Theory Arith
section‹Arithmetic Operators and Their Definitions›
theory Arith imports Univ begin
text‹Proofs about elementary arithmetic: addition, multiplication, etc.›
definition
pred :: "i⇒i" where
"pred(y) ≡ nat_case(0, λx. x, y)"
definition
natify :: "i⇒i" where
"natify ≡ Vrecursor(λf a. if a = succ(pred(a)) then succ(f`pred(a))
else 0)"
consts
raw_add :: "[i,i]⇒i"
raw_diff :: "[i,i]⇒i"
raw_mult :: "[i,i]⇒i"
primrec
"raw_add (0, n) = n"
"raw_add (succ(m), n) = succ(raw_add(m, n))"
primrec
raw_diff_0: "raw_diff(m, 0) = m"
raw_diff_succ: "raw_diff(m, succ(n)) =
nat_case(0, λx. x, raw_diff(m, n))"
primrec
"raw_mult(0, n) = 0"
"raw_mult(succ(m), n) = raw_add (n, raw_mult(m, n))"
definition
add :: "[i,i]⇒i" (infixl ‹#+› 65) where
"m #+ n ≡ raw_add (natify(m), natify(n))"
definition
diff :: "[i,i]⇒i" (infixl ‹#-› 65) where
"m #- n ≡ raw_diff (natify(m), natify(n))"
definition
mult :: "[i,i]⇒i" (infixl ‹#*› 70) where
"m #* n ≡ raw_mult (natify(m), natify(n))"
definition
raw_div :: "[i,i]⇒i" where
"raw_div (m, n) ≡
transrec(m, λj f. if j<n | n=0 then 0 else succ(f`(j#-n)))"
definition
raw_mod :: "[i,i]⇒i" where
"raw_mod (m, n) ≡
transrec(m, λj f. if j<n | n=0 then j else f`(j#-n))"
definition
div :: "[i,i]⇒i" (infixl ‹div› 70) where
"m div n ≡ raw_div (natify(m), natify(n))"
definition
mod :: "[i,i]⇒i" (infixl ‹mod› 70) where
"m mod n ≡ raw_mod (natify(m), natify(n))"
declare rec_type [simp]
nat_0_le [simp]
lemma zero_lt_lemma: "⟦0<k; k ∈ nat⟧ ⟹ ∃j∈nat. k = succ(j)"
apply (erule rev_mp)
apply (induct_tac "k", auto)
done
lemmas zero_lt_natE = zero_lt_lemma [THEN bexE]
subsection‹‹natify›, the Coercion to \<^term>‹nat››
lemma pred_succ_eq [simp]: "pred(succ(y)) = y"
by (unfold pred_def, auto)
lemma natify_succ: "natify(succ(x)) = succ(natify(x))"
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
lemma natify_0 [simp]: "natify(0) = 0"
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
lemma natify_non_succ: "∀z. x ≠ succ(z) ⟹ natify(x) = 0"
by (rule natify_def [THEN def_Vrecursor, THEN trans], auto)
lemma natify_in_nat [iff,TC]: "natify(x) ∈ nat"
apply (rule_tac a=x in eps_induct)
apply (case_tac "∃z. x = succ(z)")
apply (auto simp add: natify_succ natify_non_succ)
done
lemma natify_ident [simp]: "n ∈ nat ⟹ natify(n) = n"
apply (induct_tac "n")
apply (auto simp add: natify_succ)
done
lemma natify_eqE: "⟦natify(x) = y; x ∈ nat⟧ ⟹ x=y"
by auto
lemma natify_idem [simp]: "natify(natify(x)) = natify(x)"
by simp
lemma add_natify1 [simp]: "natify(m) #+ n = m #+ n"
by (simp add: add_def)
lemma add_natify2 [simp]: "m #+ natify(n) = m #+ n"
by (simp add: add_def)
lemma mult_natify1 [simp]: "natify(m) #* n = m #* n"
