Theory LuckyFind
subsection "Overall LuckyFind Proofs"
theory LuckyFind
imports EliminateVariable
begin
theorem luckyFind_eval:
assumes "luckyFind x L F = Some F'"
assumes "length xs = x"
shows "(∃x. (eval (list_conj ((map Atom L) @ F)) (xs @ (x#Γ)))) = (∃x.(eval F' (xs @ (x#Γ))))"
proof(cases "find_lucky_eq x L")
case None
then show ?thesis using assms by auto
next
case (Some p)
have inset : "Eq p ∈ set L"
using Some proof(induction L)
case Nil
then show ?case by auto
next
case (Cons a L)
then show ?case proof(cases a)
case (Less x1)
then show ?thesis using Cons by auto
next
case (Eq p')
show ?thesis using Cons
unfolding Eq apply simp apply(cases "(MPoly_Type.degree p' x = Suc 0 ∨ MPoly_Type.degree p' x = 2)") apply simp_all
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 2)") apply(simp_all)
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 1)") apply(simp_all)
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 0)") by(simp_all)
next
case (Leq x3)
then show ?thesis using Cons by auto
next
case (Neq x4)
then show ?thesis using Cons by auto
qed
qed
have degree : "MPoly_Type.degree p x = 1 ∨ MPoly_Type.degree p x = 2"
using Some proof(induction L)
case Nil
then show ?case by auto
next
case (Cons a L)
then show ?case proof(cases a)
case (Less x1)
then show ?thesis using Cons by auto
next
case (Eq p')
show ?thesis using Cons
unfolding Eq apply simp apply(cases "(MPoly_Type.degree p' x = Suc 0 ∨ MPoly_Type.degree p' x = 2)") apply simp_all
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 2)") apply(simp_all)
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 1)") apply(simp_all)
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 0)") by(simp_all)
next
case (Leq x3)
then show ?thesis using Cons by auto
next
case (Neq x4)
then show ?thesis using Cons by auto
qed
qed
have nonzero : "∀xa. insertion (nth_default 0 (xs @ xa # Γ)) (isolate_variable_sparse p x 2) ≠ 0 ∨
insertion (nth_default 0 (xs @ xa # Γ)) (isolate_variable_sparse p x 1) ≠ 0 ∨
insertion (nth_default 0 (xs @ xa # Γ)) (isolate_variable_sparse p x 0) ≠ 0"
using Some proof(induction L)
case Nil
then show ?case by auto
next
case (Cons a L)
then show ?case proof(cases a)
case (Less x1)
then show ?thesis using Cons by auto
next
case (Eq p')
have h : "⋀p xa. check_nonzero_const p ⟹ insertion (nth_default 0 (xs @ xa # Γ)) p ≠ 0"
proof-
fix p xa
assume h : "check_nonzero_const p"
show "insertion (nth_default 0 (xs @ xa # Γ)) p ≠ 0"
apply(cases "get_if_const p")
using h get_if_const_insertion by simp_all
qed
show ?thesis using Cons(2)
unfolding Eq apply (simp del:get_if_const.simps) apply(cases "(MPoly_Type.degree p' x = Suc 0 ∨ MPoly_Type.degree p' x = 2)") defer using Cons apply simp
apply (simp del:get_if_const.simps)
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 2)")
apply(simp del:get_if_const.simps) using h
apply simp
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 1)")
apply(simp del:get_if_const.simps) using h
apply simp
apply(cases "check_nonzero_const (isolate_variable_sparse p' x 0)")
apply(simp del:get_if_const.simps) using h
apply simp
using Cons by auto
next
case (Leq x3)
then show ?thesis using Cons by auto
next
case (Neq x4)
then show ?thesis using Cons by auto
qed
qed
show ?thesis
using elimVar_eq_2[OF assms(2) inset degree nonzero] Some assms by auto
qed
lemma luckyFind'_eval :
assumes "length xs = var"
shows "(∃x. eval (list_conj (map fm.Atom L @ F)) (xs @ x # Γ)) = (∃x. eval (luckyFind' var L F) (xs @ x # Γ))"
proof(cases "find_lucky_eq var L")
case None
