Theory Countable_Set_Extra
section ‹ Countable Sets: Extra functions and properties ›
theory Countable_Set_Extra
imports
"HOL-Library.Countable_Set_Type"
Sequence
FSet_Extra
begin
subsection ‹ Extra syntax ›
notation cempty ("{}⇩c")
notation cin (infix "∈⇩c" 50)
notation cUn (infixl "∪⇩c" 65)
notation cInt (infixl "∩⇩c" 70)
notation cDiff (infixl "-⇩c" 65)
notation cUnion ("⋃⇩c_" [900] 900)
notation cimage (infixr "`⇩c" 90)
abbreviation :: "'a cset ⇒ 'a cset ⇒ bool" ("(_/ ⊆⇩c _)" [51, 51] 50)
where "A ⊆⇩c B ≡ A ≤ B"
abbreviation :: "'a cset ⇒ 'a cset ⇒ bool" ("(_/ ⊂⇩c _)" [51, 51] 50)
where "A ⊂⇩c B ≡ A < B"
subsection ‹ Countable set functions ›
type_definition_cset
:: "'a ⇒ 'a cset ⇒ bool" (infix "∉⇩c" 50) is "(∉)" .
:: "'a cset ⇒ ('a ⇒ bool) ⇒ bool" where
"cBall A P = (∀x. x ∈⇩c A ⟶ P x)"
:: "'a cset ⇒ ('a ⇒ bool) ⇒ bool" where
"cBex A P = (∃x. x ∈⇩c A ⟶ P x)"
declare cBall_def [mono,simp]
declare cBex_def [mono,simp]
syntax
"_cBall" :: "pttrn => 'a cset => bool => bool" ("(3∀ _∈⇩c_./ _)" [0, 0, 10] 10)
"_cBex" :: "pttrn => 'a cset => bool => bool" ("(3∃ _∈⇩c_./ _)" [0, 0, 10] 10)
translations
"∀ x∈⇩cA. P" == "CONST cBall A (%x. P)"
"∃ x∈⇩cA. P" == "CONST cBex A (%x. P)"
:: "('a ⇒ bool) ⇒ 'a cset" where
"cset_Collect = (acset o Collect)"
:: "'a cset ⇒ ('a ⇒ bool) ⇒ 'a cset" is "λ A P. {x ∈ A. P x}"
by (auto)
lemma : "cset_Coll A P = cset_Collect (λ x. x ∈⇩c A ∧ P x)"
by (simp add:cset_Collect_def cset_Coll_def cin_def)
declare cset_Collect_def [simp]
syntax
"_cColl" :: "pttrn => bool => 'a cset" ("(1{_./ _}⇩c)")
translations
"{x . P}⇩c" ⇌ "(CONST cset_Collect) (λ x . P)"
syntax (xsymbols)
"_cCollect" :: "pttrn => 'a cset => bool => 'a cset" ("(1{_ ∈⇩c/ _./ _}⇩c)")
translations
"{x ∈⇩c A. P}⇩c" => "CONST cset_Coll A (λ x. P)"
lemma : "P (a :: 'a::countable) ⟹ a ∈⇩c {x. P x}⇩c"
by (simp add: cin_def)
lemma : "⟦ a ∈⇩c A; P a ⟧ ⟹ a ∈⇩c {x ∈⇩c A. P x}⇩c"
by (simp add: cin.rep_eq cset_Coll.rep_eq)
lemma : "(a :: 'a::countable) ∈⇩c {x. P x}⇩c ⟹ P a"
by (simp add: cin_def)
lemma : "(⋀x. P x = Q x) ==> {x. P x}⇩c = {x. Q x}⇩c"
by simp
text ‹ Avoid eta-contraction for robust pretty-printing. ›
print_translation ‹
[Syntax_Trans.preserve_binder_abs_tr'
@{const_syntax cset_Collect} @{syntax_const "_cColl"}]
›
:: "'a list ⇒ 'a cset" is set
using countable_finite by blast
lemma :
"countable(A) ⟹ countable {B. B ⊆ A ∧ finite(B)}"
by (metis Collect_conj_eq Int_commute countable_Collect_finite_subset)
:: "'a cset cset ⇒ 'a cset" ("⋂⇩c_" [900] 900)
is "λA. if A = {} then {} else ⋂ A"
using countable_INT [of _ _ id] by auto
abbreviation (input) :: "'a cset ⇒ ('a ⇒ 'b cset) ⇒ 'b cset"
where "cINTER A f ≡ cInter (cimage f A)"
:: "'a cset ⇒ bool" is finite .
:: "'a cset ⇒ bool" is infinite .
:: "'a::linorder cset ⇒ 'a list" is sorted_list_of_set .
:: "'a cset ⇒ nat" is card .
