Theory Indexed_Polynomials
theory Indexed_Polynomials
imports Weak_Morphisms "HOL-Library.Multiset" Polynomial_Divisibility
begin
section ‹Indexed Polynomials›
text ‹In this theory, we build a basic framework to the study of polynomials on letters
indexed by a set. The main interest is to then apply these concepts to the construction
of the algebraic closure of a field. ›
subsection ‹Definitions›
text ‹We formalize indexed monomials as multisets with its support a subset of the index set.
On top of those, we build indexed polynomials which are simply functions mapping a monomial
to its coefficient. ›
definition (in ring) indexed_const :: "'a ⇒ ('c multiset ⇒ 'a)"
where "indexed_const k = (λm. if m = {#} then k else 𝟬)"
definition (in ring) indexed_pmult :: "('c multiset ⇒ 'a) ⇒ 'c ⇒ ('c multiset ⇒ 'a)" (infixl "⨂" 65)
where "indexed_pmult P i = (λm. if i ∈# m then P (m - {# i #}) else 𝟬)"
definition (in ring) indexed_padd :: "_ ⇒ _ ⇒ ('c multiset ⇒ 'a)" (infixl "⨁" 65)
where "indexed_padd P Q = (λm. (P m) ⊕ (Q m))"
definition (in ring) indexed_var :: "'c ⇒ ('c multiset ⇒ 'a)" ("𝒳ı")
where "indexed_var i = (indexed_const 𝟭) ⨂ i"
definition (in ring) index_free :: "('c multiset ⇒ 'a) ⇒ 'c ⇒ bool"
where "index_free P i ⟷ (∀m. i ∈# m ⟶ P m = 𝟬)"
definition (in ring) carrier_coeff :: "('c multiset ⇒ 'a) ⇒ bool"
where "carrier_coeff P ⟷ (∀m. P m ∈ carrier R)"
inductive_set (in ring) indexed_pset :: "'c set ⇒ 'a set ⇒ ('c multiset ⇒ 'a) set" ("_ [𝒳ı]" 80)
for I and K where
indexed_const: "k ∈ K ⟹ indexed_const k ∈ (K[𝒳⇘I⇙])"
| indexed_padd: "⟦ P ∈ (K[𝒳⇘I⇙]); Q ∈ (K[𝒳⇘I⇙]) ⟧ ⟹ P ⨁ Q ∈ (K[𝒳⇘I⇙])"
| indexed_pmult: "⟦ P ∈ (K[𝒳⇘I⇙]); i ∈ I ⟧ ⟹ P ⨂ i ∈ (K[𝒳⇘I⇙])"
fun (in ring) indexed_eval_aux :: "('c multiset ⇒ 'a) list ⇒ 'c ⇒ ('c multiset ⇒ 'a)"
where "indexed_eval_aux Ps i = foldr (λP Q. (Q ⨂ i) ⨁ P) Ps (indexed_const 𝟬)"
fun (in ring) indexed_eval :: "('c multiset ⇒ 'a) list ⇒ 'c ⇒ ('c multiset ⇒ 'a)"
where "indexed_eval Ps i = indexed_eval_aux (rev Ps) i"
subsection ‹Basic Properties›
lemma (in ring) carrier_coeffE:
assumes "carrier_coeff P" shows "P m ∈ carrier R"
using assms unfolding carrier_coeff_def by simp
lemma (in ring) indexed_zero_def: "indexed_const 𝟬 = (λ_. 𝟬)"
unfolding indexed_const_def by simp
lemma (in ring) indexed_const_index_free: "index_free (indexed_const k) i"
unfolding index_free_def indexed_const_def by auto
lemma (in domain) indexed_var_not_index_free: "¬ index_free 𝒳⇘i⇙ i"
proof -
have "𝒳⇘i⇙ {# i #} = 𝟭"
unfolding indexed_var_def indexed_pmult_def indexed_const_def by simp
thus ?thesis
using one_not_zero unfolding index_free_def by fastforce
qed
lemma (in ring) indexed_pmult_zero [simp]:
shows "indexed_pmult (indexed_const 𝟬) i = indexed_const 𝟬"
unfolding indexed_zero_def indexed_pmult_def by auto
lemma (in ring) indexed_padd_zero:
assumes "carrier_coeff P" shows "P ⨁ (indexed_const 𝟬) = P" and "(indexed_const 𝟬) ⨁ P = P"
using assms unfolding carrier_coeff_def indexed_zero_def indexed_padd_def by auto
lemma (in ring) indexed_padd_const:
shows "(indexed_const k1) ⨁ (indexed_const k2) = indexed_const (k1 ⊕ k2)"
