s')∈(R ∩ (UNIV × (-{sh})))*"
    using assms
  proof (induct rule: converse_rtrancl_induct)
    case base thus ?case by auto
  next
    case (step s st)
    moreover {
      assume P: "(st,s')∈ (R ∩ UNIV × - {sh})*"
      {
        assume "st=sh" with step have ?case
          by auto
      } moreover {
        assume "st≠sh"
        with `(s,st)∈R` have "(s,st)∈(R ∩ UNIV × - {sh})*" by auto
        also note P
        finally have ?case by blast
      } ultimately have ?case by blast
    } moreover {
      assume P: "(st, sh) ∈ R* ∧ (sh, s') ∈ (R ∩ UNIV × - {sh})*"
      with step(1) have ?case
        by (auto dest: converse_rtrancl_into_rtrancl)
    } ultimately show ?case by blast
  qed

  text {* Find last point where a path touches a set *}
  lemma rtrancl_last_touch: "⟦ (q,q')∈R*; q∈S; !!qt. ⟦ qt∈S; (q,qt)∈R*; (qt,q')∈(R-UNIV×S)* ⟧ ⟹ P ⟧ ⟹ P"
    by (erule rtrancl_last_visit') auto

  text {* A path either goes over edge once, or not at all *}
  lemma trancl_over_edgeE:
    assumes "(u,w)∈(insert (v1,v2) E)+"
    obtains "(u,w)∈E+"
    | "(u,v1)∈E*" and "(v2,w)∈E*"
    using assms
  proof induct
    case (base z) thus ?thesis
      by (metis insertE prod.inject r_into_trancl' rtrancl_eq_or_trancl)
  next
    case (step y z) thus ?thesis
      by (metis (hide_lams, no_types)
        Pair_inject insertE rtrancl.simps trancl.simps trancl_into_rtrancl)
  qed

  lemma rtrancl_image_advance: "⟦q∈R* `` Q0; (q,x)∈R⟧ ⟹ x∈R* `` Q0"
    by (auto intro: rtrancl_into_rtrancl)

  lemma trancl_image_by_rtrancl: "(E+)``Vi ∪ Vi = (E*)``Vi"
    by (metis Image_Id Un_Image rtrancl_trancl_reflcl)

  lemma reachable_mono: "⟦R⊆R'; X⊆X'⟧ ⟹ R*``X ⊆ R'*``X'"
    by (metis Image_mono rtrancl_mono)

  lemma finite_reachable_advance:
    "⟦ finite (E*``{v0}); (v0,v)∈E* ⟧ ⟹ finite (E*``{v})"
    by (erule finite_subset[rotated]) auto

lemma rtrancl_mono_mp: "U⊆V ⟹ x∈U* ⟹ x∈V*" by (metis in_mono rtrancl_mono)
lemma trancl_mono_mp: "U⊆V ⟹ x∈U+ ⟹ x∈V+" by (metis trancl_mono)

lemma rtrancl_mapI: "(a,b)∈E* ⟹ (f a, f b)∈(pairself f `E)*"
  apply (induction rule: rtrancl_induct)
  apply (force intro: rtrancl.intros)+
  done

lemma rtrancl_image_advance_rtrancl:
  assumes "q ∈ R*``Q0"
  assumes "(q,x) ∈ R*"
  shows "x ∈ R*``Q0"
  using assms
  by (metis rtrancl_idemp rtrancl_image_advance)

lemma nth_step_trancl:
  "⋀n m. ⟦ ⋀ n. n < length xs - 1 ⟹ (xs ! Suc n, xs ! n) ∈ R ⟧ ⟹ n < length xs ⟹ m < n ⟹ (xs ! n, xs ! m) ∈ R+"
proof (induction xs)
  case (Cons x xs)
  hence "⋀n. n < length xs - 1 ⟹ (xs ! Suc n, xs ! n) ∈ R"
    apply clarsimp
    by (metis One_nat_def diff_Suc_eq_diff_pred nth_Cons_Suc zero_less_diff)
  note IH = this[THEN Cons.IH]

  from Cons obtain n' where n': "Suc n' = n" by (cases n) blast+

  show ?case
  proof (cases m)
    case "0" with Cons have "xs ≠ []" by auto
    with "0" Cons.prems(1)[of m] have "(xs ! 0, x) ∈ R" by simp
    moreover from IH[where m = 0] have "⋀n. n < length xs ⟹ n > 0 ⟹ (xs ! n, xs ! 0) ∈ R+" by simp
    ultimately have "⋀n. n < length xs ⟹ (xs ! n, x) ∈ R+" by (metis trancl_into_trancl gr0I r_into_trancl')
    with Cons "0" show ?thesis by auto
  next
    case (Suc m') with Cons.prems n' have "n' < length xs" "m' < n'" by auto
    with IH have "(xs ! n', xs ! m') ∈ R+" by simp
    with Suc n' show ?thesis by auto
  qed
qed simp

lemma Image_empty_trancl_Image_empty:
  "R `` {v} = {} ⟹ R+ `` {v} = {}"
  unfolding Image_def
  by (auto elim: converse_tranclE)

lemma Image_empty_rtrancl_Image_id:
  "R `` {v} = {} ⟹ R* `` {v} = {v}"
  unfolding Image_def
  by (auto elim: converse_rtranclE)

lemma trans_rtrancl_eq_reflcl:
  "trans A ⟹ A^* = A^="
  by (simp add: rtrancl_trancl_reflcl)

lemma refl_on_reflcl_Image:
  "refl_on B A ⟹ C ⊆ B ⟹ A^= `` C = A `` C"
  by (auto simp add: Image_def dest: refl_onD)

