Theory Option_ord

theory Option_ord
imports Main
(*  Title:      HOL/Library/Option_ord.thy
    Author:     Florian Haftmann, TU Muenchen
*)

section ‹Canonical order on option type›

theory Option_ord
imports Option Main
begin

notation
  bot ("⊥") and
  top ("⊤") and
  inf  (infixl "⊓" 70) and
  sup  (infixl "⊔" 65) and
  Inf  ("⨅_" [900] 900) and
  Sup  ("⨆_" [900] 900)

syntax
  "_INF1"     :: "pttrns ⇒ 'b ⇒ 'b"           ("(3⨅_./ _)" [0, 10] 10)
  "_INF"      :: "pttrn ⇒ 'a set ⇒ 'b ⇒ 'b"  ("(3⨅_∈_./ _)" [0, 0, 10] 10)
  "_SUP1"     :: "pttrns ⇒ 'b ⇒ 'b"           ("(3⨆_./ _)" [0, 10] 10)
  "_SUP"      :: "pttrn ⇒ 'a set ⇒ 'b ⇒ 'b"  ("(3⨆_∈_./ _)" [0, 0, 10] 10)


instantiation option :: (preorder) preorder
begin

definition less_eq_option where
  "x ≤ y ⟷ (case x of None ⇒ True | Some x ⇒ (case y of None ⇒ False | Some y ⇒ x ≤ y))"

definition less_option where
  "x < y ⟷ (case y of None ⇒ False | Some y ⇒ (case x of None ⇒ True | Some x ⇒ x < y))"

lemma less_eq_option_None [simp]: "None ≤ x"
  by (simp add: less_eq_option_def)

lemma less_eq_option_None_code [code]: "None ≤ x ⟷ True"
  by simp

lemma less_eq_option_None_is_None: "x ≤ None ⟹ x = None"
  by (cases x) (simp_all add: less_eq_option_def)

lemma less_eq_option_Some_None [simp, code]: "Some x ≤ None ⟷ False"
  by (simp add: less_eq_option_def)

lemma less_eq_option_Some [simp, code]: "Some x ≤ Some y ⟷ x ≤ y"
  by (simp add: less_eq_option_def)

lemma less_option_None [simp, code]: "x < None ⟷ False"
  by (simp add: less_option_def)

lemma less_option_None_is_Some: "None < x ⟹ ∃z. x = Some z"
  by (cases x) (simp_all add: less_option_def)

lemma less_option_None_Some [simp]: "None < Some x"
  by (simp add: less_option_def)

lemma less_option_None_Some_code [code]: "None < Some x ⟷ True"
  by simp

lemma less_option_Some [simp, code]: "Some x < Some y ⟷ x < y"
  by (simp add: less_option_def)

instance
  by standard
    (auto simp add: less_eq_option_def less_option_def less_le_not_le
      elim: order_trans split: option.splits)

end

instance option :: (order) order
  by standard (auto simp add: less_eq_option_def less_option_def split: option.splits)

instance option :: (linorder) linorder
  by standard (auto simp add: less_eq_option_def less_option_def split: option.splits)

instantiation option :: (order) order_bot
begin

definition bot_option where "⊥ = None"

instance
  by standard (simp add: bot_option_def)

end

instantiation option :: (order_top) order_top
begin

definition top_option where "⊤ = Some ⊤"

instance
  by standard (simp add: top_option_def less_eq_option_def split: option.split)

end

instance option :: (wellorder) wellorder
proof
  fix P :: "'a option ⇒ bool"
  fix z :: "'a option"
  assume H: "⋀x. (⋀y. y < x ⟹ P y) ⟹ P x"
  have "P None" by (rule H) simp
  then have P_Some [case_names Some]: "P z" if "⋀x. z = Some x ⟹ (P o Some) x" for z
    using ‹P None› that by (cases z) simp_all
  show "P z"
  proof (cases z rule: P_Some)
    case (Some w)
    show "(P o Some) w"
    proof (induct rule: less_induct)
      case (less x)
      have "P (Some x)"
      proof (rule H)
        fix y :: "'a option"
        assume "y < Some x"
        show "P y"
        proof (cases y rule: P_Some)
          case (Some v)
          with ‹y < Some x› have "v < x" by simp
          with less show "(P o Some) v" .
        qed
      qed
      then show ?case by simp
    qed
  qed
qed

instantiation option :: (inf) inf
begin

definition inf_option where
  "x ⊓ y = (case x of None ⇒ None | Some x ⇒ (case y of None ⇒ None | Some y ⇒ Some (x ⊓ y)))"

lemma inf_None_1 [simp, code]: "None ⊓ y = None"
  by (simp add: inf_option_def)

lemma inf_None_2 [simp, code]: "x ⊓ None = None"
  by (cases x) (simp_all add: inf_option_def)

lemma inf_Some [simp, code]: "Some x ⊓ Some y = Some (x ⊓ y)"
  by (simp add: inf_option_def)

instance ..