unfolding indexed_padd_def indexed_const_def by auto
lemma (in ring) indexed_const_in_carrier:
assumes "K ⊆ carrier R" and "k ∈ K" shows "⋀m. (indexed_const k) m ∈ carrier R"
using assms unfolding indexed_const_def by auto
lemma (in ring) indexed_padd_in_carrier:
assumes "carrier_coeff P" and "carrier_coeff Q" shows "carrier_coeff (indexed_padd P Q)"
using assms unfolding carrier_coeff_def indexed_padd_def by simp
lemma (in ring) indexed_pmult_in_carrier:
assumes "carrier_coeff P" shows "carrier_coeff (P ⨂ i)"
using assms unfolding carrier_coeff_def indexed_pmult_def by simp
lemma (in ring) indexed_eval_aux_in_carrier:
assumes "list_all carrier_coeff Ps" shows "carrier_coeff (indexed_eval_aux Ps i)"
using assms unfolding carrier_coeff_def
by (induct Ps) (auto simp add: indexed_zero_def indexed_padd_def indexed_pmult_def)
lemma (in ring) indexed_eval_in_carrier:
assumes "list_all carrier_coeff Ps" shows "carrier_coeff (indexed_eval Ps i)"
using assms indexed_eval_aux_in_carrier[of "rev Ps"] by auto
lemma (in ring) indexed_pset_in_carrier:
assumes "K ⊆ carrier R" and "P ∈ (K[𝒳⇘I⇙])" shows "carrier_coeff P"
using assms(2,1) indexed_const_in_carrier unfolding carrier_coeff_def
by (induction) (auto simp add: indexed_zero_def indexed_padd_def indexed_pmult_def)
subsection ‹Indexed Eval›
lemma (in ring) exists_indexed_eval_aux_monomial:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "count n i = k" and "P n ≠ 𝟬" and "list_all (λQ. index_free Q i) Qs"
obtains m where "count m i = length Qs + k" and "(indexed_eval_aux (Qs @ [ P ]) i) m ≠ 𝟬"
proof -
from assms(2,5) have "∃m. count m i = length Qs + k ∧ (indexed_eval_aux (Qs @ [ P ]) i) m ≠ 𝟬"
proof (induct Qs)
case Nil thus ?case
using indexed_padd_zero(2)[OF assms(1)] assms(3-4) by auto
next
case (Cons Q Qs)
then obtain m where m: "count m i = length Qs + k" "(indexed_eval_aux (Qs @ [ P ]) i) m ≠ 𝟬"
by auto
define m' where "m' = m + {# i #}"
hence "Q m' = 𝟬"
using Cons(3) unfolding index_free_def by simp
moreover have "(indexed_eval_aux (Qs @ [ P ]) i) m ∈ carrier R"
using indexed_eval_aux_in_carrier[of "Qs @ [ P ]" i] Cons(2) assms(1) carrier_coeffE by auto
hence "((indexed_eval_aux (Qs @ [ P ]) i) ⨂ i) m' ∈ carrier R - { 𝟬 }"
using m unfolding indexed_pmult_def m'_def by simp
ultimately have "(indexed_eval_aux (Q # (Qs @ [ P ])) i) m' ≠ 𝟬"
by (auto simp add: indexed_padd_def)
moreover from ‹count m i = length Qs + k› have "count m' i = length (Q # Qs) + k"
unfolding m'_def by simp
ultimately show ?case
by auto
qed
thus thesis
using that by blast
qed
lemma (in ring) indexed_eval_aux_monomial_degree_le:
assumes "list_all carrier_coeff Ps" and "list_all (λP. index_free P i) Ps"
and "(indexed_eval_aux Ps i) m ≠ 𝟬" shows "count m i ≤ length Ps - 1"
using assms(1-3)
proof (induct Ps arbitrary: m, simp add: indexed_zero_def)
case (Cons P Ps) show ?case
proof (cases "count m i = 0", simp)
assume "count m i ≠ 0"
hence "P m = 𝟬"
using Cons(3) unfolding index_free_def by simp
moreover have "(indexed_eval_aux Ps i) m ∈ carrier R"