lemma Image_absorb_rtrancl:
  "⟦ trans A; refl_on B A; C ⊆ B ⟧ ⟹ A^* `` C = A `` C"
  by (simp add: trans_rtrancl_eq_reflcl refl_on_reflcl_Image)

lemma trancl_Image_unfold_left: "E+``S = E*``E``S"
  by (auto simp: trancl_unfold_left)

lemma trancl_Image_unfold_right: "E+``S = E``E*``S"
  by (auto simp: trancl_unfold_right)

lemma trancl_Image_advance_ss: "(u,v)∈E ⟹ E+``{v} ⊆ E+``{u}"
  by auto

lemma rtrancl_Image_advance_ss: "(u,v)∈E ⟹ E*``{v} ⊆ E*``{u}"
  by auto

(* FIXME: nicer name *)
lemma trancl_union_outside:
  assumes "(v,w) ∈ (E∪U)+"
  and "(v,w) ∉ E+"
  shows "∃x y. (v,x) ∈ (E∪U)* ∧ (x,y) ∈ U ∧ (y,w) ∈ (E∪U)*"
using assms
proof (induction)
  case base thus ?case by auto
next
  case (step w x)
  show ?case
  proof (cases "(v,w)∈E+")
    case True
    from step have "(v,w)∈(E∪U)*" by simp
    moreover from True step have "(w,x) ∈ U" by (metis Un_iff trancl.simps)
    moreover have "(x,x) ∈ (E∪U)*" by simp
    ultimately show ?thesis by blast
  next
    case False with step.IH obtain a b where "(v,a) ∈ (E∪U)*" "(a,b) ∈ U" "(b,w) ∈ (E∪U)*" by blast
    moreover with step have "(b,x) ∈ (E∪U)*" by (metis rtrancl_into_rtrancl)
    ultimately show ?thesis by blast
  qed
qed

lemma trancl_restrict_reachable:
  assumes "(u,v) ∈ E+"
  assumes "E``S ⊆ S"
  assumes "u∈S"
  shows "(u,v) ∈ (E∩S×S)+"
  using assms
  by (induction rule: converse_trancl_induct)
     (auto intro: trancl_into_trancl2)

lemma rtrancl_image_unfold_right: "E``E*``V ⊆ E*``V"
  by (auto intro: rtrancl_into_rtrancl)


lemma trancl_Image_in_Range:
  "R+ `` V ⊆ Range R"
by (auto elim: trancl.induct)

lemma rtrancl_Image_in_Field:
  "R* `` V ⊆ Field R ∪ V"
proof -
  from trancl_Image_in_Range have "R+ `` V ⊆ Field R"
    unfolding Field_def by fast
  hence "R+ `` V ∪ V ⊆ Field R ∪ V" by blast
  with trancl_image_by_rtrancl show ?thesis by metis
qed

lemma rtrancl_sub_insert_rtrancl:
  "R* ⊆ (insert x R)*"
by (auto elim: rtrancl.induct rtrancl_into_rtrancl)

lemma trancl_sub_insert_trancl:
  "R+ ⊆ (insert x R)+"
by (auto elim: trancl.induct trancl_into_trancl)

lemma Restr_rtrancl_mono:
  "(v,w) ∈ (Restr E U)* ⟹ (v,w) ∈ E*"
  by (metis inf_le1 rtrancl_mono subsetCE)

lemma Restr_trancl_mono:
  "(v,w) ∈ (Restr E U)+ ⟹ (v,w) ∈ E+"
  by (metis inf_le1 trancl_mono)








  subsubsection "Converse Relation"
  lemma converse_subset[simp]: "G¯ ⊆ H¯ ⟷ G⊆H"
    by auto

  (* [simp] - candidate *)
  lemma Sigma_converse: "(A×B)¯ = B×A" by auto

  lemmas converse_add_simps = Sigma_converse trancl_converse[symmetric] converse_Un converse_Int

lemma dom_ran_disj_comp[simp]: "Domain R ∩ Range R = {} ⟹ R O R = {}"
  by auto

  subsubsection "Cyclicity"
  lemma acyclic_union:
    "acyclic (A∪B) ⟹ acyclic A"
    "acyclic (A∪B) ⟹ acyclic B"
    by (metis Un_upper1 Un_upper2 acyclic_subset)+

  lemma cyclicE: "⟦¬acyclic g; !!x. (x,x)∈g+ ⟹ P⟧ ⟹ P"
    by (unfold acyclic_def) blast

  lemma acyclic_empty[simp, intro!]: "acyclic {}" by (unfold acyclic_def) auto

  lemma acyclic_insert_cyclic: "⟦acyclic g; ¬acyclic (insert (x,y) g)⟧ ⟹ (y,x)∈g*"
    by (unfold acyclic_def) (auto simp add: trancl_insert)


  text {*
    This lemma makes a case distinction about a path in a graph where a couple of edges with the same
    endpoint have been inserted: If there is a path from a to b, then there's such a path in the original graph, or
    there's a path that uses an inserted edge only once.

    Originally, this lemma was used to reason about the graph of an updated acquisition history. Any path in
    this graph is either already contained in the original graph, or passes via an
    inserted edge. Because all the inserted edges point to the same target node, in the
    second case, the path can be short-circuited to use exactly one inserted edge.
    *}
  lemma trancl_multi_insert[cases set, case_names orig via]:
    "⟦ (a,b)∈(r∪X×{m})+;
      (a,b)∈r+ ⟹ P;
       !!x. ⟦ x∈X; (a,x)∈r*; (m,b)∈r* ⟧ ⟹ P
    ⟧ ⟹ P"
  proof (induct arbitrary: P rule: trancl_induct)
    case (base b) thus ?case by auto
  next
    case (step b c) show ?case proof (rule step.hyps(3))
      assume A: "(a,b)∈r+"
      note step.hyps(2)
      moreover {
        assume "(b,c)∈r"
        with A have "(a,c)∈r+" by auto
        with step.prems have P by blast
      } moreover {
        assume "b∈X" "c=m"
        with A have P by (rule_tac step.prems(2)) simp+
      } ultimately show P by auto
    next
      fix x
      assume A: "x ∈ X" "(a, x) ∈ r*" "(m, b) ∈ r*"
      note step.hyps(2)
      moreover {
        assume "(b,c)∈r"
        with A(3) have "(m,c)∈r*" by auto
        with step.prems(2)[OF A(1,2)] have P by blast
      } moreover {
        assume "b∈X" "c=m"
        with A have P by (rule_tac step.prems(2)) simp+
      } ultimately show P by auto
    qed
  qed