by (simp add: mult_def)
lemma mult_natify2 [simp]: "m #* natify(n) = m #* n"
by (simp add: mult_def)
lemma diff_natify1 [simp]: "natify(m) #- n = m #- n"
by (simp add: diff_def)
lemma diff_natify2 [simp]: "m #- natify(n) = m #- n"
by (simp add: diff_def)
lemma mod_natify1 [simp]: "natify(m) mod n = m mod n"
by (simp add: mod_def)
lemma mod_natify2 [simp]: "m mod natify(n) = m mod n"
by (simp add: mod_def)
lemma div_natify1 [simp]: "natify(m) div n = m div n"
by (simp add: div_def)
lemma div_natify2 [simp]: "m div natify(n) = m div n"
by (simp add: div_def)
subsection‹Typing rules›
lemma raw_add_type: "⟦m∈nat; n∈nat⟧ ⟹ raw_add (m, n) ∈ nat"
by (induct_tac "m", auto)
lemma add_type [iff,TC]: "m #+ n ∈ nat"
by (simp add: add_def raw_add_type)
lemma raw_mult_type: "⟦m∈nat; n∈nat⟧ ⟹ raw_mult (m, n) ∈ nat"
apply (induct_tac "m")
apply (simp_all add: raw_add_type)
done
lemma mult_type [iff,TC]: "m #* n ∈ nat"
by (simp add: mult_def raw_mult_type)
lemma raw_diff_type: "⟦m∈nat; n∈nat⟧ ⟹ raw_diff (m, n) ∈ nat"
by (induct_tac "n", auto)
lemma diff_type [iff,TC]: "m #- n ∈ nat"
by (simp add: diff_def raw_diff_type)
lemma diff_0_eq_0 [simp]: "0 #- n = 0"
unfolding diff_def
apply (rule natify_in_nat [THEN nat_induct], auto)
done
lemma diff_succ_succ [simp]: "succ(m) #- succ(n) = m #- n"
apply (simp add: natify_succ diff_def)
apply (rule_tac x1 = n in natify_in_nat [THEN nat_induct], auto)
done
declare raw_diff_succ [simp del]
lemma diff_0 [simp]: "m #- 0 = natify(m)"
by (simp add: diff_def)
lemma diff_le_self: "m∈nat ⟹ (m #- n) ≤ m"
apply (subgoal_tac " (m #- natify (n)) ≤ m")
apply (rule_tac [2] m = m and n = "natify (n) " in diff_induct)
apply (erule_tac [6] leE)
apply (simp_all add: le_iff)
done
subsection‹Addition›
lemma add_0_natify [simp]: "0 #+ m = natify(m)"
by (simp add: add_def)
lemma add_succ [simp]: "succ(m) #+ n = succ(m #+ n)"
by (simp add: natify_succ add_def)
lemma add_0: "m ∈ nat ⟹ 0 #+ m = m"
by simp
lemma add_assoc: "(m #+ n) #+ k = m #+ (n #+ k)"
apply (subgoal_tac "(natify(m) #+ natify(n)) #+ natify(k) =
natify(m) #+ (natify(n) #+ natify(k))")
apply (rule_tac [2] n = "natify(m)" in nat_induct)
apply auto
done
lemma add_0_right_natify [simp]: "m #+ 0 = natify(m)"
apply (subgoal_tac "natify(m) #+ 0 = natify(m)")
apply (rule_tac [2] n = "natify(m)" in nat_induct)
apply auto
done
lemma add_succ_right [simp]: "m #+ succ(n) = succ(m #+ n)"
unfolding add_def
apply (rule_tac n = "natify(m) " in nat_induct)
apply (auto simp add: natify_succ)
done
lemma add_0_right: "m ∈ nat ⟹ m #+ 0 = m"
by auto
lemma add_commute: "m #+ n = n #+ m"
apply (subgoal_tac "natify(m) #+ natify(n) = natify(n) #+ natify(m) ")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply auto
