Theory Transport_Compositions_Agree_Order_Equivalence

✐‹creator "Kevin Kappelmann"›
subsection ‹Order Equivalence›
theory Transport_Compositions_Agree_Order_Equivalence
  imports
    Transport_Compositions_Agree_Monotone
begin

context transport_comp_agree
begin

subsubsection ‹Unit›
paragraph ‹Inflationary›

lemma inflationary_on_unitI:
  assumes mono_l1: "(P m P') l1"
  and mono_r1: "((≤R1) m (≤L1)) r1"
  and inflationary_unit1: "inflationary_on P (≤L1) η1"
  and trans_L1: "transitive (≤L1)"
  and inflationary_unit2: "inflationary_on P' (≤L2) η2"
  and L2_le_R1: "x. P x  l1 xL2 r2 (l x)  l1 xR1 r2 (l x)"
  shows "inflationary_on P (≤L) η"
proof (rule inflationary_onI)
  fix x assume "P x"
  with mono_l1 have "P' (l1 x)" by blast
  with inflationary_unit2 have "l1 xL2 r2 (l x)" by auto
  with L2_le_R1 P x have "l1 xR1 r2 (l x)" by blast
  with mono_r1 have "η1 xL1 η x" by auto
  moreover from inflationary_unit1 P x have "xL1 η1 x" by auto
  ultimately show "xL η x" using trans_L1 by blast
qed

corollary inflationary_on_in_field_unitI:
  assumes "((≤L1) m (≤L2)) l1"
  and "((≤R1) m (≤L1)) r1"
  and "inflationary_on (in_field (≤L1)) (≤L1) η1"
  and "transitive (≤L1)"
  and "inflationary_on (in_field (≤L2)) (≤L2) η2"
  and "x. in_field (≤L1) x  l1 xL2 r2 (l x)  l1 xR1 r2 (l x)"
  shows "inflationary_on (in_field (≤L)) (≤L) η"
  using assms by (intro inflationary_on_unitI dep_mono_wrt_predI) (auto 5 0)


paragraph ‹Deflationary›

context
begin

interpretation inv :
  transport_comp_agree "(≥L1)" "(≥R1)" l1 r1 "(≥L2)" "(≥R2)" l2 r2
  rewrites "R S. (R¯ m S¯)  (R m S)"
  and "(P :: 'i  bool) (R :: 'j  'i  bool).
    (inflationary_on P R¯ :: ('i  'j)  bool)  deflationary_on P R"
  and "(R :: 'i  'i  bool). transitive R¯  transitive R"
  and "R. in_field R¯  in_field R"
  by (simp_all add: mono_wrt_rel_eq_dep_mono_wrt_rel)

lemma deflationary_on_in_field_unitI:
  assumes "((≤L1) m (≤L2)) l1"
  and "((≤R1) m (≤L1)) r1"
  and "deflationary_on (in_field (≤L1)) (≤L1) η1"
  and "transitive (≤L1)"
  and "deflationary_on (in_field (≤L2)) (≤L2) η2"
  and "x. in_field (≤L1) x  r2 (l x)L2 l1 x  r2 (l x)R1 l1 x"
  shows "deflationary_on (in_field (≤L)) (≤L) η"
  using assms by (intro inv.inflationary_on_in_field_unitI[simplified rel_inv_iff_rel])
  auto

end


text ‹Relational Equivalence›

corollary rel_equivalence_on_in_field_unitI:
  assumes "((≤L1) m (≤L2)) l1"
  and "((≤R1) m (≤L1)) r1"
  and "rel_equivalence_on (in_field (≤L1)) (≤L1) η1"
  and "transitive (≤L1)"
  and "rel_equivalence_on (in_field (≤L2)) (≤L2) η2"
  and "x. in_field (≤L1) x  l1 xL2 r2 (l x)  l1 xR1 r2 (l x)"
  and "x. in_field (≤L1) x  r2 (l x)L2 l1 x  r2 (l x)R1 l1 x"
  shows "rel_equivalence_on (in_field (≤L)) (≤L) η"
  using assms by (intro rel_equivalence_onI
    inflationary_on_in_field_unitI deflationary_on_in_field_unitI)
  auto


subsubsection ‹Counit›

text ‹Corresponding lemmas for the counit can be obtained by flipping the
interpretation of the locale.›


subsubsection ‹Order Equivalence›

interpretation flip : transport_comp_agree R2 L2 r2 l2 R1 L1 r1 l1
  rewrites "flip.g1.unit  ε2" and "flip.g2.unit  ε1" and "flip.unit  ε"
  by (simp_all only: g1.flip_unit_eq_counit g2.flip_unit_eq_counit flip_unit_eq_counit)

lemma order_equivalenceI:
  assumes "((≤L1) o (≤R1)) l1 r1"
  and "transitive (≤L1)"
  and "((≤L2) o (≤R2)) l2 r2"
  and "transitive (≤R2)"
  and "x y. xL1 y  l1 xR1 l1 y  l1 xL2 l1 y"
  and "x y. xR2 y  r2 xL2 r2 y  r2 xR1 r2 y"
  and "x. in_field (≤L1) x  l1 xL2 r2 (l x)  l1 xR1 r2 (l x)"
  and "x. in_field (≤L1) x  r2 (l x)L2 l1 x  r2 (l x)R1 l1 x"
  and "x. in_field (≤R2) x  r2 xR1 l1 (r x)  r2 xL2 l1 (r x)"
  and "x. in_field (≤R2) x  l1 (r x)R1 r2 x  l1 (r x)L2 r2 x"
  shows "((≤L) o (≤R)) l r"
  using assms by (intro order_equivalenceI rel_equivalence_on_in_field_unitI
    flip.rel_equivalence_on_in_field_unitI
    mono_wrt_rel_leftI flip.mono_wrt_rel_leftI mono_wrt_relI)
  (auto elim!: g1.order_equivalenceE g2.order_equivalenceE)

end

context transport_comp_same
begin

lemma order_equivalenceI:
  assumes "((≤L1) o (≤R1)) l1 r1"
  and "transitive (≤L1)"
  and "((≤R1) o (≤R2)) l2 r2"
  and "transitive (≤R2)"
  shows "((≤L) o (≤R)) l r"
  using assms by (rule order_equivalenceI) auto

end


end