Theory Finite_Fun
section ‹ Finite Functions ›
theory Finite_Fun
imports Map_Extra Partial_Fun FSet_Extra
begin
subsection ‹ Finite function type and operations ›
typedef ('a, 'b) ffun = "{f :: ('a, 'b) pfun. finite(pdom(f))}"
morphisms pfun_of Abs_pfun
by (rule_tac x="{}⇩p" in exI, auto)
setup_lifting type_definition_ffun
lift_definition ffun_app :: "('a, 'b) ffun ⇒ 'a ⇒ 'b" ("_'(_')⇩f" [999,0] 999) is "pfun_app" .
lift_definition ffun_upd :: "('a, 'b) ffun ⇒ 'a ⇒ 'b ⇒ ('a, 'b) ffun" is "pfun_upd" by simp
lift_definition fdom :: "('a, 'b) ffun ⇒ 'a set" is pdom .
lift_definition fran :: "('a, 'b) ffun ⇒ 'b set" is pran .
lift_definition ffun_comp :: "('b, 'c) ffun ⇒ ('a, 'b) ffun ⇒ ('a, 'c) ffun" (infixl "∘⇩f" 55) is pfun_comp by auto
lift_definition ffun_member :: "'a × 'b ⇒ ('a, 'b) ffun ⇒ bool" (infix "∈⇩f" 50) is "(∈⇩p)" .
lift_definition fdom_res :: "'a set ⇒ ('a, 'b) ffun ⇒ ('a, 'b) ffun" (infixl "⊲⇩f" 85)
is "pdom_res" by simp
lift_definition fran_res :: "('a, 'b) ffun ⇒ 'b set ⇒ ('a, 'b) ffun" (infixl "⊳⇩f" 85)
is pran_res by simp
lift_definition ffun_graph :: "('a, 'b) ffun ⇒ ('a × 'b) set" is pfun_graph .
lift_definition graph_ffun :: "('a × 'b) set ⇒ ('a, 'b) ffun" is
"λ R. if (finite (Domain R)) then graph_pfun R else pempty"
by (simp add: finite_Domain)
instantiation ffun :: (type, type) zero
begin
lift_definition zero_ffun :: "('a, 'b) ffun" is "0" by simp
instance ..
end
abbreviation fempty :: "('a, 'b) ffun" ("{}⇩f")
where "fempty ≡ 0"
instantiation ffun :: (type, type) plus
begin
lift_definition plus_ffun :: "('a, 'b) ffun ⇒ ('a, 'b) ffun ⇒ ('a, 'b) ffun" is "(+)" by simp
instance ..
end
instantiation ffun :: (type, type) minus
begin
lift_definition minus_ffun :: "('a, 'b) ffun ⇒ ('a, 'b) ffun ⇒ ('a, 'b) ffun" is "(-)"
by (metis finite_Diff finite_Domain pdom_graph_pfun pdom_pfun_graph_finite pfun_graph_inv pfun_graph_minus)
instance ..
end
instance ffun :: (type, type) monoid_add
by (intro_classes, (transfer, simp add: add.assoc)+)
instantiation ffun :: (type, type) inf
begin
lift_definition inf_ffun :: "('a, 'b) ffun ⇒ ('a, 'b) ffun ⇒ ('a, 'b) ffun" is inf
by (meson finite_Int infinite_super pdom_inter)
instance ..
end
abbreviation ffun_inter :: "('a, 'b) ffun ⇒ ('a, 'b) ffun ⇒ ('a, 'b) ffun" (infixl "∩⇩f" 80)
where "ffun_inter ≡ inf"
instantiation ffun :: (type, type) order
begin
lift_definition less_eq_ffun :: "('a, 'b) ffun ⇒ ('a, 'b) ffun ⇒ bool" is
"λ f g. f ⊆⇩p g" .
lift_definition less_ffun :: "('a, 'b) ffun ⇒ ('a, 'b) ffun ⇒ bool" is
"λ f g. f < g" .