  text {*
    Version of @{thm [source] trancl_multi_insert} for inserted edges with the same startpoint.
    *}
  lemma trancl_multi_insert2[cases set, case_names orig via]:
    "⟦(a,b)∈(r∪{m}×X)+; (a,b)∈r+ ⟹ P; !!x. ⟦ x∈X; (a,m)∈r*; (x,b)∈r* ⟧ ⟹ P ⟧ ⟹ P"
  proof goal_cases
    case prems: 1 from prems(1) have "(b,a)∈((r∪{m}×X)+)¯" by simp
    also have "((r∪{m}×X)+)¯ = (r¯∪X×{m})+" by (simp add: converse_add_simps)
    finally have "(b, a) ∈ (r¯ ∪ X × {m})+" .
    thus ?case
      by (auto elim!: trancl_multi_insert
               intro: prems(2,3)
            simp add: trancl_converse rtrancl_converse
    )
  qed

lemma cyclic_subset:
  "⟦ ¬ acyclic R; R ⊆ S ⟧ ⟹ ¬ acyclic S"
  unfolding acyclic_def
  by (blast intro: trancl_mono)





  subsubsection {* Wellfoundedness *}
  lemma wf_min: assumes A: "wf R" "R≠{}" "!!m. m∈Domain R - Range R ⟹ P" shows P proof -
    have H: "!!x. wf R ⟹ ∀y. (x,y)∈R ⟶ x∈Domain R - Range R ∨ (∃m. m∈Domain R - Range R)"
      by (erule_tac wf_induct_rule[where P="λx. ∀y. (x,y)∈R ⟶ x∈Domain R - Range R ∨ (∃m. m∈Domain R - Range R)"]) auto
    from A(2) obtain x y where "(x,y)∈R" by auto
    with A(1,3) H show ?thesis by blast
  qed

  lemma finite_wf_eq_wf_converse: "finite R ⟹ wf (R¯) ⟷ wf R"
    by (metis acyclic_converse finite_acyclic_wf finite_acyclic_wf_converse wf_acyclic)

  lemma wf_max: assumes A: "wf (R¯)" "R≠{}" and C: "!!m. m∈Range R - Domain R ⟹ P" shows "P"
  proof -
    from A(2) have NE: "R¯≠{}" by auto
    from wf_min[OF A(1) NE] obtain m where "m∈Range R - Domain R" by auto
    thus P by (blast intro: C)
  qed

    -- "Useful lemma to show well-foundedness of some process approaching a finite upper bound"
  lemma wf_bounded_supset: "finite S ⟹ wf {(Q',Q). Q'⊃Q ∧ Q'⊆ S}"
  proof -
    assume [simp]: "finite S"
    hence [simp]: "!!x. finite (S-x)" by auto
    have "{(Q',Q). Q⊂Q' ∧ Q'⊆ S} ⊆ inv_image ({(s'::nat,s). s'<s}) (λQ. card (S-Q))"
    proof (intro subsetI, case_tac x, simp)
      fix a b
      assume A: "b⊂a ∧ a⊆S"
      hence "S-a ⊂ S-b" by blast
      thus "card (S-a) < card (S-b)" by (auto simp add: psubset_card_mono)
    qed
    moreover have "wf ({(s'::nat,s). s'<s})" by (rule wf_less)
    ultimately show ?thesis by (blast intro: wf_inv_image wf_subset)
  qed

  lemma lex_prod_fstI: "⟦ (fst a, fst b)∈r ⟧ ⟹ (a,b)∈r<*lex*>s"
    apply (cases a, cases b)
    apply auto
    done

  lemma lex_prod_sndI: "⟦ fst a = fst b; (snd a, snd b)∈s ⟧ ⟹ (a,b)∈r<*lex*>s"
    apply (cases a, cases b)
    apply auto
    done

  lemma wf_no_path: "Domain R ∩ Range R = {} ⟹ wf R"
    apply (rule wf_no_loop)
    by simp

text {* Extend a wf-relation by a break-condition *}
definition "brk_rel R ≡
    {((False,x),(False,y)) | x y. (x,y)∈R}
  ∪ {((True,x),(False,y)) | x y. True}"

lemma brk_rel_wf[simp,intro!]:
  assumes WF[simp]: "wf R"
  shows "wf (brk_rel R)"
proof -
  have "wf {((False,x),(False,y)) | x y. (x,y)∈R}"
  proof -
    have "{((False,x),(False,y)) | x y. (x,y)∈R} ⊆ inv_image R snd"
      by auto
    from wf_subset[OF wf_inv_image[OF WF] this] show ?thesis .
  qed
  moreover have "wf {((True,x),(False,y)) | x y. True}"
    by (rule wf_no_path) auto
  ultimately show ?thesis
    unfolding brk_rel_def
    apply (subst Un_commute)
    by (blast intro: wf_Un)
qed


subsubsection {* Restrict Relation *}
definition rel_restrict :: "('a × 'a) set ⇒ 'a set ⇒ ('a × 'a) set"
where
  "rel_restrict R A ≡ {(v,w). (v,w) ∈ R ∧ v ∉ A ∧ w ∉ A}"

