Theory HOL-Data_Structures.Set2_Join
section "Join-Based Implementation of Sets"
theory Set2_Join
imports
Isin2
begin
text ‹This theory implements the set operations ‹insert›, ‹delete›,
‹union›, ‹inter›section and ‹diff›erence. The implementation is based on binary search trees.
All operations are reduced to a single operation ‹join l x r› that joins two BSTs ‹l› and ‹r›
and an element ‹x› such that ‹l < x < r›.
The theory is based on theory \<^theory>‹HOL-Data_Structures.Tree2› where nodes have an additional field.
This field is ignored here but it means that this theory can be instantiated
with red-black trees (see theory 🗏‹Set2_Join_RBT.thy›) and other balanced trees.
This approach is very concrete and fixes the type of trees.
Alternatively, one could assume some abstract type \<^typ>‹'t› of trees with suitable decomposition
and recursion operators on it.›
locale Set2_Join =
fixes join :: "('a::linorder*'b) tree ⇒ 'a ⇒ ('a*'b) tree ⇒ ('a*'b) tree"
fixes inv :: "('a*'b) tree ⇒ bool"
assumes set_join: "set_tree (join l a r) = set_tree l ∪ {a} ∪ set_tree r"
assumes bst_join: "bst (Node l (a, b) r) ⟹ bst (join l a r)"
assumes inv_Leaf: "inv ⟨⟩"
assumes inv_join: "⟦ inv l; inv r ⟧ ⟹ inv (join l a r)"
assumes inv_Node: "⟦ inv (Node l (a,b) r) ⟧ ⟹ inv l ∧ inv r"
begin
declare set_join [simp] Let_def[simp]
subsection "‹split_min›"
fun split_min :: "('a*'b) tree ⇒ 'a × ('a*'b) tree" where
"split_min (Node l (a, _) r) =
(if l = Leaf then (a,r) else let (m,l') = split_min l in (m, join l' a r))"
lemma split_min_set:
"⟦ split_min t = (m,t'); t ≠ Leaf ⟧ ⟹ m ∈ set_tree t ∧ set_tree t = {m} ∪ set_tree t'"
proof(induction t arbitrary: t' rule: tree2_induct)
case Node thus ?case by(auto split: prod.splits if_splits dest: inv_Node)
next
case Leaf thus ?case by simp
qed
lemma split_min_bst:
"⟦ split_min t = (m,t'); bst t; t ≠ Leaf ⟧ ⟹ bst t' ∧ (∀x ∈ set_tree t'. m < x)"
proof(induction t arbitrary: t' rule: tree2_induct)
case Node thus ?case by(fastforce simp: split_min_set bst_join split: prod.splits if_splits)
next
case Leaf thus ?case by simp
qed
lemma split_min_inv:
"⟦ split_min t = (m,t'); inv t; t ≠ Leaf ⟧ ⟹ inv t'"
proof(induction t arbitrary: t' rule: tree2_induct)
case Node thus ?case by(auto simp: inv_join split: prod.splits if_splits dest: inv_Node)
next
case Leaf thus ?case by simp
qed
subsection "‹join2›"
fun join2 :: "('a*'b) tree ⇒ ('a*'b) tree ⇒ ('a*'b) tree" where
"join2 l ⟨⟩ = l" |
"join2 l r = (let (m,r') = split_min r in join l m r')"
lemma set_join2[simp]: "set_tree (join2 l r) = set_tree l ∪ set_tree r"
by(cases r)(simp_all add: split_min_set split: prod.split)
lemma bst_join2: "⟦ bst l; bst r; ∀x ∈ set_tree l. ∀y ∈ set_tree r. x < y ⟧
⟹ bst (join2 l r)"
by(cases r)(simp_all add: bst_join split_min_set split_min_bst split: prod.split)
lemma inv_join2: "⟦ inv l; inv r ⟧ ⟹ inv (join2 l r)"
by(cases r)(simp_all add: inv_join split_min_set split_min_inv split: prod.split)
subsection "‹split›"