instance
by (intro_classes, (transfer, auto)+)
end
abbreviation ffun_subset :: "('a, 'b) ffun ⇒ ('a, 'b) ffun ⇒ bool" (infix "⊂⇩f" 50)
where "ffun_subset ≡ less"
abbreviation ffun_subset_eq :: "('a, 'b) ffun ⇒ ('a, 'b) ffun ⇒ bool" (infix "⊆⇩f" 50)
where "ffun_subset_eq ≡ less_eq"
instance ffun :: (type, type) semilattice_inf
by (intro_classes, (transfer, auto)+)
lemma ffun_subset_eq_least [simp]:
"{}⇩f ⊆⇩f f"
by (transfer, auto)
syntax
"_FfunUpd" :: "[('a, 'b) ffun, maplets] => ('a, 'b) ffun" ("_'(_')⇩f" [900,0]900)
"_Ffun" :: "maplets => ('a, 'b) ffun" ("(1{_}⇩f)")
translations
"_FfunUpd m (_Maplets xy ms)" == "_FfunUpd (_FfunUpd m xy) ms"
"_FfunUpd m (_maplet x y)" == "CONST ffun_upd m x y"
"_Ffun ms" => "_FfunUpd (CONST fempty) ms"
"_Ffun (_Maplets ms1 ms2)" <= "_FfunUpd (_Ffun ms1) ms2"
"_Ffun ms" <= "_FfunUpd (CONST fempty) ms"
subsection ‹ Algebraic laws ›
lemma ffun_comp_assoc: "f ∘⇩f (g ∘⇩f h) = (f ∘⇩f g) ∘⇩f h"
by (transfer, simp add: pfun_comp_assoc)
lemma pfun_override_dist_comp:
"(f + g) ∘⇩f h = (f ∘⇩f h) + (g ∘⇩f h)"
by (transfer, simp add: pfun_override_dist_comp)
lemma ffun_minus_unit [simp]:
fixes f :: "('a, 'b) ffun"
shows "f - 0 = f"
by (transfer, simp)
lemma ffun_minus_zero [simp]:
fixes f :: "('a, 'b) ffun"
shows "0 - f = 0"
by (transfer, simp)
lemma ffun_minus_self [simp]:
fixes f :: "('a, 'b) ffun"
shows "f - f = 0"
by (transfer, simp)
lemma ffun_plus_commute:
"fdom(f) ∩ fdom(g) = {} ⟹ f + g = g + f"
by (transfer, metis pfun_plus_commute)
lemma ffun_minus_plus_commute:
"fdom(g) ∩ fdom(h) = {} ⟹ (f - g) + h = (f + h) - g"
by (transfer, simp add: pfun_minus_plus_commute)
lemma ffun_plus_minus:
"f ⊆⇩f g ⟹ (g - f) + f = g"
by (transfer, simp add: pfun_plus_minus)
lemma ffun_minus_common_subset:
"⟦ h ⊆⇩f f; h ⊆⇩f g ⟧ ⟹ (f - h = g - h) = (f = g)"
by (transfer, simp add: pfun_minus_common_subset)
lemma ffun_minus_plus:
"fdom(f) ∩ fdom(g) = {} ⟹ (f + g) - g = f"
by (transfer, simp add: pfun_minus_plus)
lemma ffun_plus_pos: "x + y = {}⇩f ⟹ x = {}⇩f"
by (transfer, simp add: pfun_plus_pos)
lemma ffun_le_plus: "fdom x ∩ fdom y = {} ⟹ x ≤ x + y"
by (transfer, simp add: pfun_le_plus)
subsection ‹ Membership, application, and update ›
lemma ffun_ext: "⟦ ⋀ x y. (x, y) ∈⇩f f ⟷ (x, y) ∈⇩f g ⟧ ⟹ f = g"
by (transfer, simp add: pfun_ext)
lemma ffun_member_alt_def:
"(x, y) ∈⇩f f ⟷ (x ∈ fdom f ∧ f(x)⇩f = y)"
by (transfer, simp add: pfun_member_alt_def)
lemma ffun_member_plus:
"(x, y) ∈⇩f f + g ⟷ ((x ∉ fdom(g) ∧ (x, y) ∈⇩f f) ∨ (x, y) ∈⇩f g)"
by (transfer, simp add: pfun_member_plus)