:: "'a cset ⇒ 'a cset cset" is "λ A. {B. B ⊆⇩c A ∧ cfinite(B)}"
proof -
fix A
have "{B :: 'a cset. B ⊆⇩c A ∧ cfinite B} = acset ` {B :: 'a set. B ⊆ rcset A ∧ finite B}"
apply (auto simp add: cfinite.rep_eq cin_def less_eq_cset_def countable_finite)
using image_iff apply fastforce
done
moreover have "countable {B :: 'a set. B ⊆ rcset A ∧ finite B}"
by (auto intro: countable_finite_power)
ultimately show "countable {B. B ⊆⇩c A ∧ cfinite B}"
by simp
qed
:: "('a ⇒ bool option) ⇒ 'a cset option" where
"CCollect p = (if (None ∉ range p) then Some (cset_Collect (the ∘ p)) else None)"
:: "'a option cset ⇒ 'a cset option" where
"cset_mapM A = (if (None ∈⇩c A) then None else Some (the `⇩c A))"
lemma [simp]:
"cset_mapM (cimage Some A) = Some A"
apply (auto simp add: cset_mapM_def)
apply (metis cimage_cinsert cinsertI1 option.sel set_cinsert)
done
:: "('a ⇒ 'b option) ⇒ ('a ⇒ bool option) ⇒ 'b cset option" where
"CCollect_ext f p = do { xs ← CCollect p; cset_mapM (f `⇩c xs) }"
lemma [simp]:
"the ` Some ` xs = xs"
by (auto simp add:image_iff)
lemma [simp]:
"CCollect_ext Some xs = CCollect xs"
apply (case_tac "CCollect xs")
apply (auto simp add:CCollect_ext_def)
done
:: "'a :: linorder cset ⇒ 'a list" is sorted_list_of_set .
:: "'a fset ⇒ 'a cset" is id
using uncountable_infinite by auto
:: "'a cset ⇒ 'a ⇒ nat" where
"cset_count A =
(if (finite (rcset A))
then (SOME f::'a⇒nat. inj_on f (rcset A))
else (SOME f::'a⇒nat. bij_betw f (rcset A) UNIV))"
lemma :
"inj_on (cset_count A) (rcset A)"
proof (cases "finite (rcset A)")
case True note fin = this
obtain count :: "'a ⇒ nat" where count_inj: "inj_on count (rcset A)"
by (metis countable_def mem_Collect_eq rcset)
with fin show ?thesis
by (metis (poly_guards_query) cset_count_def someI_ex)
next
case False note inf = this
obtain count :: "'a ⇒ nat" where count_bij: "bij_betw count (rcset A) UNIV"
by (metis countableE_infinite inf mem_Collect_eq rcset)
with inf have "bij_betw (cset_count A) (rcset A) UNIV"
by (metis (poly_guards_query) cset_count_def someI_ex)
thus ?thesis
by (metis bij_betw_imp_inj_on)
qed
lemma :
assumes "infinite (rcset A)"
shows "bij_betw (cset_count A) (rcset A) UNIV"
proof -
from assms obtain count :: "'a ⇒ nat" where count_bij: "bij_betw count (rcset A) UNIV"
by (metis countableE_infinite mem_Collect_eq rcset)
with assms show ?thesis
by (metis (poly_guards_query) cset_count_def someI_ex)
qed
:: "'a cset ⇒ (nat ⇀ 'a)" where
"cset_seq A i = (if (i ∈ range (cset_count A) ∧ inv_into (rcset A) (cset_count A) i ∈⇩c A)
then Some (inv_into (rcset A) (cset_count A) i)
else None)"
lemma : "ran (cset_seq A) = rcset(A)"
apply (auto simp add: ran_def cset_seq_def cin.rep_eq)
apply (metis cset_count_inj_seq inv_into_f_f rangeI)
done
lemma : "inj cset_seq"
proof (rule injI)
fix A B :: "'a cset"
assume "cset_seq A = cset_seq B"
thus "A = B"
by (metis cset_seq_ran rcset_inverse)
qed
:: "'a cset ⇒ 'a seq"
is "(λ A i. if (i ∈ cset_count A ` rcset A) then inv_into (rcset A) (cset_count A) i else (SOME x. x ∈⇩c A))" .
lemma :
"A ≠ {}⇩c ⟹ range (Rep_seq (cset2seq A)) = rcset A"
by (force intro: someI2 simp add: cset2seq.rep_eq cset_count_inj_seq bot_cset.rep_eq cin.rep_eq)
lemma : "infinite (rcset A) ⟹ surj (cset_count A)"
using bij_betw_imp_surj cset_count_infinite_bij by auto
lemma :
"inj_on cset2seq {A. A ≠ {}⇩c}"
apply (rule inj_onI)
apply (simp)
apply (metis range_cset2seq rcset_inject)
done
:: "nat seq ⇒ nat set" is
"λ f. prod_encode ` {(x, f x) | x. True}" .
lemma : "inj nat_seq2set"
proof (rule injI, transfer)
fix f g
assume "prod_encode ` {(x, f x) |x. True} = prod_encode ` {(x, g x) |x. True}"
hence "{(x, f x) |x. True} = {(x, g x) |x. True}"
by (simp add: inj_image_eq_iff[OF inj_prod_encode])
thus "f = g"
by (auto simp add: set_eq_iff)
qed
:: "nat set ⇒ bool seq"
is "λ A i. i ∈ A" .
lemma : "inj bit_seq_of_nat_set"
apply (rule injI)
apply transfer
apply (auto simp add: fun_eq_iff)
done
lemma : "bij bit_seq_of_nat_set"
apply (rule bijI)
apply (fact bit_seq_of_nat_set_inj)
apply transfer
apply (rule surjI)
apply auto
done
text ‹ This function is a partial injection from countable sets of natural sets to natural sets.