fun split :: "'a ⇒ ('a*'b)tree ⇒ ('a*'b)tree × bool × ('a*'b)tree" where
"split x Leaf = (Leaf, False, Leaf)" |
"split x (Node l (a, _) r) =
(case cmp x a of
LT ⇒ let (l1,b,l2) = split x l in (l1, b, join l2 a r) |
GT ⇒ let (r1,b,r2) = split x r in (join l a r1, b, r2) |
EQ ⇒ (l, True, r))"
lemma split: "split x t = (l,b,r) ⟹ bst t ⟹
set_tree l = {a ∈ set_tree t. a < x} ∧ set_tree r = {a ∈ set_tree t. x < a}
∧ (b = (x ∈ set_tree t)) ∧ bst l ∧ bst r"
proof(induction t arbitrary: l b r rule: tree2_induct)
case Leaf thus ?case by simp
next
case (Node y a b z l c r)
consider (LT) l1 xin l2 where "(l1,xin,l2) = split x y"
and "split x ⟨y, (a, b), z⟩ = (l1, xin, join l2 a z)" and "cmp x a = LT"
| (GT) r1 xin r2 where "(r1,xin,r2) = split x z"
and "split x ⟨y, (a, b), z⟩ = (join y a r1, xin, r2)" and "cmp x a = GT"
| (EQ) "split x ⟨y, (a, b), z⟩ = (y, True, z)" and "cmp x a = EQ"
by (force split: cmp_val.splits prod.splits if_splits)
thus ?case
proof cases
case (LT l1 xin l2)
with Node.IH(1)[OF ‹(l1,xin,l2) = split x y›[symmetric]] Node.prems
show ?thesis by (force intro!: bst_join)
next
case (GT r1 xin r2)
with Node.IH(2)[OF ‹(r1,xin,r2) = split x z›[symmetric]] Node.prems
show ?thesis by (force intro!: bst_join)
next
case EQ
with Node.prems show ?thesis by auto
qed
qed
lemma split_inv: "split x t = (l,b,r) ⟹ inv t ⟹ inv l ∧ inv r"
proof(induction t arbitrary: l b r rule: tree2_induct)
case Leaf thus ?case by simp
next
case Node
thus ?case by(force simp: inv_join split!: prod.splits if_splits dest!: inv_Node)
qed
declare split.simps[simp del]
subsection "‹insert›"
definition insert :: "'a ⇒ ('a*'b) tree ⇒ ('a*'b) tree" where
"insert x t = (let (l,_,r) = split x t in join l x r)"
lemma set_tree_insert: "bst t ⟹ set_tree (insert x t) = {x} ∪ set_tree t"
by(auto simp add: insert_def split split: prod.split)
lemma bst_insert: "bst t ⟹ bst (insert x t)"
by(auto simp add: insert_def bst_join dest: split split: prod.split)
lemma inv_insert: "inv t ⟹ inv (insert x t)"
by(force simp: insert_def inv_join dest: split_inv split: prod.split)
subsection "‹delete›"
definition delete :: "'a ⇒ ('a*'b) tree ⇒ ('a*'b) tree" where
"delete x t = (let (l,_,r) = split x t in join2 l r)"
lemma set_tree_delete: "bst t ⟹ set_tree (delete x t) = set_tree t - {x}"
by(auto simp: delete_def split split: prod.split)
lemma bst_delete: "bst t ⟹ bst (delete x t)"
by(force simp add: delete_def intro: bst_join2 dest: split split: prod.split)
lemma inv_delete: "inv t ⟹ inv (delete x t)"
by(force simp: delete_def inv_join2 dest: split_inv split: prod.split)
subsection "‹union›"
fun union :: "('a*'b)tree ⇒ ('a*'b)tree ⇒ ('a*'b)tree" where
"union t1 t2 =
(if t1 = Leaf then t2 else
if t2 = Leaf then t1 else
case t1 of Node l1 (a, _) r1 ⇒
let (l2,_ ,r2) = split a t2;
l' = union l1 l2; r' = union r1 r2
in join l' a r')"
declare union.simps [simp del]
lemma set_tree_union: "bst t2 ⟹ set_tree (union t1 t2) = set_tree t1 ∪ set_tree t2"