lemma rel_restrict_alt_def:
  "rel_restrict R A = R ∩ (-A) × (-A)"
unfolding rel_restrict_def
by auto

lemma rel_restrict_empty[simp]:
  "rel_restrict R {} = R"
by (simp add: rel_restrict_def)

lemma rel_restrict_notR:
  assumes "(x,y) ∈ rel_restrict A R"
  shows "x ∉ R" and "y ∉ R"
using assms
unfolding rel_restrict_def
by auto

lemma rel_restrict_sub:
  "rel_restrict R A ⊆ R"
unfolding rel_restrict_def
by auto

lemma rel_restrict_Int_empty:
  "A ∩ Field R = {} ⟹ rel_restrict R A = R"
unfolding rel_restrict_def Field_def
by auto

lemma Domain_rel_restrict:
  "Domain (rel_restrict R A) ⊆ Domain R - A"
unfolding rel_restrict_def
by auto

lemma Range_rel_restrict:
  "Range (rel_restrict R A) ⊆ Range R - A"
unfolding rel_restrict_def
by auto

lemma Field_rel_restrict:
  "Field (rel_restrict R A) ⊆ Field R - A"
unfolding rel_restrict_def Field_def
by auto

lemma rel_restrict_compl:
  "rel_restrict R A ∩ rel_restrict R (-A) = {}"
unfolding rel_restrict_def
by auto

lemma finite_rel_restrict:
  "finite R ⟹ finite (rel_restrict R A)"
by (metis finite_subset rel_restrict_sub)

lemma R_subset_Field: "R ⊆ Field R × Field R"
  unfolding Field_def
  by auto

lemma homo_rel_restrict_mono:
  "R ⊆ B × B ⟹ rel_restrict R A ⊆ (B - A) × (B - A)"
proof -
  assume A: "R ⊆ B × B"
  hence "Field R ⊆ B" unfolding Field_def by auto
  with Field_rel_restrict have "Field (rel_restrict R A) ⊆ B - A"
    by (metis Diff_mono order_refl order_trans)
  with R_subset_Field show ?thesis by blast
qed

lemma rel_restrict_union:
  "rel_restrict R (A ∪ B) = rel_restrict (rel_restrict R A) B"
unfolding rel_restrict_def
by auto

lemma rel_restrictI:
  "x ∉ R ⟹ y ∉ R ⟹ (x,y) ∈ E ⟹ (x,y) ∈ rel_restrict E R"
unfolding rel_restrict_def
by auto

lemma rel_restrict_lift:
  "(x,y) ∈ rel_restrict E R ⟹ (x,y) ∈ E"
unfolding rel_restrict_def
by simp

lemma rel_restrict_trancl_mem:
  "(a,b) ∈ (rel_restrict A R)+ ⟹ (a,b) ∈ rel_restrict (A+) R"
by (induction rule: trancl_induct) (auto simp add: rel_restrict_def)

lemma rel_restrict_trancl_sub:
  "(rel_restrict A R)+ ⊆ rel_restrict (A+) R"
by (metis subrelI rel_restrict_trancl_mem)

lemma rel_restrict_mono:
  "A ⊆ B ⟹ rel_restrict A R ⊆ rel_restrict B R"
unfolding rel_restrict_def by auto

lemma rel_restrict_mono2:
  "R ⊆ S ⟹ rel_restrict A S ⊆ rel_restrict A R"
unfolding rel_restrict_def by auto

lemma rel_restrict_Sigma_sub:
  "rel_restrict ((A×A)+) R ⊆ ((A - R) × (A - R))+"
unfolding rel_restrict_def
by auto (metis DiffI converse_tranclE mem_Sigma_iff r_into_trancl tranclE)


lemma finite_reachable_restrictedI:
  assumes F: "finite Q"
  assumes I: "I⊆Q"
  assumes R: "Range E ⊆ Q"
  shows "finite (E*``I)"
proof -
  from I R have "E*``I ⊆ Q"
    by (force elim: rtrancl.cases)
  also note F
  finally (finite_subset) show ?thesis .
qed

context begin
  private lemma rtrancl_restrictI_aux:
    assumes "(u,v)∈(E-UNIV×R)*"
    assumes "u∉R"
    shows "(u,v)∈(rel_restrict E R)* ∧ v∉R"
    using assms
    by (induction) (auto simp: rel_restrict_def intro: rtrancl.intros)

  corollary rtrancl_restrictI:
    assumes "(u,v)∈(E-UNIV×R)*"
    assumes "u∉R"
    shows "(u,v)∈(rel_restrict E R)*"
    using rtrancl_restrictI_aux[OF assms] ..
end

lemma E_closed_restr_reach_cases:
  assumes P: "(u,v)∈E*"
  assumes CL: "E``R ⊆ R"
  obtains "v∈R" | "u∉R" "(u,v)∈(rel_restrict E R)*"
  using P
proof (cases rule: rtrancl_last_visit[where S=R])
  case no_visit
  show ?thesis proof (cases "u∈R")
    case True with P have "v∈R"
      using rtrancl_reachable_induct[OF _ CL, where I="{u}"]
      by auto
    thus ?thesis ..
  next
    case False with no_visit have "(u,v)∈(rel_restrict E R)*"
      by (rule rtrancl_restrictI)
    with False show ?thesis ..
  qed
next
  case (last_visit_point x)
  from ‹(x, v) ∈ (E - UNIV × R)* have "(x,v)∈E*"
    by (rule rtrancl_mono_mp[rotated]) auto
  with ‹x∈R› have "v∈R"
    using rtrancl_reachable_induct[OF _ CL, where I="{x}"]
    by auto
  thus ?thesis ..
qed