When used with the Schroeder-Bernstein theorem, it can be used to conjure a total
bijection between these two types. ›
:: "nat set cset ⇒ nat set" where
"nat_set_cset_collapse = inv bit_seq_of_nat_set ∘ seq_inj ∘ cset2seq ∘ (λ A. (bit_seq_of_nat_set `⇩c A))"
lemma : "inj_on nat_set_cset_collapse {A. A ≠ {}⇩c}"
proof -
have "(`⇩c) bit_seq_of_nat_set ` {A. A ≠ {}⇩c} ⊆ {A. A ≠ {}⇩c}"
by (auto simp add:cimage.rep_eq)
thus ?thesis
apply (simp add: nat_set_cset_collapse_def)
apply (rule comp_inj_on)
apply (meson bit_seq_of_nat_set_inj cset.inj_map injD inj_onI)
apply (rule comp_inj_on)
apply (metis cset2seq_inj subset_inj_on)
apply (rule comp_inj_on)
apply (rule subset_inj_on)
apply (rule seq_inj)
apply (simp)
apply (meson UNIV_I bij_imp_bij_inv bij_is_inj bit_seq_of_nat_cset_bij subsetI subset_inj_on)
done
qed
lemma :
"inj csingle"
by (auto intro: injI simp add: cinsert_def bot_cset.rep_eq)
lemma :
"range csingle ⊆ {A. A ≠ {}⇩c}"
by (auto)
:: "'a set ⇒ 'a cset set" is
"λ A. {B. B ⊆ A ∧ countable B}" by auto
lemma : "finite A ⟹ finite (csets A)"
by (auto simp add: csets_def)
lemma : "infinite A ⟹ infinite (csets A)"
by (auto simp add: csets_def, metis csets.abs_eq csets.rep_eq finite_countable_subset finite_imageI)
lemma :
"csets (UNIV :: 'a set) = (UNIV :: 'a cset set)"
by (auto simp add: csets_def, metis image_iff rcset rcset_inverse)
lemma :
assumes "infinite (UNIV :: 'a set)"
shows "infinite ({A. A ≠ {}⇩c} :: 'a cset set)"
proof -
have "infinite (UNIV :: 'a cset set)"
by (metis assms csets_UNIV csets_infinite)
hence "infinite ((UNIV :: 'a cset set) - {{}⇩c})"
by (rule infinite_remove)
thus ?thesis
by (auto)
qed
lemma :
obtains f :: "nat set cset ⇒ nat set" where "bij_betw f {A. A ≠ {}⇩c} UNIV"
using Schroeder_Bernstein[OF nat_set_cset_collapse_inj, of UNIV csingle, simplified, OF inj_csingle range_csingle]
by (auto)
lemma :
obtains f :: "nat set cset ⇒ nat set" where "bij f"
proof -
obtain g :: "nat set cset ⇒ nat set" where "bij_betw g {A. A ≠ {}⇩c} UNIV"
using nat_set_cset_partial_bij by blast
moreover obtain h :: "nat set cset ⇒ nat set cset" where "bij_betw h UNIV {A. A ≠ {}⇩c}"
proof -
have "infinite (UNIV :: nat set cset set)"
by (metis Finite_Set.finite_set csets_UNIV csets_infinite infinite_UNIV_char_0)
then obtain h' :: "nat set cset ⇒ nat set cset" where "bij_betw h' UNIV (UNIV - {{}⇩c})"
using infinite_imp_bij_betw[of "UNIV :: nat set cset set" "{}⇩c"] by auto
moreover have "(UNIV :: nat set cset set) - {{}⇩c} = {A. A ≠ {}⇩c}"
by (auto)
ultimately show ?thesis
using that by (auto)
qed
ultimately have "bij (g ∘ h)"
using bij_betw_trans by blast
with that show ?thesis
by (auto)
qed
" = (SOME f :: nat set cset ⇒ nat set. bij f)"
lemma :
"bij nat_set_cset_bij"
by (metis nat_set_cset_bij nat_set_cset_bij_def someI_ex)
lemma :
"inj_on f A ⟹ inj_on ((`⇩c) f) (csets A)"
by (fastforce simp add: inj_on_def cimage_def cin_def csets_def)
lemma :
"⟦ inj_on f A; f ` A = B ⟧ ⟹ (`⇩c) f ` csets A = csets B"
apply (auto simp add: cimage_def csets_def image_mono map_fun_def)
apply (simp add: image_comp)
apply (auto simp add: image_Collect)
apply (erule subset_imageE)
using countable_image_inj_on subset_inj_on by blast
lemma :
"bij_betw f A B ⟹ bij_betw ((`⇩c) f) (csets A) (csets B)"
by (simp add: bij_betw_def inj_on_image_csets image_csets_surj)
end