proof(induction t1 t2 rule: union.induct)
case (1 t1 t2)
then show ?case
by (auto simp: union.simps[of t1 t2] split split: tree.split prod.split)
qed
lemma bst_union: "⟦ bst t1; bst t2 ⟧ ⟹ bst (union t1 t2)"
proof(induction t1 t2 rule: union.induct)
case (1 t1 t2)
thus ?case
by(fastforce simp: union.simps[of t1 t2] set_tree_union split intro!: bst_join
split: tree.split prod.split)
qed
lemma inv_union: "⟦ inv t1; inv t2 ⟧ ⟹ inv (union t1 t2)"
proof(induction t1 t2 rule: union.induct)
case (1 t1 t2)
thus ?case
by(auto simp:union.simps[of t1 t2] inv_join split_inv
split!: tree.split prod.split dest: inv_Node)
qed
subsection "‹inter›"
fun inter :: "('a*'b)tree ⇒ ('a*'b)tree ⇒ ('a*'b)tree" where
"inter t1 t2 =
(if t1 = Leaf then Leaf else
if t2 = Leaf then Leaf else
case t1 of Node l1 (a, _) r1 ⇒
let (l2,b,r2) = split a t2;
l' = inter l1 l2; r' = inter r1 r2
in if b then join l' a r' else join2 l' r')"
declare inter.simps [simp del]
lemma set_tree_inter:
"⟦ bst t1; bst t2 ⟧ ⟹ set_tree (inter t1 t2) = set_tree t1 ∩ set_tree t2"
proof(induction t1 t2 rule: inter.induct)
case (1 t1 t2)
show ?case
proof (cases t1 rule: tree2_cases)
case Leaf thus ?thesis by (simp add: inter.simps)
next
case [simp]: (Node l1 a _ r1)
show ?thesis
proof (cases "t2 = Leaf")
case True thus ?thesis by (simp add: inter.simps)
next
case False
let ?L1 = "set_tree l1" let ?R1 = "set_tree r1"
have *: "a ∉ ?L1 ∪ ?R1" using ‹bst t1› by (fastforce)
obtain l2 b r2 where sp: "split a t2 = (l2,b,r2)" using prod_cases3 by blast
let ?L2 = "set_tree l2" let ?R2 = "set_tree r2" let ?A = "if b then {a} else {}"
have t2: "set_tree t2 = ?L2 ∪ ?R2 ∪ ?A" and
**: "?L2 ∩ ?R2 = {}" "a ∉ ?L2 ∪ ?R2" "?L1 ∩ ?R2 = {}" "?L2 ∩ ?R1 = {}"
using split[OF sp] ‹bst t1› ‹bst t2› by (force, force, force, force, force)
have IHl: "set_tree (inter l1 l2) = set_tree l1 ∩ set_tree l2"
using "1.IH"(1)[OF _ False _ _ sp[symmetric]] "1.prems"(1,2) split[OF sp] by simp
have IHr: "set_tree (inter r1 r2) = set_tree r1 ∩ set_tree r2"
using "1.IH"(2)[OF _ False _ _ sp[symmetric]] "1.prems"(1,2) split[OF sp] by simp
have "set_tree t1 ∩ set_tree t2 = (?L1 ∪ ?R1 ∪ {a}) ∩ (?L2 ∪ ?R2 ∪ ?A)"
by(simp add: t2)
also have "… = (?L1 ∩ ?L2) ∪ (?R1 ∩ ?R2) ∪ ?A"
using * ** by auto
also have "… = set_tree (inter t1 t2)"
using IHl IHr sp inter.simps[of t1 t2] False by(simp)
finally show ?thesis by simp
qed
qed
qed
lemma bst_inter: "⟦ bst t1; bst t2 ⟧ ⟹ bst (inter t1 t2)"
proof(induction t1 t2 rule: inter.induct)
case (1 t1 t2)
thus ?case
by(fastforce simp: inter.simps[of t1 t2] set_tree_inter split
intro!: bst_join bst_join2 split: tree.split prod.split)
qed
lemma inv_inter: "⟦ inv t1; inv t2 ⟧ ⟹ inv (inter t1 t2)"
proof(induction t1 t2 rule: inter.induct)
case (1 t1 t2)
thus ?case
by(auto simp: inter.simps[of t1 t2] inv_join inv_join2 split_inv
split!: tree.split prod.split dest: inv_Node)
qed
subsection "‹diff›"
fun diff :: "('a*'b)tree ⇒ ('a*'b)tree ⇒ ('a*'b)tree" where
"diff t1 t2 =
(if t1 = Leaf then Leaf else