lemma rel_restrict_trancl_notR:
  assumes "(v,w) ∈ (rel_restrict E R)+"
  shows "v ∉ R" and "w ∉ R"
  using assms
  by (metis rel_restrict_trancl_mem rel_restrict_notR)+

lemma rel_restrict_tranclI:
  assumes "(x,y) ∈ E+"
  and "x ∉ R" "y ∉ R"
  and "E `` R ⊆ R"
  shows "(x,y) ∈ (rel_restrict E R)+"
  using assms
  proof (induct)
    case base thus ?case by (metis r_into_trancl rel_restrictI)
  next
    case (step y z) hence "y ∉ R" by auto
    with step show ?case by (metis trancl_into_trancl rel_restrictI)
  qed




subsubsection {* Bijective Relations *}
definition "bijective R ≡
  (∀x y z. (x,y)∈R ∧ (x,z)∈R ⟶ y=z) ∧
  (∀x y z. (x,z)∈R ∧ (y,z)∈R ⟶ x=y)"

lemma bijective_alt: "bijective R ⟷ single_valued R ∧ single_valued (R¯)"
  unfolding bijective_def single_valued_def by blast

lemma bijective_Id[simp, intro!]: "bijective Id"
  by (auto simp: bijective_def)

lemma bijective_Empty[simp, intro!]: "bijective {}"
  by (auto simp: bijective_def)

subsubsection {* Miscellaneous *}

  lemma Image_empty[simp]: "{} `` X = {}"
    by auto

  lemma Image_subseteq_Range: fixes R shows "R``A ⊆ Range R"
    by auto

  lemma finite_Range: fixes R shows "finite R ⟹ finite (Range R)"
  proof -
    assume "finite R"
    hence "finite (snd ` R)" by auto
    also have "snd ` R = Range R" by force
    finally show ?thesis .
  qed

  lemma finite_Image: fixes R shows "⟦ finite R ⟧ ⟹ finite (R `` A)"
    by (rule finite_subset[OF Image_subseteq_Range finite_Range])

  lemma finite_rtrancl_Image:
    fixes R
    shows "⟦ finite R; finite A ⟧ ⟹ finite ((R*) `` A)"
  proof -
    assume A: "finite R" "finite A"
    have "(R* `` A) ⊆ Range R ∪ A"
    proof (safe, goal_cases)
      case prems: 1
      thus ?case by (induct rule: rtrancl_induct) auto
    qed
    thus ?thesis
      apply (erule_tac finite_subset)
      apply (simp add: A finite_Range)
      done
  qed

  lemma pair_vimage_is_Image[simp]: "(Pair u -` E) = E``{u}"
    by auto

lemma fst_in_Field: "fst ` R ⊆ Field R"
  by (simp add: Field_def fst_eq_Domain)

lemma snd_in_Field: "snd ` R ⊆ Field R"
  by (simp add: Field_def snd_eq_Range)

lemma ran_map_of:
  "ran (map_of xs) ⊆ snd ` set (xs)"
by (induct xs) (auto simp add: ran_def)

lemma Image_subset_snd_image:
  "A `` B ⊆ snd ` A"
unfolding Image_def image_def
by force

lemma finite_Image_subset:
  "finite (A `` B) ⟹ C ⊆ A ⟹ finite (C `` B)"
by (metis Image_mono order_refl rev_finite_subset)

lemma finite_Field_eq_finite[simp]: "finite (Field R) ⟷ finite R"
  by (metis finite_cartesian_product finite_subset R_subset_Field finite_Field)



definition "fun_of_rel R x ≡ SOME y. (x,y)∈R"

lemma for_in_RI(*[intro]*): "x∈Domain R ⟹ (x,fun_of_rel R x)∈R"
  unfolding fun_of_rel_def
  by (auto intro: someI)

lemma Field_not_elem:
  "v ∉ Field R ⟹ ∀(x,y) ∈ R. x ≠ v ∧ y ≠ v"
unfolding Field_def by auto

lemma Sigma_UNIV_cancel[simp]: "(A × X - A × UNIV) = {}" by auto


subsection {* @{text "option"} Datatype *}
lemma le_some_optE: "⟦Some m≤x; !!m'. ⟦x=Some m'; m≤m'⟧ ⟹ P⟧ ⟹ P"
  by (cases x) auto

lemma the_Some_eq_id[simp]: "(the o Some) = id" by auto

lemma not_Some_eq2[simp]: "(∀x y. v ≠ Some (x,y)) = (v = None)"
  by (cases v) auto


subsection "Maps"
  primrec the_default where
    "the_default _ (Some x) = x"
  | "the_default x None = x"

  lemma map_add_dom_app_simps[simp]:
    "⟦ m∈dom l2 ⟧ ⟹ (l1++l2) m = l2 m"
    "⟦ m∉dom l1 ⟧ ⟹ (l1++l2) m = l2 m"
    "⟦ m∉dom l2 ⟧ ⟹ (l1++l2) m = l1 m"
    by (auto simp add: map_add_def split: option.split_asm)

  lemma map_add_upd2[simp]: "m∉dom e2 ⟹ e1(m ↦ u1) ++ e2 = (e1 ++ e2)(m ↦ u1)"
    apply (unfold map_add_def)
    apply (rule ext)
    apply (auto split: option.split)
    done

  lemma ran_add[simp]: "dom f ∩ dom g = {} ⟹ ran (f++g) = ran f ∪ ran g" by (fastforce simp add: ran_def map_add_def split: option.split_asm option.split)

  lemma dom_empty_simp[simp]: "dom l = {} ⟷ l=empty"
    by (auto simp add: dom_def intro: ext)

  lemma nempty_dom: "⟦e≠empty; !!m. m∈dom e ⟹ P ⟧ ⟹ P"
    by (subgoal_tac "dom e ≠ {}") (blast, auto)