lemma ffun_member_minus:
"(x, y) ∈⇩f f - g ⟷ (x, y) ∈⇩f f ∧ (¬ (x, y) ∈⇩f g)"
by (transfer, simp add: pfun_member_minus)
lemma ffun_app_upd_1 [simp]: "x = y ⟹ (f(x ↦ v)⇩f)(y)⇩f = v"
by (transfer, simp)
lemma ffun_app_upd_2 [simp]: "x ≠ y ⟹ (f(x ↦ v)⇩f)(y)⇩f = f(y)⇩f"
by (transfer, simp)
lemma ffun_upd_ext [simp]: "x ∈ fdom(f) ⟹ f(x ↦ f(x)⇩f)⇩f = f"
by (transfer, simp)
lemma ffun_app_add [simp]: "x ∈ fdom(g) ⟹ (f + g)(x)⇩f = g(x)⇩f"
by (transfer, simp)
lemma ffun_upd_add [simp]: "f + g(x ↦ v)⇩f = (f + g)(x ↦ v)⇩f"
by (transfer, simp)
lemma ffun_upd_twice [simp]: "f(x ↦ u, x ↦ v)⇩f = f(x ↦ v)⇩f"
by (transfer, simp)
lemma ffun_upd_comm:
assumes "x ≠ y"
shows "f(y ↦ u, x ↦ v)⇩f = f(x ↦ v, y ↦ u)⇩f"
using assms by (transfer, simp add: pfun_upd_comm)
lemma ffun_upd_comm_linorder [simp]:
fixes x y :: "'a :: linorder"
assumes "x < y"
shows "f(y ↦ u, x ↦ v)⇩f = f(x ↦ v, y ↦ u)⇩f"
using assms by (transfer, auto)
lemma ffun_app_minus [simp]: "x ∉ fdom g ⟹ (f - g)(x)⇩f = f(x)⇩f"
by (transfer, auto)
lemma ffun_upd_minus [simp]:
"x ∉ fdom g ⟹ (f - g)(x ↦ v)⇩f = (f(x ↦ v)⇩f - g)"
by (transfer, auto)
lemma fdom_member_minus_iff [simp]:
"x ∉ fdom g ⟹ x ∈ fdom(f - g) ⟷ x ∈ fdom(f)"
by (transfer, simp)
lemma fsubseteq_ffun_upd1 [intro]:
"⟦ f ⊆⇩f g; x ∉ fdom(g) ⟧ ⟹ f ⊆⇩f g(x ↦ v)⇩f"
by (transfer, auto)
lemma fsubseteq_ffun_upd2 [intro]:
"⟦ f ⊆⇩f g; x ∉ fdom(f) ⟧ ⟹ f ⊆⇩f g(x ↦ v)⇩f"
by (transfer, auto)
lemma psubseteq_pfun_upd3 [intro]:
"⟦ f ⊆⇩f g; g(x)⇩f = v ⟧ ⟹ f ⊆⇩f g(x ↦ v)⇩f"
by (transfer, auto)
lemma fsubseteq_dom_subset:
"f ⊆⇩f g ⟹ fdom(f) ⊆ fdom(g)"
by (transfer, auto simp add: psubseteq_dom_subset)
lemma fsubseteq_ran_subset:
"f ⊆⇩f g ⟹ fran(f) ⊆ fran(g)"
by (transfer, simp add: psubseteq_ran_subset)
subsection ‹ Domain laws ›
lemma fdom_finite [simp]: "finite(fdom(f))"
by (transfer, simp)
lemma fdom_zero [simp]: "fdom 0 = {}"
by (transfer, simp)
lemma fdom_plus [simp]: "fdom (f + g) = fdom f ∪ fdom g"
by (transfer, auto)
lemma fdom_inter: "fdom (f ∩⇩f g) ⊆ fdom f ∩ fdom g"
by (transfer, meson pdom_inter)
lemma fdom_comp [simp]: "fdom (g ∘⇩f f) = fdom (f ⊳⇩f fdom g)"
by (transfer, auto)
lemma fdom_upd [simp]: "fdom (f(k ↦ v)⇩f) = insert k (fdom f)"
by (transfer, simp)
lemma fdom_fdom_res [simp]: "fdom (A ⊲⇩f f) = A ∩ fdom(f)"
by (transfer, auto)
lemma fdom_graph_ffun [simp]:
"finite (Domain R) ⟹ fdom (graph_ffun R) = Domain R"
by (transfer, simp add: Domain_fst graph_map_dom)
subsection ‹ Range laws ›
lemma fran_zero [simp]: "fran 0 = {}"
by (transfer, simp)
lemma fran_upd [simp]: "fran (f(k ↦ v)⇩f) = insert v (fran ((- {k}) ⊲⇩f f))"