using carrier_coeffE[OF indexed_eval_aux_in_carrier[of Ps i]] Cons(2) by simp
ultimately have "((indexed_eval_aux Ps i) ⨂ i) m ≠ 𝟬"
using Cons(4) by (auto simp add: indexed_padd_def)
with ‹count m i ≠ 0› have "(indexed_eval_aux Ps i) (m - {# i #}) ≠ 𝟬"
unfolding indexed_pmult_def by (auto simp del: indexed_eval_aux.simps)
hence "count m i - 1 ≤ length Ps - 1"
using Cons(1)[of "m - {# i #}"] Cons(2-3) by auto
moreover from ‹(indexed_eval_aux Ps i) (m - {# i #}) ≠ 𝟬› have "length Ps > 0"
by (auto simp add: indexed_zero_def)
moreover from ‹count m i ≠ 0› have "count m i > 0"
by simp
ultimately show ?thesis
by (simp add: Suc_leI le_diff_iff)
qed
qed
lemma (in ring) indexed_eval_aux_is_inj:
assumes "list_all carrier_coeff Ps" and "list_all (λP. index_free P i) Ps"
and "list_all carrier_coeff Qs" and "list_all (λQ. index_free Q i) Qs"
and "indexed_eval_aux Ps i = indexed_eval_aux Qs i" and "length Ps = length Qs"
shows "Ps = Qs"
using assms
proof (induct Ps arbitrary: Qs, simp)
case (Cons P Ps)
from ‹length (P # Ps) = length Qs› obtain Q' Qs' where Qs: "Qs = Q' # Qs'" and "length Ps = length Qs'"
by (metis Suc_length_conv)
have in_carrier:
"((indexed_eval_aux Ps i) ⨂ i) m ∈ carrier R" "P m ∈ carrier R"
"((indexed_eval_aux Qs' i) ⨂ i) m ∈ carrier R" "Q' m ∈ carrier R" for m
using indexed_eval_aux_in_carrier[of Ps i]
indexed_eval_aux_in_carrier[of Qs' i] Cons(2,4) carrier_coeffE
unfolding Qs indexed_pmult_def by auto
have "(indexed_eval_aux (P # Ps) i) m = (indexed_eval_aux (Q' # Qs') i) m" for m
using Cons(6) unfolding Qs by simp
hence eq: "((indexed_eval_aux Ps i) ⨂ i) m ⊕ P m = ((indexed_eval_aux Qs' i) ⨂ i) m ⊕ Q' m" for m
by (simp add: indexed_padd_def)
have "P m = Q' m" if "i ∈# m" for m
using that Cons(3,5) unfolding index_free_def Qs by auto
moreover have "P m = Q' m" if "i ∉# m" for m
using in_carrier(2,4) eq[of m] that by (auto simp add: indexed_pmult_def)
ultimately have "P = Q'"
by auto
hence "(indexed_eval_aux Ps i) m = (indexed_eval_aux Qs' i) m" for m
using eq[of "m + {# i #}"] in_carrier[of "m + {# i #}"] unfolding indexed_pmult_def by auto
with ‹length Ps = length Qs'› have "Ps = Qs'"
using Cons(1)[of Qs'] Cons(2-5) unfolding Qs by auto
with ‹P = Q'› show ?case
unfolding Qs by simp
qed
lemma (in ring) indexed_eval_aux_is_inj':
assumes "list_all carrier_coeff Ps" and "list_all (λP. index_free P i) Ps"
and "list_all carrier_coeff Qs" and "list_all (λQ. index_free Q i) Qs"
and "carrier_coeff P" and "index_free P i" "P ≠ indexed_const 𝟬"
and "carrier_coeff Q" and "index_free Q i" "Q ≠ indexed_const 𝟬"
and "indexed_eval_aux (Ps @ [ P ]) i = indexed_eval_aux (Qs @ [ Q ]) i"
shows "Ps = Qs" and "P = Q"
proof -
obtain m n where "P m ≠ 𝟬" and "Q n ≠ 𝟬"
using assms(7,10) unfolding indexed_zero_def by blast
hence "count m i = 0" and "count n i = 0"
using assms(6,9) unfolding index_free_def by (meson count_inI)+
with ‹P m ≠ 𝟬› and ‹Q n ≠ 𝟬› obtain m' n'
where m': "count m' i = length Ps" "(indexed_eval_aux (Ps @ [ P ]) i) m' ≠ 𝟬"
and n': "count n' i = length Qs" "(indexed_eval_aux (Qs @ [ Q ]) i) n' ≠ 𝟬"
using exists_indexed_eval_aux_monomial[of P Ps m i 0]