done
lemma add_left_commute: "m#+(n#+k)=n#+(m#+k)"
apply (rule add_commute [THEN trans])
apply (rule add_assoc [THEN trans])
apply (rule add_commute [THEN subst_context])
done
lemmas add_ac = add_assoc add_commute add_left_commute
lemma raw_add_left_cancel:
"⟦raw_add(k, m) = raw_add(k, n); k∈nat⟧ ⟹ m=n"
apply (erule rev_mp)
apply (induct_tac "k", auto)
done
lemma add_left_cancel_natify: "k #+ m = k #+ n ⟹ natify(m) = natify(n)"
unfolding add_def
apply (drule raw_add_left_cancel, auto)
done
lemma add_left_cancel:
"⟦i = j; i #+ m = j #+ n; m∈nat; n∈nat⟧ ⟹ m = n"
by (force dest!: add_left_cancel_natify)
lemma add_le_elim1_natify: "k#+m ≤ k#+n ⟹ natify(m) ≤ natify(n)"
apply (rule_tac P = "natify(k) #+m ≤ natify(k) #+n" in rev_mp)
apply (rule_tac [2] n = "natify(k) " in nat_induct)
apply auto
done
lemma add_le_elim1: "⟦k#+m ≤ k#+n; m ∈ nat; n ∈ nat⟧ ⟹ m ≤ n"
by (drule add_le_elim1_natify, auto)
lemma add_lt_elim1_natify: "k#+m < k#+n ⟹ natify(m) < natify(n)"
apply (rule_tac P = "natify(k) #+m < natify(k) #+n" in rev_mp)
apply (rule_tac [2] n = "natify(k) " in nat_induct)
apply auto
done
lemma add_lt_elim1: "⟦k#+m < k#+n; m ∈ nat; n ∈ nat⟧ ⟹ m < n"
by (drule add_lt_elim1_natify, auto)
lemma zero_less_add: "⟦n ∈ nat; m ∈ nat⟧ ⟹ 0 < m #+ n ⟷ (0<m | 0<n)"
by (induct_tac "n", auto)
subsection‹Monotonicity of Addition›
lemma add_lt_mono1: "⟦i<j; j∈nat⟧ ⟹ i#+k < j#+k"
apply (frule lt_nat_in_nat, assumption)
apply (erule succ_lt_induct)
apply (simp_all add: leI)
done
text‹strict, in second argument›
lemma add_lt_mono2: "⟦i<j; j∈nat⟧ ⟹ k#+i < k#+j"
by (simp add: add_commute [of k] add_lt_mono1)
text‹A [clumsy] way of lifting < monotonicity to ‹≤› monotonicity›
lemma Ord_lt_mono_imp_le_mono:
assumes lt_mono: "⋀i j. ⟦i<j; j:k⟧ ⟹ f(i) < f(j)"
and ford: "⋀i. i:k ⟹ Ord(f(i))"
and leij: "i ≤ j"
and jink: "j:k"
shows "f(i) ≤ f(j)"
apply (insert leij jink)
apply (blast intro!: leCI lt_mono ford elim!: leE)
done
text‹‹≤› monotonicity, 1st argument›
lemma add_le_mono1: "⟦i ≤ j; j∈nat⟧ ⟹ i#+k ≤ j#+k"
apply (rule_tac f = "λj. j#+k" in Ord_lt_mono_imp_le_mono, typecheck)
apply (blast intro: add_lt_mono1 add_type [THEN nat_into_Ord])+
done
text‹‹≤› monotonicity, both arguments›
lemma add_le_mono: "⟦i ≤ j; k ≤ l; j∈nat; l∈nat⟧ ⟹ i#+k ≤ j#+l"
apply (rule add_le_mono1 [THEN le_trans], assumption+)
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)
done
text‹Combinations of less-than and less-than-or-equals›
lemma add_lt_le_mono: "⟦i<j; k≤l; j∈nat; l∈nat⟧ ⟹ i#+k < j#+l"
apply (rule add_lt_mono1 [THEN lt_trans2], assumption+)
apply (subst add_commute, subst add_commute, rule add_le_mono1, assumption+)