by (transfer, auto)
lemma fran_fran_res [simp]: "fran (f ⊳⇩f A) = fran(f) ∩ A"
by (transfer, auto)
lemma fran_comp [simp]: "fran (g ∘⇩f f) = fran (fran f ⊲⇩f g)"
by (transfer, auto)
subsection ‹ Domain restriction laws ›
lemma fdom_res_zero [simp]: "A ⊲⇩f {}⇩f = {}⇩f"
by (transfer, auto)
lemma fdom_res_empty [simp]:
"({} ⊲⇩f f) = {}⇩f"
by (transfer, auto)
lemma fdom_res_fdom [simp]:
"fdom(f) ⊲⇩f f = f"
by (transfer, auto)
lemma pdom_res_upd_in [simp]:
"k ∈ A ⟹ A ⊲⇩f f(k ↦ v)⇩f = (A ⊲⇩f f)(k ↦ v)⇩f"
by (transfer, auto)
lemma pdom_res_upd_out [simp]:
"k ∉ A ⟹ A ⊲⇩f f(k ↦ v)⇩f = A ⊲⇩f f"
by (transfer, auto)
lemma fdom_res_override [simp]: "A ⊲⇩f (f + g) = (A ⊲⇩f f) + (A ⊲⇩f g)"
by (metis fdom_res.rep_eq pdom_res_override pfun_of_inject plus_ffun.rep_eq)
lemma fdom_res_minus [simp]: "A ⊲⇩f (f - g) = (A ⊲⇩f f) - g"
by (transfer, auto)
lemma fdom_res_swap: "(A ⊲⇩f f) ⊳⇩f B = A ⊲⇩f (f ⊳⇩f B)"
by (transfer, simp add: pdom_res_swap)
lemma fdom_res_twice [simp]: "A ⊲⇩f (B ⊲⇩f f) = (A ∩ B) ⊲⇩f f"
by (transfer, auto)
lemma fdom_res_comp [simp]: "A ⊲⇩f (g ∘⇩f f) = g ∘⇩f (A ⊲⇩f f)"
by (transfer, simp)
subsection ‹ Range restriction laws ›
lemma fran_res_zero [simp]: "{}⇩f ⊳⇩f A = {}⇩f"
by (transfer, auto)
lemma fran_res_upd_1 [simp]: "v ∈ A ⟹ f(x ↦ v)⇩f ⊳⇩f A = (f ⊳⇩f A)(x ↦ v)⇩f"
by (transfer, auto)
lemma fran_res_upd_2 [simp]: "v ∉ A ⟹ f(x ↦ v)⇩f ⊳⇩f A = ((- {x}) ⊲⇩f f) ⊳⇩f A"
by (transfer, auto)
lemma fran_res_override: "(f + g) ⊳⇩f A ⊆⇩f (f ⊳⇩f A) + (g ⊳⇩f A)"
by (transfer, simp add: pran_res_override)
subsection ‹ Graph laws ›
lemma ffun_graph_inv: "graph_ffun (ffun_graph f) = f"
by (transfer, auto simp add: pfun_graph_inv finite_Domain)
lemma ffun_graph_zero: "ffun_graph 0 = {}"
by (transfer, simp add: pfun_graph_zero)
lemma ffun_graph_minus: "ffun_graph (f - g) = ffun_graph f - ffun_graph g"
by (transfer, simp add: pfun_graph_minus)
lemma ffun_graph_inter: "ffun_graph (f ∩⇩f g) = ffun_graph f ∩ ffun_graph g"
by (transfer, simp add: pfun_graph_inter)
subsection ‹ Partial Function Lens ›
definition ffun_lens :: "'a ⇒ ('b ⟹ ('a, 'b) ffun)" where
[lens_defs]: "ffun_lens i = ⦇ lens_get = λ s. s(i)⇩f, lens_put = λ s v. s(i ↦ v)⇩f ⦈"
lemma ffun_lens_mwb [simp]: "mwb_lens (ffun_lens i)"
by (unfold_locales, simp_all add: ffun_lens_def)
lemma ffun_lens_src: "𝒮⇘ffun_lens i⇙ = {f. i ∈ fdom(f)}"
by (auto simp add: lens_defs lens_source_def, metis ffun_upd_ext)
text ‹ Hide implementation details for finite functions ›
lifting_update ffun.lifting
lifting_forget ffun.lifting
end