exists_indexed_eval_aux_monomial[of Q Qs n i 0] assms(1-5,8)
by (metis (no_types, lifting) add.right_neutral)
have "(indexed_eval_aux (Qs @ [ Q ]) i) m' ≠ 𝟬"
using m'(2) assms(11) by simp
with ‹count m' i = length Ps› have "length Ps ≤ length Qs"
using indexed_eval_aux_monomial_degree_le[of "Qs @ [ Q ]" i m'] assms(3-4,8-9) by auto
moreover have "(indexed_eval_aux (Ps @ [ P ]) i) n' ≠ 𝟬"
using n'(2) assms(11) by simp
with ‹count n' i = length Qs› have "length Qs ≤ length Ps"
using indexed_eval_aux_monomial_degree_le[of "Ps @ [ P ]" i n'] assms(1-2,5-6) by auto
ultimately have same_len: "length (Ps @ [ P ]) = length (Qs @ [ Q ])"
by simp
thus "Ps = Qs" and "P = Q"
using indexed_eval_aux_is_inj[of "Ps @ [ P ]" i "Qs @ [ Q ]"] assms(1-6,8-9,11) by auto
qed
lemma (in ring) exists_indexed_eval_monomial:
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "P n ≠ 𝟬" and "list_all (λQ. index_free Q i) Qs"
obtains m where "count m i = length Qs + (count n i)" and "(indexed_eval (P # Qs) i) m ≠ 𝟬"
using exists_indexed_eval_aux_monomial[OF assms(1) _ _ assms(3), of "rev Qs"] assms(2,4) by auto
corollary (in ring) exists_indexed_eval_monomial':
assumes "carrier_coeff P" and "list_all carrier_coeff Qs"
and "P ≠ indexed_const 𝟬" and "list_all (λQ. index_free Q i) Qs"
obtains m where "count m i ≥ length Qs" and "(indexed_eval (P # Qs) i) m ≠ 𝟬"
proof -
from ‹P ≠ indexed_const 𝟬› obtain n where "P n ≠ 𝟬"
unfolding indexed_const_def by auto
then obtain m where "count m i = length Qs + (count n i)" and "(indexed_eval (P # Qs) i) m ≠ 𝟬"
using exists_indexed_eval_monomial[OF assms(1-2) _ assms(4)] by auto
thus thesis
using that by force
qed
lemma (in ring) indexed_eval_monomial_degree_le:
assumes "list_all carrier_coeff Ps" and "list_all (λP. index_free P i) Ps"
and "(indexed_eval Ps i) m ≠ 𝟬" shows "count m i ≤ length Ps - 1"
using indexed_eval_aux_monomial_degree_le[of "rev Ps"] assms by auto
lemma (in ring) indexed_eval_is_inj:
assumes "list_all carrier_coeff Ps" and "list_all (λP. index_free P i) Ps"
and "list_all carrier_coeff Qs" and "list_all (λQ. index_free Q i) Qs"
and "carrier_coeff P" and "index_free P i" "P ≠ indexed_const 𝟬"
and "carrier_coeff Q" and "index_free Q i" "Q ≠ indexed_const 𝟬"
and "indexed_eval (P # Ps) i = indexed_eval (Q # Qs) i"
shows "Ps = Qs" and "P = Q"
proof -
have rev_cond:
"list_all carrier_coeff (rev Ps)" "list_all (λP. index_free P i) (rev Ps)"
"list_all carrier_coeff (rev Qs)" "list_all (λQ. index_free Q i) (rev Qs)"
using assms(1-4) by auto
show "Ps = Qs" and "P = Q"
using indexed_eval_aux_is_inj'[OF rev_cond assms(5-10)] assms(11) by auto
qed
lemma (in ring) indexed_eval_inj_on_carrier:
assumes "⋀P. P ∈ carrier L ⟹ carrier_coeff P" and "⋀P. P ∈ carrier L ⟹ index_free P i" and "𝟬⇘L⇙ = indexed_const 𝟬"
shows "inj_on (λPs. indexed_eval Ps i) (carrier (poly_ring L))"
proof -
{ fix Ps
assume "Ps ∈ carrier (poly_ring L)" and "indexed_eval Ps i = indexed_const 𝟬"
have "Ps = []"
proof (rule ccontr)
assume "Ps ≠ []"
then obtain P' Ps' where Ps: "Ps = P' # Ps'"
using list.exhaust by blast