done
lemma add_le_lt_mono: "⟦i≤j; k<l; j∈nat; l∈nat⟧ ⟹ i#+k < j#+l"
by (subst add_commute, subst add_commute, erule add_lt_le_mono, assumption+)
text‹Less-than: in other words, strict in both arguments›
lemma add_lt_mono: "⟦i<j; k<l; j∈nat; l∈nat⟧ ⟹ i#+k < j#+l"
apply (rule add_lt_le_mono)
apply (auto intro: leI)
done
lemma diff_add_inverse: "(n#+m) #- n = natify(m)"
apply (subgoal_tac " (natify(n) #+ m) #- natify(n) = natify(m) ")
apply (rule_tac [2] n = "natify(n) " in nat_induct)
apply auto
done
lemma diff_add_inverse2: "(m#+n) #- n = natify(m)"
by (simp add: add_commute [of m] diff_add_inverse)
lemma diff_cancel: "(k#+m) #- (k#+n) = m #- n"
apply (subgoal_tac "(natify(k) #+ natify(m)) #- (natify(k) #+ natify(n)) =
natify(m) #- natify(n) ")
apply (rule_tac [2] n = "natify(k) " in nat_induct)
apply auto
done
lemma diff_cancel2: "(m#+k) #- (n#+k) = m #- n"
by (simp add: add_commute [of _ k] diff_cancel)
lemma diff_add_0: "n #- (n#+m) = 0"
apply (subgoal_tac "natify(n) #- (natify(n) #+ natify(m)) = 0")
apply (rule_tac [2] n = "natify(n) " in nat_induct)
apply auto
done
lemma pred_0 [simp]: "pred(0) = 0"
by (simp add: pred_def)
lemma eq_succ_imp_eq_m1: "⟦i = succ(j); i∈nat⟧ ⟹ j = i #- 1 ∧ j ∈nat"
by simp
lemma pred_Un_distrib:
"⟦i∈nat; j∈nat⟧ ⟹ pred(i ∪ j) = pred(i) ∪ pred(j)"
apply (erule_tac n=i in natE, simp)
apply (erule_tac n=j in natE, simp)
apply (simp add: succ_Un_distrib [symmetric])
done
lemma pred_type [TC,simp]:
"i ∈ nat ⟹ pred(i) ∈ nat"
by (simp add: pred_def split: split_nat_case)
lemma nat_diff_pred: "⟦i∈nat; j∈nat⟧ ⟹ i #- succ(j) = pred(i #- j)"
apply (rule_tac m=i and n=j in diff_induct)
apply (auto simp add: pred_def nat_imp_quasinat split: split_nat_case)
done
lemma diff_succ_eq_pred: "i #- succ(j) = pred(i #- j)"
apply (insert nat_diff_pred [of "natify(i)" "natify(j)"])
apply (simp add: natify_succ [symmetric])
done
lemma nat_diff_Un_distrib:
"⟦i∈nat; j∈nat; k∈nat⟧ ⟹ (i ∪ j) #- k = (i#-k) ∪ (j#-k)"
apply (rule_tac n=k in nat_induct)
apply (simp_all add: diff_succ_eq_pred pred_Un_distrib)
done
lemma diff_Un_distrib:
"⟦i∈nat; j∈nat⟧ ⟹ (i ∪ j) #- k = (i#-k) ∪ (j#-k)"
by (insert nat_diff_Un_distrib [of i j "natify(k)"], simp)
text‹We actually prove \<^term>‹i #- j #- k = i #- (j #+ k)››
lemma diff_diff_left [simplified]:
"natify(i)#-natify(j)#-k = natify(i) #- (natify(j)#+k)"
by (rule_tac m="natify(i)" and n="natify(j)" in diff_induct, auto)
lemma eq_add_iff: "(u #+ m = u #+ n) ⟷ (0 #+ m = natify(n))"
apply auto
apply (blast dest: add_left_cancel_natify)
apply (simp add: add_def)
done
lemma less_add_iff: "(u #+ m < u #+ n) ⟷ (0 #+ m < natify(n))"
apply (auto simp add: add_lt_elim1_natify)