end

instantiation option :: (sup) sup
begin

definition sup_option where
  "x ⊔ y = (case x of None ⇒ y | Some x' ⇒ (case y of None ⇒ x | Some y ⇒ Some (x' ⊔ y)))"

lemma sup_None_1 [simp, code]: "None ⊔ y = y"
  by (simp add: sup_option_def)

lemma sup_None_2 [simp, code]: "x ⊔ None = x"
  by (cases x) (simp_all add: sup_option_def)

lemma sup_Some [simp, code]: "Some x ⊔ Some y = Some (x ⊔ y)"
  by (simp add: sup_option_def)

instance ..

end

instance option :: (semilattice_inf) semilattice_inf
proof
  fix x y z :: "'a option"
  show "x ⊓ y ≤ x"
    by (cases x, simp_all, cases y, simp_all)
  show "x ⊓ y ≤ y"
    by (cases x, simp_all, cases y, simp_all)
  show "x ≤ y ⟹ x ≤ z ⟹ x ≤ y ⊓ z"
    by (cases x, simp_all, cases y, simp_all, cases z, simp_all)
qed

instance option :: (semilattice_sup) semilattice_sup
proof
  fix x y z :: "'a option"
  show "x ≤ x ⊔ y"
    by (cases x, simp_all, cases y, simp_all)
  show "y ≤ x ⊔ y"
    by (cases x, simp_all, cases y, simp_all)
  fix x y z :: "'a option"
  show "y ≤ x ⟹ z ≤ x ⟹ y ⊔ z ≤ x"
    by (cases y, simp_all, cases z, simp_all, cases x, simp_all)
qed

instance option :: (lattice) lattice ..

instance option :: (lattice) bounded_lattice_bot ..

instance option :: (bounded_lattice_top) bounded_lattice_top ..

instance option :: (bounded_lattice_top) bounded_lattice ..

instance option :: (distrib_lattice) distrib_lattice
proof
  fix x y z :: "'a option"
  show "x ⊔ y ⊓ z = (x ⊔ y) ⊓ (x ⊔ z)"
    by (cases x, simp_all, cases y, simp_all, cases z, simp_all add: sup_inf_distrib1 inf_commute)
qed

instantiation option :: (complete_lattice) complete_lattice
begin

definition Inf_option :: "'a option set ⇒ 'a option" where
  "⨅A = (if None ∈ A then None else Some (⨅Option.these A))"

lemma None_in_Inf [simp]: "None ∈ A ⟹ ⨅A = None"
  by (simp add: Inf_option_def)

definition Sup_option :: "'a option set ⇒ 'a option" where
  "⨆A = (if A = {} ∨ A = {None} then None else Some (⨆Option.these A))"

lemma empty_Sup [simp]: "⨆{} = None"
  by (simp add: Sup_option_def)

lemma singleton_None_Sup [simp]: "⨆{None} = None"
  by (simp add: Sup_option_def)

instance
proof
  fix x :: "'a option" and A
  assume "x ∈ A"
  then show "⨅A ≤ x"
    by (cases x) (auto simp add: Inf_option_def in_these_eq intro: Inf_lower)
next
  fix z :: "'a option" and A
  assume *: "⋀x. x ∈ A ⟹ z ≤ x"
  show "z ≤ ⨅A"
  proof (cases z)
    case None then show ?thesis by simp
  next
    case (Some y)
    show ?thesis
      by (auto simp add: Inf_option_def in_these_eq Some intro!: Inf_greatest dest!: *)
  qed
next
  fix x :: "'a option" and A
  assume "x ∈ A"
  then show "x ≤ ⨆A"
    by (cases x) (auto simp add: Sup_option_def in_these_eq intro: Sup_upper)
next
  fix z :: "'a option" and A
  assume *: "⋀x. x ∈ A ⟹ x ≤ z"
  show "⨆A ≤ z "
  proof (cases z)
    case None
    with * have "⋀x. x ∈ A ⟹ x = None" by (auto dest: less_eq_option_None_is_None)
    then have "A = {} ∨ A = {None}" by blast
    then show ?thesis by (simp add: Sup_option_def)
  next
    case (Some y)
    from * have "⋀w. Some w ∈ A ⟹ Some w ≤ z" .
    with Some have "⋀w. w ∈ Option.these A ⟹ w ≤ y"
      by (simp add: in_these_eq)
    then have "⨆Option.these A ≤ y" by (rule Sup_least)
    with Some show ?thesis by (simp add: Sup_option_def)
  qed
next
  show "⨆{} = (⊥::'a option)"
    by (auto simp: bot_option_def)
  show "⨅{} = (⊤::'a option)"
    by (auto simp: top_option_def Inf_option_def)
qed