  lemma map_add_empty[simp]:
    "(empty = f++g) ⟷ f=empty ∧ g=empty"
    "(f++g = empty) ⟷ f=empty ∧ g=empty"
    apply (safe)
    apply (rule ext, drule_tac x=x in fun_cong, simp add: map_add_def split: option.split_asm)
    apply (rule ext, drule_tac x=x in fun_cong, simp add: map_add_def split: option.split_asm)
    apply simp
    apply (rule ext, drule_tac x=x in fun_cong, simp add: map_add_def split: option.split_asm)
    apply (rule ext, drule_tac x=x in fun_cong, simp add: map_add_def split: option.split_asm)
    apply simp
    done


  lemma le_map_dom_mono: "m≤m' ⟹ dom m ⊆ dom m'"
    apply (safe)
    apply (drule_tac x=x in le_funD)
    apply simp
    apply (erule le_some_optE)
    apply simp
    done

  lemma map_add_first_le: fixes m::"'a⇀('b::order)" shows "⟦ m≤m' ⟧ ⟹ m++n ≤ m'++n"
    apply (rule le_funI)
    apply (auto simp add: map_add_def split: option.split elim: le_funE)
    done

  lemma map_add_distinct_le: shows "⟦ m≤m'; n≤n'; dom m' ∩ dom n' = {} ⟧ ⟹ m++n ≤ m'++n'"
    apply (rule le_funI)
    apply (auto simp add: map_add_def split: option.split)
    apply (fastforce elim: le_funE)
    apply (drule le_map_dom_mono)
    apply (drule le_map_dom_mono)
    apply (case_tac "m x")
    apply simp
    apply (force)
    apply (fastforce dest!: le_map_dom_mono)
    apply (erule le_funE)
    apply (erule_tac x=x in le_funE)
    apply simp
    done

  lemma map_add_left_comm: assumes A: "dom A ∩ dom B = {}" shows "A ++ (B ++ C) = B ++ (A ++ C)"
  proof -
    have "A ++ (B ++ C) = (A++B)++C" by simp
    also have "… = (B++A)++C" by (simp add: map_add_comm[OF A])
    also have "… = B++(A++C)" by simp
    finally show ?thesis .
  qed
  lemmas map_add_ac = map_add_assoc map_add_comm map_add_left_comm

  lemma le_map_restrict[simp]: fixes m :: "'a ⇀ ('b::order)" shows "m |` X ≤ m"
    by (rule le_funI) (simp add: restrict_map_def)

lemma map_of_distinct_upd:
  "x ∉ set (map fst xs) ⟹ [x ↦ y] ++ map_of xs = (map_of xs) (x ↦ y)"
  by (induct xs) (auto simp add: fun_upd_twist)

lemma map_of_distinct_upd2:
  assumes "x ∉ set(map fst xs)"
  "x ∉ set (map fst ys)"
  shows "map_of (xs @ (x,y) # ys) = (map_of (xs @ ys))(x ↦ y)"
  apply(insert assms)
  apply(induct xs)
  apply (auto intro: ext)
  done

lemma map_of_distinct_upd3:
  assumes "x ∉ set(map fst xs)"
  "x ∉ set (map fst ys)"
  shows "map_of (xs @ (x,y) # ys) = (map_of (xs @ (x,y') # ys))(x ↦ y)"
  apply(insert assms)
  apply(induct xs)
  apply (auto intro: ext)
  done

lemma map_of_distinct_upd4:
  assumes "x ∉ set(map fst xs)"
  "x ∉ set (map fst ys)"
  shows "map_of (xs @ ys) = (map_of (xs @ (x,y) # ys))(x := None)"
  apply(insert assms)
  apply(induct xs)
  apply (auto simp add: map_of_eq_None_iff
    intro: ext)
  by (metis fun_upd_triv map_of_eq_None_iff restrict_complement_singleton_eq)

lemma map_of_distinct_lookup:
  assumes "x ∉ set(map fst xs)"
  "x ∉ set (map fst ys)"
  shows "map_of (xs @ (x,y) # ys) x = Some y"
proof -
  have "map_of (xs @ (x,y) # ys) = (map_of (xs @ ys)) (x ↦ y)"
    using assms map_of_distinct_upd2 by simp
  thus ?thesis
    by simp
qed

lemma ran_distinct:
  assumes dist: "distinct (map fst al)"
  shows "ran (map_of al) = snd ` set al"
using assms proof (induct al)
  case Nil then show ?case by simp
next
  case (Cons kv al)
  then have "ran (map_of al) = snd ` set al" by simp
  moreover from Cons.prems have "map_of al (fst kv) = None"
    by (simp add: map_of_eq_None_iff)
  ultimately show ?case by (simp only: map_of.simps ran_map_upd) simp
qed

lemma ran_is_image:
  "ran M = (the ∘ M) ` (dom M)"
unfolding ran_def dom_def image_def
by auto

lemma map_card_eq_iff:
  assumes finite: "finite (dom M)"
  and card_eq: "card (dom M) = card (ran M)"
  and indom: "x ∈ dom M"
  shows "(M x = M y) ⟷ (x = y)"
proof -
  from ran_is_image finite card_eq have *: "inj_on (the ∘ M) (dom M)" using eq_card_imp_inj_on by metis
  thus ?thesis
  proof (cases "y ∈ dom M")
    case False with indom show ?thesis by auto
  next
    case True with indom have "the (M x) = the (M y) ⟷ (x = y)" using inj_on_eq_iff[OF *] by auto
    thus ?thesis by auto
  qed
qed

lemma map_dom_ran_finite:
  "finite (dom M) ⟹ finite (ran M)"
by (simp add: ran_is_image)

