Theory Strict_part_mono
theory Strict_part_mono
imports "HOL-Library.Word" More_Word
begin
definition
strict_part_mono :: "'a set ⇒ ('a :: order ⇒ 'b :: order) ⇒ bool" where
"strict_part_mono S f ≡ ∀A∈S. ∀B∈S. A < B ⟶ f A < f B"
lemma strict_part_mono_by_steps:
"strict_part_mono {..n :: nat} f = (n ≠ 0 ⟶ f (n - 1) < f n ∧ strict_part_mono {.. n - 1} f)"
apply (cases n; simp add: strict_part_mono_def)
apply (safe; clarsimp)
apply (case_tac "B = Suc nat"; simp)
apply (case_tac "A = nat"; clarsimp)
apply (erule order_less_trans [rotated])
apply simp
done
lemma strict_part_mono_singleton[simp]:
"strict_part_mono {x} f"
by (simp add: strict_part_mono_def)
lemma strict_part_mono_lt:
"⟦ x < f 0; strict_part_mono {.. n :: nat} f ⟧ ⟹ ∀m ≤ n. x < f m"
by (auto simp add: strict_part_mono_def Ball_def intro: order.strict_trans)
lemma strict_part_mono_reverseE:
"⟦ f n ≤ f m; strict_part_mono {.. N :: nat} f; n ≤ N ⟧ ⟹ n ≤ m"
by (rule ccontr) (fastforce simp: linorder_not_le strict_part_mono_def)
lemma two_power_strict_part_mono:
"strict_part_mono {..LENGTH('a) - 1} (λx. (2 :: 'a :: len word) ^ x)"
proof -
{ fix n
have "n < LENGTH('a) ⟹ strict_part_mono {..n} (λx. (2 :: 'a :: len word) ^ x)"
proof (induct n)
case 0 then show ?case by simp
next
case (Suc n)
from Suc.prems
have "2 ^ n < (2 :: 'a :: len word) ^ Suc n"
using power_strict_increasing unat_power_lower word_less_nat_alt by fastforce
with Suc
show ?case by (subst strict_part_mono_by_steps) simp
qed
}
then show ?thesis by simp
qed
end