end

lemma Some_Inf:
  "Some (⨅A) = ⨅(Some ` A)"
  by (auto simp add: Inf_option_def)

lemma Some_Sup:
  "A ≠ {} ⟹ Some (⨆A) = ⨆(Some ` A)"
  by (auto simp add: Sup_option_def)

lemma Some_INF:
  "Some (⨅x∈A. f x) = (⨅x∈A. Some (f x))"
  using Some_Inf [of "f ` A"] by (simp add: comp_def)

lemma Some_SUP:
  "A ≠ {} ⟹ Some (⨆x∈A. f x) = (⨆x∈A. Some (f x))"
  using Some_Sup [of "f ` A"] by (simp add: comp_def)

instance option :: (complete_distrib_lattice) complete_distrib_lattice
proof
  fix a :: "'a option" and B
  show "a ⊔ ⨅B = (⨅b∈B. a ⊔ b)"
  proof (cases a)
    case None
    then show ?thesis by simp
  next
    case (Some c)
    show ?thesis
    proof (cases "None ∈ B")
      case True
      then have "Some c = (⨅b∈B. Some c ⊔ b)"
        by (auto intro!: antisym INF_lower2 INF_greatest)
      with True Some show ?thesis by simp
    next
      case False then have B: "{x ∈ B. ∃y. x = Some y} = B" by auto (metis not_Some_eq)
      from sup_Inf have "Some c ⊔ Some (⨅Option.these B) = Some (⨅b∈Option.these B. c ⊔ b)" by simp
      then have "Some c ⊔ ⨅(Some ` Option.these B) = (⨅x∈Some ` Option.these B. Some c ⊔ x)"
        by (simp add: Some_INF Some_Inf comp_def)
      with Some B show ?thesis by (simp add: Some_image_these_eq cong del: strong_INF_cong)
    qed
  qed
  show "a ⊓ ⨆B = (⨆b∈B. a ⊓ b)"
  proof (cases a)
    case None
    then show ?thesis by (simp add: image_constant_conv bot_option_def cong del: strong_SUP_cong)
  next
    case (Some c)
    show ?thesis
    proof (cases "B = {} ∨ B = {None}")
      case True
      then show ?thesis by auto
    next
      have B: "B = {x ∈ B. ∃y. x = Some y} ∪ {x ∈ B. x = None}"
        by auto
      then have Sup_B: "⨆B = ⨆({x ∈ B. ∃y. x = Some y} ∪ {x ∈ B. x = None})"
        and SUP_B: "⋀f. (⨆x ∈ B. f x) = (⨆x ∈ {x ∈ B. ∃y. x = Some y} ∪ {x ∈ B. x = None}. f x)"
        by simp_all
      have Sup_None: "⨆{x. x = None ∧ x ∈ B} = None"
        by (simp add: bot_option_def [symmetric])
      have SUP_None: "(⨆x∈{x. x = None ∧ x ∈ B}. Some c ⊓ x) = None"
        by (simp add: bot_option_def [symmetric])
      case False then have "Option.these B ≠ {}" by (simp add: these_not_empty_eq)
      moreover from inf_Sup have "Some c ⊓ Some (⨆Option.these B) = Some (⨆b∈Option.these B. c ⊓ b)"
        by simp
      ultimately have "Some c ⊓ ⨆(Some ` Option.these B) = (⨆x∈Some ` Option.these B. Some c ⊓ x)"
        by (simp add: Some_SUP Some_Sup comp_def)
      with Some show ?thesis
        by (simp add: Some_image_these_eq Sup_B SUP_B Sup_None SUP_None SUP_union Sup_union_distrib cong del: strong_SUP_cong)
    qed
  qed
qed

instance option :: (complete_linorder) complete_linorder ..


no_notation
  bot ("⊥") and
  top ("⊤") and
  inf  (infixl "⊓" 70) and
  sup  (infixl "⊔" 65) and
  Inf  ("⨅_" [900] 900) and
  Sup  ("⨆_" [900] 900)

no_syntax
  "_INF1"     :: "pttrns ⇒ 'b ⇒ 'b"           ("(3⨅_./ _)" [0, 10] 10)
  "_INF"      :: "pttrn ⇒ 'a set ⇒ 'b ⇒ 'b"  ("(3⨅_∈_./ _)" [0, 0, 10] 10)
  "_SUP1"     :: "pttrns ⇒ 'b ⇒ 'b"           ("(3⨆_./ _)" [0, 10] 10)
  "_SUP"      :: "pttrn ⇒ 'a set ⇒ 'b ⇒ 'b"  ("(3⨆_∈_./ _)" [0, 0, 10] 10)

end