with ‹Ps ∈ carrier (poly_ring L)›
have "P' ≠ indexed_const 𝟬" and "list_all carrier_coeff Ps" and "list_all (λP. index_free P i) Ps"
using assms unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def
by (simp add: list.pred_set subset_code(1))+
then obtain m where "(indexed_eval Ps i) m ≠ 𝟬"
using exists_indexed_eval_monomial'[of P' Ps'] unfolding Ps by auto
hence "indexed_eval Ps i ≠ indexed_const 𝟬"
unfolding indexed_const_def by auto
with ‹indexed_eval Ps i = indexed_const 𝟬› show False by simp
qed } note aux_lemma = this
show ?thesis
proof (rule inj_onI)
fix Ps Qs
assume "Ps ∈ carrier (poly_ring L)" and "Qs ∈ carrier (poly_ring L)"
show "indexed_eval Ps i = indexed_eval Qs i ⟹ Ps = Qs"
proof (cases)
assume "Qs = []" and "indexed_eval Ps i = indexed_eval Qs i"
with ‹Ps ∈ carrier (poly_ring L)› show "Ps = Qs"
using aux_lemma by simp
next
assume "Qs ≠ []" and eq: "indexed_eval Ps i = indexed_eval Qs i"
with ‹Qs ∈ carrier (poly_ring L)› have "Ps ≠ []"
using aux_lemma by auto
from ‹Ps ≠ []› and ‹Qs ≠ []› obtain P' Ps' Q' Qs' where Ps: "Ps = P' # Ps'" and Qs: "Qs = Q' # Qs'"
using list.exhaust by metis
from ‹Ps ∈ carrier (poly_ring L)› and ‹Ps = P' # Ps'›
have "carrier_coeff P'" and "index_free P' i" "P' ≠ indexed_const 𝟬"
and "list_all carrier_coeff Ps'" and "list_all (λP. index_free P i) Ps'"
using assms unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def
by (simp add: list.pred_set subset_code(1))+
moreover
from ‹Qs ∈ carrier (poly_ring L)› and ‹Qs = Q' # Qs'›
have "carrier_coeff Q'" and "index_free Q' i" "Q' ≠ indexed_const 𝟬"
and "list_all carrier_coeff Qs'" and "list_all (λP. index_free P i) Qs'"
using assms unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def
by (simp add: list.pred_set subset_code(1))+
ultimately show ?thesis
using indexed_eval_is_inj[of Ps' i Qs' P' Q'] eq unfolding Ps Qs by auto
qed
qed
qed
subsection ‹Link with Weak Morphisms›
text ‹We study some elements of the contradiction needed in the algebraic closure existence proof. ›
context ring
begin
lemma (in ring) indexed_padd_index_free:
assumes "index_free P i" and "index_free Q i" shows "index_free (P ⨁ Q) i"
using assms unfolding indexed_padd_def index_free_def by auto
lemma (in ring) indexed_pmult_index_free:
assumes "index_free P j" and "i ≠ j" shows "index_free (P ⨂ i) j"
using assms unfolding index_free_def indexed_pmult_def
by (metis insert_DiffM insert_noteq_member)
lemma (in ring) indexed_eval_index_free:
assumes "list_all (λP. index_free P j) Ps" and "i ≠ j" shows "index_free (indexed_eval Ps i) j"
proof -
{ fix Ps assume "list_all (λP. index_free P j) Ps" hence "index_free (indexed_eval_aux Ps i) j"
using indexed_padd_index_free[OF indexed_pmult_index_free[OF _ assms(2)]]
by (induct Ps) (auto simp add: indexed_zero_def index_free_def) }
thus ?thesis
using assms(1) by auto
qed
context
fixes L :: "(('c multiset) ⇒ 'a) ring" and i :: 'c
assumes hyps:
"field L"
"⋀P. P ∈ carrier L ⟹ carrier_coeff P"
"⋀P. P ∈ carrier L ⟹ index_free P i"
"𝟬⇘L⇙ = indexed_const 𝟬"
begin
interpretation L: field L
using ‹field L› .
