Theory Compact_Basis
section ‹A compact basis for powerdomains›
theory Compact_Basis
imports Universal
begin
subsection ‹A compact basis for powerdomains›
definition "pd_basis = {S::'a::bifinite compact_basis set. finite S ∧ S ≠ {}}"
typedef 'a::bifinite pd_basis = "pd_basis :: 'a compact_basis set set"
proof
show "{a} ∈ ?pd_basis" for a
by (simp add: pd_basis_def)
qed
lemma finite_Rep_pd_basis [simp]: "finite (Rep_pd_basis u)"
using Rep_pd_basis [of u, unfolded pd_basis_def] by simp
lemma Rep_pd_basis_nonempty [simp]: "Rep_pd_basis u ≠ {}"
using Rep_pd_basis [of u, unfolded pd_basis_def] by simp
text ‹The powerdomain basis type is countable.›
lemma pd_basis_countable: "∃f::'a::bifinite pd_basis ⇒ nat. inj f" (is "Ex ?P")
proof -
obtain g :: "'a compact_basis ⇒ nat" where "inj g"
using compact_basis.countable ..
hence image_g_eq: "g ` A = g ` B ⟷ A = B" for A B
by (rule inj_image_eq_iff)
have "inj (λt. set_encode (g ` Rep_pd_basis t))"
by (simp add: inj_on_def set_encode_eq image_g_eq Rep_pd_basis_inject)
thus ?thesis by (rule exI [of ?P])
qed
subsection ‹Unit and plus constructors›
definition
PDUnit :: "'a::bifinite compact_basis ⇒ 'a pd_basis" where
"PDUnit = (λx. Abs_pd_basis {x})"
definition
PDPlus :: "'a::bifinite pd_basis ⇒ 'a pd_basis ⇒ 'a pd_basis" where
"PDPlus t u = Abs_pd_basis (Rep_pd_basis t ∪ Rep_pd_basis u)"
lemma Rep_PDUnit:
"Rep_pd_basis (PDUnit x) = {x}"
unfolding PDUnit_def by (rule Abs_pd_basis_inverse) (simp add: pd_basis_def)
lemma Rep_PDPlus:
"Rep_pd_basis (PDPlus u v) = Rep_pd_basis u ∪ Rep_pd_basis v"
unfolding PDPlus_def by (rule Abs_pd_basis_inverse) (simp add: pd_basis_def)
lemma PDUnit_inject [simp]: "(PDUnit a = PDUnit b) = (a = b)"
unfolding Rep_pd_basis_inject [symmetric] Rep_PDUnit by simp
lemma PDPlus_assoc: "PDPlus (PDPlus t u) v = PDPlus t (PDPlus u v)"
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_assoc)
lemma PDPlus_commute: "PDPlus t u = PDPlus u t"
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_commute)
lemma PDPlus_absorb: "PDPlus t t = t"
unfolding Rep_pd_basis_inject [symmetric] Rep_PDPlus by (rule Un_absorb)
lemma pd_basis_induct1 [case_names PDUnit PDPlus]:
assumes PDUnit: "⋀a. P (PDUnit a)"
assumes PDPlus: "⋀a t. P t ⟹ P (PDPlus (PDUnit a) t)"
shows "P x"
proof (induct x)
case (Abs_pd_basis y)
then have "finite y" and "y ≠ {}" by (simp_all add: pd_basis_def)
then show ?case
proof (induct rule: finite_ne_induct)
case (singleton x)
show ?case by (rule PDUnit [unfolded PDUnit_def])
next
case (insert x F)
from insert(4) have "P (PDPlus (PDUnit x) (Abs_pd_basis F))" by (rule PDPlus)
with insert(1,2) show ?case
by (simp add: PDUnit_def PDPlus_def Abs_pd_basis_inverse [unfolded pd_basis_def])
qed
qed
lemma pd_basis_induct [case_names PDUnit PDPlus]:
assumes PDUnit: "⋀a. P (PDUnit a)"
assumes PDPlus: "⋀t u. ⟦P t; P u⟧ ⟹ P (PDPlus t u)"
shows "P x"
by (induct x rule: pd_basis_induct1) (fact PDUnit, fact PDPlus [OF PDUnit])
subsection ‹Fold operator›
definition
fold_pd ::
"('a::bifinite compact_basis ⇒ 'b::type) ⇒ ('b ⇒ 'b ⇒ 'b) ⇒ 'a pd_basis ⇒ 'b"
where "fold_pd g f t = semilattice_set.F f (g ` Rep_pd_basis t)"
lemma fold_pd_PDUnit:
assumes "semilattice f"
shows "fold_pd g f (PDUnit x) = g x"
proof -
from assms interpret semilattice_set f by (rule semilattice_set.intro)
show ?thesis by (simp add: fold_pd_def Rep_PDUnit)
qed
lemma fold_pd_PDPlus:
assumes "semilattice f"
shows "fold_pd g f (PDPlus t u) = f (fold_pd g f t) (fold_pd g f u)"
proof -
from assms interpret semilattice_set f by (rule semilattice_set.intro)
show ?thesis by (simp add: image_Un fold_pd_def Rep_PDPlus union)
qed
end