lemma map_update_eta_repair[simp]:
  (* An update operation may get simplified, if it happens to be eta-expanded.
    This lemma tries to repair some common expressions *)
  "dom (λx. if x=k then Some v else m x) = insert k (dom m)"
  "m k = None ⟹ ran (λx. if x=k then Some v else m x) = insert v (ran m)"
  apply auto []
  apply (force simp: ran_def)
  done


subsection{* Connection between Maps and Sets of Key-Value Pairs *}

definition map_to_set where
  "map_to_set m = {(k, v) . m k = Some v}"

definition set_to_map where
  "set_to_map S k = Eps_Opt (λv. (k, v) ∈ S)"

lemma set_to_map_simp :
assumes inj_on_fst: "inj_on fst S"
shows "(set_to_map S k = Some v) ⟷ (k, v) ∈ S"
proof (cases "∃v. (k, v) ∈ S")
  case True
  note kv_ex = this
  then obtain v' where kv'_in: "(k, v') ∈ S" by blast

  with inj_on_fst have kv''_in: "⋀v''. (k, v'') ∈ S ⟷ v' = v''"
    unfolding inj_on_def Ball_def
    by auto

  show ?thesis
    unfolding set_to_map_def
    by (simp add: kv_ex kv''_in)
next
  case False
  hence kv''_nin: "⋀v''. (k, v'') ∉ S" by simp
  thus ?thesis
    by (simp add: set_to_map_def)
qed

lemma inj_on_fst_map_to_set :
  "inj_on fst (map_to_set m)"
unfolding map_to_set_def inj_on_def by simp

lemma map_to_set_inverse :
   "set_to_map (map_to_set m) = m"
proof
  fix k
  show "set_to_map (map_to_set m) k = m k"
  proof (cases "m k")
    case None note mk_eq = this
    hence "⋀v. (k, v) ∉ map_to_set m"
      unfolding map_to_set_def by simp
    with set_to_map_simp [OF inj_on_fst_map_to_set, of m k]
    show ?thesis unfolding mk_eq by auto
  next
    case (Some v) note mk_eq = this
    hence "(k, v) ∈ map_to_set m"
      unfolding map_to_set_def by simp
    with set_to_map_simp [OF inj_on_fst_map_to_set, of m k v]
    show ?thesis unfolding mk_eq by auto
  qed
qed

lemma set_to_map_inverse :
assumes inj_on_fst_S: "inj_on fst S"
shows "map_to_set (set_to_map S) = S"
proof (rule set_eqI)
  fix kv
  from set_to_map_simp [OF inj_on_fst_S, of "fst kv" "snd kv"]
  show "(kv ∈ map_to_set (set_to_map S)) = (kv ∈ S)"
    unfolding map_to_set_def
    by auto
qed

lemma map_to_set_empty[simp]: "map_to_set empty = {}"
  unfolding map_to_set_def by simp

lemma set_to_map_empty[simp]: "set_to_map {} = empty"
  unfolding set_to_map_def[abs_def] by simp

lemma map_to_set_empty_iff: "map_to_set m = {} ⟷ m = Map.empty"
                            "{} = map_to_set m ⟷ m = Map.empty"
  unfolding map_to_set_def by auto

lemma set_to_map_empty_iff: "set_to_map S = Map.empty ⟷ S = {}" (is ?T1)
                            "Map.empty = set_to_map S ⟷ S = {}" (is ?T2)
proof -
  show T1: ?T1
    apply (simp only: set_eq_iff)
    apply (simp only: fun_eq_iff)
    apply (simp add: set_to_map_def)
    apply auto
  done
  from T1 show ?T2 by auto
qed

lemma map_to_set_upd[simp]: "map_to_set (m (k ↦ v)) = insert (k, v) (map_to_set m - {(k, v') |v'. True})"
  unfolding map_to_set_def
  apply (simp add: set_eq_iff)
  apply metis
done

lemma set_to_map_insert:
assumes k_nin: "fst kv ∉ fst ` S"
shows "set_to_map (insert kv S) = (set_to_map S) (fst kv ↦ snd kv)"
proof
  fix k'
  obtain k v where kv_eq[simp]: "kv = (k, v)" by (rule prod.exhaust)

  from k_nin have k_nin': "⋀v'. (k, v') ∉ S"
    by (auto simp add: image_iff Ball_def)

  show "set_to_map (insert kv S) k' = (set_to_map S(fst kv ↦ snd kv)) k'"
    by (simp add: set_to_map_def k_nin')
qed

lemma map_to_set_dom :
  "dom m = fst ` (map_to_set m)"
unfolding dom_def map_to_set_def
by (auto simp add: image_iff)

lemma map_to_set_ran :
  "ran m = snd ` (map_to_set m)"
unfolding ran_def map_to_set_def
by (auto simp add: image_iff)

lemma set_to_map_dom :
  "dom (set_to_map S) = fst ` S"
unfolding set_to_map_def[abs_def] dom_def
by (auto simp add: image_iff Bex_def)

lemma set_to_map_ran :
  "ran (set_to_map S) ⊆ snd ` S"
unfolding set_to_map_def[abs_def] ran_def subset_iff
by (auto simp add: image_iff Bex_def)
   (metis Eps_Opt_eq_Some)

lemma finite_map_to_set:
"finite (map_to_set m) = finite (dom m)"
unfolding map_to_set_def map_to_set_dom
  apply (intro iffI finite_imageI)
  apply assumption
  apply (rule finite_imageD[of fst])
  apply assumption
  apply (simp add: inj_on_def)
done

lemma card_map_to_set :
  "card (map_to_set m) = card (dom m)"
unfolding map_to_set_def map_to_set_dom
  apply (rule card_image[symmetric])
  apply (simp add: inj_on_def)
done