interpretation UP: principal_domain "poly_ring L"
using L.univ_poly_is_principal[OF L.carrier_is_subfield] .
abbreviation eval_pmod
where "eval_pmod q ≡ (λp. indexed_eval (L.pmod p q) i)"
abbreviation image_poly
where "image_poly q ≡ image_ring (eval_pmod q) (poly_ring L)"
lemma indexed_eval_is_weak_ring_morphism:
assumes "q ∈ carrier (poly_ring L)" shows "weak_ring_morphism (eval_pmod q) (PIdl⇘poly_ring L⇙ q) (poly_ring L)"
proof (rule weak_ring_morphismI)
show "ideal (PIdl⇘poly_ring L⇙ q) (poly_ring L)"
using UP.cgenideal_ideal[OF assms] .
next
fix a b assume in_carrier: "a ∈ carrier (poly_ring L)" "b ∈ carrier (poly_ring L)"
note ldiv_closed = in_carrier[THEN L.long_division_closed(2)[OF L.carrier_is_subfield _ assms]]
have "(eval_pmod q) a = (eval_pmod q) b ⟷ L.pmod a q = L.pmod b q"
using inj_onD[OF indexed_eval_inj_on_carrier[OF hyps(2-4)] _ ldiv_closed] by fastforce
also have " ... ⟷ q pdivides⇘L⇙ (a ⊖⇘poly_ring L⇙ b)"
unfolding L.same_pmod_iff_pdivides[OF L.carrier_is_subfield in_carrier assms] ..
also have " ... ⟷ PIdl⇘poly_ring L⇙ (a ⊖⇘poly_ring L⇙ b) ⊆ PIdl⇘poly_ring L⇙ q"
unfolding UP.to_contain_is_to_divide[OF assms UP.minus_closed[OF in_carrier]] pdivides_def ..
also have " ... ⟷ a ⊖⇘poly_ring L⇙ b ∈ PIdl⇘poly_ring L⇙ q"
unfolding UP.cgenideal_eq_genideal[OF assms] UP.cgenideal_eq_genideal[OF UP.minus_closed[OF in_carrier]]
UP.Idl_subset_ideal'[OF UP.minus_closed[OF in_carrier] assms] ..
finally show "(eval_pmod q) a = (eval_pmod q) b ⟷ a ⊖⇘poly_ring L⇙ b ∈ PIdl⇘poly_ring L⇙ q" .