if t2 = Leaf then t1 else
case t2 of Node l2 (a, _) r2 ⇒
let (l1,_,r1) = split a t1;
l' = diff l1 l2; r' = diff r1 r2
in join2 l' r')"
declare diff.simps [simp del]
lemma set_tree_diff:
"⟦ bst t1; bst t2 ⟧ ⟹ set_tree (diff t1 t2) = set_tree t1 - set_tree t2"
proof(induction t1 t2 rule: diff.induct)
case (1 t1 t2)
show ?case
proof (cases t2 rule: tree2_cases)
case Leaf thus ?thesis by (simp add: diff.simps)
next
case [simp]: (Node l2 a _ r2)
show ?thesis
proof (cases "t1 = Leaf")
case True thus ?thesis by (simp add: diff.simps)
next
case False
let ?L2 = "set_tree l2" let ?R2 = "set_tree r2"
obtain l1 b r1 where sp: "split a t1 = (l1,b,r1)" using prod_cases3 by blast
let ?L1 = "set_tree l1" let ?R1 = "set_tree r1" let ?A = "if b then {a} else {}"
have t1: "set_tree t1 = ?L1 ∪ ?R1 ∪ ?A" and
**: "a ∉ ?L1 ∪ ?R1" "?L1 ∩ ?R2 = {}" "?L2 ∩ ?R1 = {}"
using split[OF sp] ‹bst t1› ‹bst t2› by (force, force, force, force)
have IHl: "set_tree (diff l1 l2) = set_tree l1 - set_tree l2"
using "1.IH"(1)[OF False _ _ _ sp[symmetric]] "1.prems"(1,2) split[OF sp] by simp
have IHr: "set_tree (diff r1 r2) = set_tree r1 - set_tree r2"
using "1.IH"(2)[OF False _ _ _ sp[symmetric]] "1.prems"(1,2) split[OF sp] by simp
have "set_tree t1 - set_tree t2 = (?L1 ∪ ?R1) - (?L2 ∪ ?R2 ∪ {a})"
by(simp add: t1)
also have "… = (?L1 - ?L2) ∪ (?R1 - ?R2)"
using ** by auto
also have "… = set_tree (diff t1 t2)"
using IHl IHr sp diff.simps[of t1 t2] False by(simp)
finally show ?thesis by simp
qed
qed
qed
lemma bst_diff: "⟦ bst t1; bst t2 ⟧ ⟹ bst (diff t1 t2)"
proof(induction t1 t2 rule: diff.induct)
case (1 t1 t2)
thus ?case
by(fastforce simp: diff.simps[of t1 t2] set_tree_diff split
intro!: bst_join bst_join2 split: tree.split prod.split)
qed
lemma inv_diff: "⟦ inv t1; inv t2 ⟧ ⟹ inv (diff t1 t2)"
proof(induction t1 t2 rule: diff.induct)
case (1 t1 t2)
thus ?case
by(auto simp: diff.simps[of t1 t2] inv_join inv_join2 split_inv
split!: tree.split prod.split dest: inv_Node)
qed
text ‹Locale \<^locale>‹Set2_Join› implements locale \<^locale>‹Set2›:›
sublocale Set2
where empty = Leaf and insert = insert and delete = delete and isin = isin
and union = union and inter = inter and diff = diff
and set = set_tree and invar = "λt. inv t ∧ bst t"
proof (standard, goal_cases)
case 1 show ?case by (simp)
next
case 2 thus ?case by(simp add: isin_set_tree)
next
case 3 thus ?case by (simp add: set_tree_insert)
next
case 4 thus ?case by (simp add: set_tree_delete)
next
case 5 thus ?case by (simp add: inv_Leaf)
next
case 6 thus ?case by (simp add: bst_insert inv_insert)
next
case 7 thus ?case by (simp add: bst_delete inv_delete)
next
case 8 thus ?case by(simp add: set_tree_union)
next
case 9 thus ?case by(simp add: set_tree_inter)
next
case 10 thus ?case by(simp add: set_tree_diff)
next
case 11 thus ?case by (simp add: bst_union inv_union)
next
case 12 thus ?case by (simp add: bst_inter inv_inter)
next
case 13 thus ?case by (simp add: bst_diff inv_diff)
qed
end