lemma map_of_map_to_set :
"distinct (map fst l) ⟹
 map_of l = m ⟷ set l = map_to_set m"
proof (induct l arbitrary: m)
  case Nil thus ?case by (simp add: map_to_set_empty_iff) blast
next
  case (Cons kv l m)
  obtain k v where kv_eq[simp]: "kv = (k, v)" by (rule prod.exhaust)

  from Cons(2) have dist_l: "distinct (map fst l)" and kv'_nin: "⋀v'. (k, v') ∉ set l"
    by (auto simp add: image_iff)
  note ind_hyp = Cons(1)[OF dist_l]

  from kv'_nin have l_eq: "set (kv # l) = map_to_set m ⟷ (set l = map_to_set (m (k := None))) ∧ m k = Some v"
    apply (simp add: map_to_set_def restrict_map_def set_eq_iff)
    apply (auto)
    apply (metis)
    apply (metis option.inject)
  done

  from kv'_nin have m_eq: "map_of (kv # l) = m ⟷ map_of l = (m (k := None)) ∧ m k = Some v"
    apply (simp add: fun_eq_iff restrict_map_def map_of_eq_None_iff image_iff Ball_def)
    apply metis
  done

  show ?case
    unfolding m_eq l_eq
    using ind_hyp[of "m (k := None)"]
    by metis
qed

lemma map_to_set_map_of :
"distinct (map fst l) ⟹ map_to_set (map_of l) = set l"
by (metis map_of_map_to_set)

subsubsection {* Mapping empty set to None *}
definition "dflt_None_set S ≡ if S={} then None else Some S"

lemma the_dflt_None_empty[simp]: "dflt_None_set {} = None"
  unfolding dflt_None_set_def by simp

lemma the_dflt_None_nonempty[simp]: "S≠{} ⟹ dflt_None_set S = Some S"
  unfolding dflt_None_set_def by simp

lemma the_dflt_None_set[simp]: "the_default {} (dflt_None_set x) = x"
  unfolding dflt_None_set_def by auto

subsection {* Orderings *}

lemma (in order) min_arg_le[simp]:
  "n ≤ min m n ⟷ min m n = n"
  "m ≤ min m n ⟷ min m n = m"
  by (auto simp: min_def)

lemma (in linorder) min_arg_not_ge[simp]:
  "¬ min m n < m ⟷ min m n = m"
  "¬ min m n < n ⟷ min m n = n"
  by (auto simp: min_def)

lemma (in linorder) min_eq_arg[simp]:
  "min m n = m ⟷ m≤n"
  "min m n = n ⟷ n≤m"
  by (auto simp: min_def)

lemma min_simps[simp]:
  "a<(b::'a::order) ⟹ min a b = a"
  "b<(a::'a::order) ⟹ min a b = b"
  by (auto simp add: min_def dest: less_imp_le)

lemma ord_eq_le_eq_trans: "⟦ a=b; b≤c; c=d ⟧ ⟹ a≤d" by auto


subsection {* CCPOs *}

context ccpo
begin

lemma ccpo_Sup_mono:
  assumes C: "Complete_Partial_Order.chain (op ≤) A"
    "Complete_Partial_Order.chain (op ≤) B"
  assumes B: "∀x∈A. ∃y∈B. x≤y"
  shows "Sup A ≤ Sup B"
proof (rule ccpo_Sup_least)
  fix x
  assume "x∈A"
  with B obtain y where I: "y∈B" and L: "x≤y" by blast
  note L
  also from I ccpo_Sup_upper have "y≤Sup B" by (blast intro: C)
  finally show "x≤Sup B" .
qed (rule C)

lemma fixp_mono:
  assumes M: "monotone op≤ op≤ f" "monotone op≤ op≤ g"
  assumes LE: "⋀Z. f Z ≤ g Z"
  shows "ccpo_class.fixp f ≤ ccpo_class.fixp g"
  unfolding fixp_def[abs_def]
  apply (rule ccpo_Sup_mono)
  apply (rule chain_iterates M)+
proof rule
  fix x
  assume "x∈ccpo_class.iterates f"
  thus "∃y∈ccpo_class.iterates g. x≤y"
  proof (induct)
    case (step x)
    then obtain y where I: "y∈ccpo_class.iterates g" and L: "x≤y" by blast
    hence "g y ∈ ccpo_class.iterates g" and "f x ≤ g y"
      apply -
      apply (erule iterates.step)
      apply (rule order_trans)
      apply (erule monotoneD[OF M(1)])
      apply (rule LE)
      done
    thus "∃y∈ccpo_class.iterates g. f x ≤ y" ..
  next
    case (Sup M)
    def N  "{SOME y. y∈ccpo_class.iterates g ∧ x≤y | x. x∈M}"

    have N1: "∀y∈N. y∈ccpo_class.iterates g ∧ (∃x∈M. x≤y)"
      unfolding N_def
      apply auto
      apply (metis (lifting) Sup.hyps(2) tfl_some)
      by (metis (lifting) Sup.hyps(2) tfl_some)

    have N2: "∀x∈M. ∃y∈N. x≤y"
      unfolding N_def
      apply auto
      by (metis (lifting) Sup.hyps(2) tfl_some)

    have "N ⊆ ccpo_class.iterates g" using Sup
      using N1 by auto
    hence C_chain: "Complete_Partial_Order.chain op≤ N"
      using chain_iterates[OF M(2)]
      unfolding chain_def by auto

    have "Sup N ∈ ccpo_class.iterates g" and "Sup M ≤ Sup N"
      apply -
      apply (rule iterates.Sup[OF C_chain])
      using N1 apply blast
      apply (rule ccpo_Sup_mono)
      apply (rule Sup.hyps)
      apply (rule C_chain)
      apply (rule N2)
      done

    thus ?case by blast
  qed
qed

end

end