qed
lemma eval_norm_eq_id:
assumes "q ∈ carrier (poly_ring L)" and "degree q > 0" and "a ∈ carrier L"
shows "((eval_pmod q) ∘ (ring.poly_of_const L)) a = a"
proof (cases)
assume "a = 𝟬⇘L⇙" thus ?thesis
using L.long_division_zero(2)[OF L.carrier_is_subfield assms(1)] hyps(4)
unfolding ring.poly_of_const_def[OF L.ring_axioms] by auto
next
assume "a ≠ 𝟬⇘L⇙" then have in_carrier: "[ a ] ∈ carrier (poly_ring L)"
using assms(3) unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def by simp
from ‹a ≠ 𝟬⇘L⇙› show ?thesis
using L.pmod_const(2)[OF L.carrier_is_subfield in_carrier assms(1)] assms(2)
indexed_padd_zero(2)[OF hyps(2)[OF assms(3)]]
unfolding ring.poly_of_const_def[OF L.ring_axioms] by auto
qed
lemma image_poly_iso_incl:
assumes "q ∈ carrier (poly_ring L)" and "degree q > 0" shows "id ∈ ring_hom L (image_poly q)"
proof -
have "((eval_pmod q) ∘ L.poly_of_const) ∈ ring_hom L (image_poly q)"
using ring_hom_trans[OF L.canonical_embedding_is_hom[OF L.carrier_is_subring]
UP.weak_ring_morphism_is_hom[OF indexed_eval_is_weak_ring_morphism[OF assms(1)]]]
by simp
thus ?thesis
using eval_norm_eq_id[OF assms(1-2)] L.ring_hom_restrict[of _ "image_poly q" id] by auto
qed
lemma image_poly_is_field:
assumes "q ∈ carrier (poly_ring L)" and "pirreducible⇘L⇙ (carrier L) q" shows "field (image_poly q)"
using UP.image_ring_is_field[OF indexed_eval_is_weak_ring_morphism[OF assms(1)]] assms(2)
unfolding sym[OF L.rupture_is_field_iff_pirreducible[OF L.carrier_is_subfield assms(1)]] rupture_def
by simp
lemma image_poly_index_free:
assumes "q ∈ carrier (poly_ring L)" and "P ∈ carrier (image_poly q)" and "¬ index_free P j" "i ≠ j"
obtains Q where "Q ∈ carrier L" and "¬ index_free Q j"
proof -
from ‹P ∈ carrier (image_poly q)› obtain p where p: "p ∈ carrier (poly_ring L)" and P: "P = (eval_pmod q) p"
unfolding image_ring_carrier by blast
from ‹¬ index_free P j› have "¬ list_all (λP. index_free P j) (L.pmod p q)"
using indexed_eval_index_free[OF _ assms(4), of "L.pmod p q"] unfolding sym[OF P] by auto
then obtain Q where "Q ∈ set (L.pmod p q)" and "¬ index_free Q j"
unfolding list_all_iff by auto
thus ?thesis
using L.long_division_closed(2)[OF L.carrier_is_subfield p assms(1)] that
unfolding sym[OF univ_poly_carrier[of L "carrier L"]] polynomial_def
by auto
qed
lemma eval_pmod_var:
assumes "indexed_const ∈ ring_hom R L" and "q ∈ carrier (poly_ring L)" and "degree q > 1"
shows "(eval_pmod q) X⇘L⇙ = 𝒳⇘i⇙" and "𝒳⇘i⇙ ∈ carrier (image_poly q)"
proof -
have "X⇘L⇙ = [ indexed_const 𝟭, indexed_const 𝟬 ]" and "X⇘L⇙ ∈ carrier (poly_ring L)"
using ring_hom_one[OF assms(1)] hyps(4) L.var_closed(1) L.carrier_is_subring unfolding var_def by auto
thus "(eval_pmod q) X⇘L⇙ = 𝒳⇘i⇙"
using L.pmod_const(2)[OF L.carrier_is_subfield _ assms(2), of "X⇘L⇙"] assms(3)
by (auto simp add: indexed_pmult_def indexed_padd_def indexed_const_def indexed_var_def)
with ‹X⇘L⇙ ∈ carrier (poly_ring L)› show "𝒳⇘i⇙ ∈ carrier (image_poly q)"
using image_iff unfolding image_ring_carrier by fastforce
qed
lemma image_poly_eval_indexed_var:
assumes "indexed_const ∈ ring_hom R L"
and "q ∈ carrier (poly_ring L)" and "degree q > 1" and "pirreducible⇘L⇙ (carrier L) q"
shows "(ring.eval (image_poly q)) q 𝒳⇘i⇙ = 𝟬⇘image_poly q⇙"
proof -
let ?surj = "L.rupture_surj (carrier L) q"
let ?Rupt = "Rupt⇘L⇙ (carrier L) q"
let ?f = "eval_pmod q"
interpret UP: ring "poly_ring L"
using L.univ_poly_is_ring[OF L.carrier_is_subring] .
from ‹pirreducible⇘L⇙ (carrier L) q› interpret Rupt: field ?Rupt
using L.rupture_is_field_iff_pirreducible[OF L.carrier_is_subfield assms(2)] by simp
have weak_morphism: "weak_ring_morphism ?f (PIdl⇘poly_ring L⇙ q) (poly_ring L)"
using indexed_eval_is_weak_ring_morphism[OF assms(2)] .
