Theory Machine_Word_64
section "64-Bit Machine Word Setup"
theory Machine_Word_64
imports Machine_Word_64_Basics More_Word Bit_Shifts_Infix_Syntax Rsplit
begin
context
includes bit_operations_syntax
begin
type_synonym machine_word = ‹machine_word_len word›
lemma word_bits_len_of:
‹LENGTH(machine_word_len) = word_bits›
by (simp add: word_bits_conv)
lemma word_bits_size:
"size (w :: machine_word) = word_bits"
by (simp add: word_bits_def word_size)
lemma word_bits_word_size_conv:
‹word_bits = word_size * 8›
by (simp add: word_bits_def word_size_def)
lemma word_size_word_size_bits:
‹word_size = (2 :: 'a :: semiring_1) ^ word_size_bits›
by (simp add: word_size_def word_size_bits_def)
lemma lt_word_bits_lt_pow:
"sz < word_bits ⟹ sz < 2 ^ word_bits"
by (simp add: word_bits_conv)
lemma if_then_1_else_0:
"((if P then 1 else 0) = (0 :: machine_word)) = (¬ P)"
by simp
lemma if_then_0_else_1:
"((if P then 0 else 1) = (0 :: machine_word)) = (P)"
by simp
lemmas if_then_simps = if_then_0_else_1 if_then_1_else_0
lemma bool_mask [simp]:
‹0 < x AND 1 ⟷ x AND 1 = 1› for x :: machine_word
by (rule bool_mask') auto
lemma in_16_range:
"0 ∈ S ⟹ r ∈ (λx. r + x * (16 :: machine_word)) ` S"
"n - 1 ∈ S ⟹ (r + (16 * n - 16)) ∈ (λx :: machine_word. r + x * 16) ` S"
by (clarsimp simp: image_def elim!: bexI[rotated])+
lemma le_step_down_word_3:
fixes x :: machine_word
shows "⟦x ≤ y; x ≠ y⟧ ⟹ x ≤ y - 1"
by (fact le_step_down_word_2)
lemma shiftr_1:
"(x::machine_word) >> 1 = 0 ⟹ x < 2"
apply transfer
apply (simp add: take_bit_drop_bit)
apply (simp add: drop_bit_Suc)
done
lemma Suc_unat_mask_div:
"Suc (unat (mask sz div word_size :: machine_word)) = 2 ^ (min sz word_bits - word_size_bits)"
by (simp add: word_size_word_size_bits unat_drop_bit_eq unat_mask_eq drop_bit_mask_eq Suc_mask_eq_exp
flip: drop_bit_eq_div word_bits_conv)
lemma ucast_not_helper:
fixes a::"8 word"
assumes a: "a ≠ 0xFF"
shows "ucast a ≠ (0xFF::machine_word)"
proof
assume "ucast a = (0xFF::machine_word)"
also
have "(0xFF::machine_word) = ucast (0xFF::8 word)" by simp
finally
show False using a
apply -
apply (drule up_ucast_inj, simp)
apply simp
done
qed
lemma unat_less_2p_word_bits:
"unat (x :: machine_word) < 2 ^ word_bits"
apply (simp only: word_bits_def)
apply (rule unat_lt2p)
done
lemma unat_less_word_bits:
fixes y :: machine_word
shows "x < unat y ⟹ x < 2 ^ word_bits"
unfolding word_bits_def
by (rule order_less_trans [OF _ unat_lt2p])
lemma unat_mask_2_less_4:
"unat (p AND mask 2 :: machine_word) < 4"
by (rule unat_less_helper) (simp only: take_bit_eq_mod word_mod_less_divisor flip: take_bit_eq_mask, simp add: word_mod_less_divisor)
lemma unat_mult_simple:
‹unat (x * y) = unat x * unat y›
if ‹unat x * unat y < 2 ^ LENGTH(machine_word_len)›
for x y :: machine_word
using that by (simp flip: unat_mult_lem)
lemma upto_2_helper:
"{0..<2 :: machine_word} = {0, 1}"
by (safe; simp) unat_arith
lemma word_ge_min:
‹- (2 ^ (word_bits - 1)) ≤ sint x› for x :: machine_word
using sint_ge [of x] by (simp add: word_bits_def)
lemma word_rsplit_0:
"word_rsplit (0 :: machine_word) = replicate (word_bits div 8) (0 :: 8 word)"
by (simp add: word_rsplit_def bin_rsplit_def word_bits_def word_size_def Cons_replicate_eq)
lemma x_less_2_0_1:
fixes x :: machine_word
shows "x < 2 ⟹ x = 0 ∨ x = 1"
by (rule x_less_2_0_1') auto
end
end