show ?thesis apply(simp add:eval_list_conj None)
apply(rule ex_cong1)
apply auto
by (meson UnCI eval.simps(1) image_eqI)
next
case (Some p)
have "∃F'. luckyFind var L F = Some F'" by (simp add:Some)
then obtain F' where F'_def: "luckyFind var L F = Some F'" by metis
show ?thesis
unfolding luckyFind_eval[OF F'_def assms]
using F'_def Some by auto
qed
lemma luckiestFind_eval :
assumes "length xs = var"
shows "(∃x. eval (list_conj (map fm.Atom L @ F)) (xs @ x # Γ)) = (∃x. eval (luckiestFind var L F) (xs @ x # Γ))"
proof(cases "find_luckiest_eq var L")
case None
show ?thesis apply(simp add:eval_list_conj None)
apply(rule ex_cong1)
apply auto
by (meson UnCI eval.simps(1) image_eqI)
next
case (Some p)
have h1: "Eq p ∈ set L"
using Some apply(induction L arbitrary:p)
apply simp
subgoal for a L p
apply(rule find_luckiest_eq.elims[of var "a#L" "Some p"])
apply simp_all
subgoal for v p'
apply(cases "MPoly_Type.degree p' v = Suc 0 ∨ MPoly_Type.degree p' v = 2") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v 2))") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v (Suc 0)))") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v 0))") apply simp_all
apply(cases "MPoly_Type.coeff (isolate_variable_sparse p' v (Suc 0)) 0 = 0 ⟶
MPoly_Type.coeff (isolate_variable_sparse p' v 2) 0 = 0 ⟶ MPoly_Type.coeff (isolate_variable_sparse p' v 0) 0 ≠ 0") by simp_all
done
done
have h2 : "MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using Some apply(induction L arbitrary:p)
apply simp
subgoal for a L p
apply(rule find_luckiest_eq.elims[of var "a#L" "Some p"])
apply simp_all
subgoal for v p'
apply(cases "MPoly_Type.degree p' v = Suc 0 ∨ MPoly_Type.degree p' v = 2") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v 2))") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v (Suc 0)))") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v 0))") apply simp_all
apply(cases "MPoly_Type.coeff (isolate_variable_sparse p' v (Suc 0)) 0 = 0 ⟶
MPoly_Type.coeff (isolate_variable_sparse p' v 2) 0 = 0 ⟶ MPoly_Type.coeff (isolate_variable_sparse p' v 0) 0 ≠ 0") by simp_all
done
done
have h : "⋀p xa. check_nonzero_const p ⟹ insertion (nth_default 0 (xs @ xa # Γ)) p ≠ 0"
proof-
fix p xa
assume h : "check_nonzero_const p"
show "insertion (nth_default 0 (xs @ xa # Γ)) p ≠ 0"
apply(cases "get_if_const p")
using h get_if_const_insertion by simp_all
qed
have h3 : "∀x. insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 2) ≠ 0 ∨
insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 1) ≠ 0 ∨
insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 0) ≠ 0"
using Some apply(induction L arbitrary:p)
apply simp
subgoal for a L p
apply(rule find_luckiest_eq.elims[of var "a#L" "Some p"])
apply simp_all
subgoal for v p'
apply(cases "MPoly_Type.degree p' v = Suc 0 ∨ MPoly_Type.degree p' v = 2") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v 2))") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v (Suc 0)))") apply simp_all
apply(cases "Set.is_empty (vars (isolate_variable_sparse p' v 0))") apply simp_all
apply(cases "MPoly_Type.coeff (isolate_variable_sparse p' v (Suc 0)) 0 = 0 ⟶
MPoly_Type.coeff (isolate_variable_sparse p' v 2) 0 = 0 ⟶ MPoly_Type.coeff (isolate_variable_sparse p' v 0) 0 ≠ 0") apply simp_all
using h[of "isolate_variable_sparse p' v 0"] h[of "isolate_variable_sparse p' v (Suc 0)"] h[of "isolate_variable_sparse p' v 2"] apply simp
by blast
done
done
show ?thesis apply(simp_all add:Some del:elimVar.simps)
apply(rule elimVar_eq_2) using assms apply simp using h1 h2 h3 by auto
qed
end