then interpret I: ideal "PIdl⇘poly_ring L⇙ q" "poly_ring L"
using weak_ring_morphism.axioms(1) by auto
interpret Hom: ring_hom_ring ?Rupt "image_poly q" "λx. the_elem (?f ` x)"
using ring_hom_ring.intro[OF I.quotient_is_ring UP.image_ring_is_ring[OF weak_morphism]]
UP.weak_ring_morphism_is_iso[OF weak_morphism]
unfolding ring_iso_def symmetric[OF ring_hom_ring_axioms_def] rupture_def
by auto
have "set q ⊆ carrier L" and lc: "q ≠ [] ⟹ lead_coeff q ∈ carrier L - { 𝟬⇘L⇙ }"
using assms(2) unfolding sym[OF univ_poly_carrier] polynomial_def by auto
have map_surj: "set (map (?surj ∘ L.poly_of_const) q) ⊆ carrier ?Rupt"
proof -
have "L.poly_of_const a ∈ carrier (poly_ring L)" if "a ∈ carrier L" for a
using that L.normalize_gives_polynomial[of "[ a ]"]
unfolding univ_poly_carrier ring.poly_of_const_def[OF L.ring_axioms] by simp
hence "(?surj ∘ L.poly_of_const) a ∈ carrier ?Rupt" if "a ∈ carrier L" for a
using ring_hom_memE(1)[OF L.rupture_surj_hom(1)[OF L.carrier_is_subring assms(2)]] that by simp
with ‹set q ⊆ carrier L› show ?thesis
by (induct q) (auto)
qed
have "?surj X⇘L⇙ ∈ carrier ?Rupt"
using ring_hom_memE(1)[OF L.rupture_surj_hom(1)[OF _ assms(2)] L.var_closed(1)] L.carrier_is_subring by simp
moreover have "map (λx. the_elem (?f ` x)) (map (?surj ∘ L.poly_of_const) q) = q"
proof -
define g where "g = (?surj ∘ L.poly_of_const)"
define f where "f = (λx. the_elem (?f ` x))"
have "the_elem (?f ` ((?surj ∘ L.poly_of_const) a)) = ((eval_pmod q) ∘ L.poly_of_const) a"
if "a ∈ carrier L" for a
using that L.normalize_gives_polynomial[of "[ a ]"] UP.weak_ring_morphism_range[OF weak_morphism]
unfolding univ_poly_carrier ring.poly_of_const_def[OF L.ring_axioms] by auto
hence "the_elem (?f ` ((?surj ∘ L.poly_of_const) a)) = a" if "a ∈ carrier L" for a
using eval_norm_eq_id[OF assms(2)] that assms(3) by simp
hence "f (g a) = a" if "a ∈ carrier L" for a
using that unfolding f_def g_def by simp
with ‹set q ⊆ carrier L› have "map f (map g q) = q"
by (induct q) (auto)
thus ?thesis
unfolding f_def g_def by simp
qed
moreover have "(λx. the_elem (?f ` x)) (?surj X⇘L⇙) = 𝒳⇘i⇙"
using UP.weak_ring_morphism_range[OF weak_morphism L.var_closed(1)[OF L.carrier_is_subring]]
unfolding eval_pmod_var(1)[OF assms(1-3)] by simp
ultimately have "Hom.S.eval q 𝒳⇘i⇙ = (λx. the_elem (?f ` x)) (Rupt.eval (map (?surj ∘ L.poly_of_const) q) (?surj X⇘L⇙))"
using Hom.eval_hom'[OF _ map_surj] by auto
moreover have "𝟬⇘?Rupt⇙ = ?surj 𝟬⇘poly_ring L⇙"
unfolding rupture_def FactRing_def by (simp add: I.a_rcos_const)
hence "the_elem (?f ` 𝟬⇘?Rupt⇙) = 𝟬⇘image_poly q⇙"
using UP.weak_ring_morphism_range[OF weak_morphism UP.zero_closed]
unfolding image_ring_zero by simp
hence "(λx. the_elem (?f ` x)) (Rupt.eval (map (?surj ∘ L.poly_of_const) q) (?surj X⇘L⇙)) = 𝟬⇘image_poly q⇙"
using L.polynomial_rupture[OF L.carrier_is_subring assms(2)] by simp
ultimately show ?thesis
by simp
qed
end
end
end