apply (drule add_lt_mono1)
apply (auto simp add: add_commute [of u])
done
lemma diff_add_eq: "((u #+ m) #- (u #+ n)) = ((0 #+ m) #- n)"
by (simp add: diff_cancel)
lemma eq_cong2: "u = u' ⟹ (t≡u) ≡ (t≡u')"
by auto
lemma iff_cong2: "u ⟷ u' ⟹ (t≡u) ≡ (t≡u')"
by auto
subsection‹Multiplication›
lemma mult_0 [simp]: "0 #* m = 0"
by (simp add: mult_def)
lemma mult_succ [simp]: "succ(m) #* n = n #+ (m #* n)"
by (simp add: add_def mult_def natify_succ raw_mult_type)
lemma mult_0_right [simp]: "m #* 0 = 0"
unfolding mult_def
apply (rule_tac n = "natify(m) " in nat_induct)
apply auto
done
lemma mult_succ_right [simp]: "m #* succ(n) = m #+ (m #* n)"
apply (subgoal_tac "natify(m) #* succ (natify(n)) =
natify(m) #+ (natify(m) #* natify(n))")
apply (simp (no_asm_use) add: natify_succ add_def mult_def)
apply (rule_tac n = "natify(m) " in nat_induct)
apply (simp_all add: add_ac)
done
lemma mult_1_natify [simp]: "1 #* n = natify(n)"
by auto
lemma mult_1_right_natify [simp]: "n #* 1 = natify(n)"
by auto
lemma mult_1: "n ∈ nat ⟹ 1 #* n = n"
by simp
lemma mult_1_right: "n ∈ nat ⟹ n #* 1 = n"
by simp
lemma mult_commute: "m #* n = n #* m"
apply (subgoal_tac "natify(m) #* natify(n) = natify(n) #* natify(m) ")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply auto
done
lemma add_mult_distrib: "(m #+ n) #* k = (m #* k) #+ (n #* k)"
apply (subgoal_tac "(natify(m) #+ natify(n)) #* natify(k) =
(natify(m) #* natify(k)) #+ (natify(n) #* natify(k))")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply (simp_all add: add_assoc [symmetric])
done
lemma add_mult_distrib_left: "k #* (m #+ n) = (k #* m) #+ (k #* n)"
apply (subgoal_tac "natify(k) #* (natify(m) #+ natify(n)) =
(natify(k) #* natify(m)) #+ (natify(k) #* natify(n))")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply (simp_all add: add_ac)
done
lemma mult_assoc: "(m #* n) #* k = m #* (n #* k)"
apply (subgoal_tac "(natify(m) #* natify(n)) #* natify(k) =
natify(m) #* (natify(n) #* natify(k))")
apply (rule_tac [2] n = "natify(m) " in nat_induct)
apply (simp_all add: add_mult_distrib)
done
lemma mult_left_commute: "m #* (n #* k) = n #* (m #* k)"
apply (rule mult_commute [THEN trans])
apply (rule mult_assoc [THEN trans])
apply (rule mult_commute [THEN subst_context])
done
lemmas mult_ac = mult_assoc mult_commute mult_left_commute
lemma lt_succ_eq_0_disj:
"⟦m∈nat; n∈nat⟧
⟹ (m < succ(n)) ⟷ (m = 0 | (∃j∈nat. m = succ(j) ∧ j < n))"
by (induct_tac "m", auto)
lemma less_diff_conv [rule_format]:
"⟦j∈nat; k∈nat⟧ ⟹ ∀i∈nat. (i < j #- k) ⟷ (i #+ k < j)"
by (erule_tac m = k in diff_induct, auto)
lemmas nat_typechecks = rec_type nat_0I nat_1I nat_succI Ord_nat
end