Theory Transport_Compositions_Agree_Galois_Connection

✐‹creator "Kevin Kappelmann"›
subsection ‹Galois Connection›
theory Transport_Compositions_Agree_Galois_Connection
  imports
    Transport_Compositions_Agree_Monotone
    Transport_Compositions_Agree_Galois_Property
begin

context transport_comp_agree
begin

interpretation flip : transport_comp_agree R2 L2 r2 l2 R1 L1 r1 l1 .

lemma galois_connectionI:
  assumes galois: "((≤L1)  (≤R1)) l1 r1" "((≤L2)  (≤R2)) l2 r2"
  and mono_L1_L2_l1: "x y. xL1 y  l1 xR1 l1 y  l1 xL2 l1 y"
  and mono_R2_R1_r2: "x y. xR2 y  r2 xL2 r2 y  r2 xR1 r2 y"
  and "(in_dom (≤L1)  in_codom (≤R2)  (⟷)) (rel_bimap l1 r2 (≤R1)) (rel_bimap l1 r2 (≤L2))"
  shows "((≤L)  (≤R)) l r"
proof -
  from galois mono_L1_L2_l1 have "(in_dom (≤L1) m in_dom (≤L2)) l1"
    by (intro mono_wrt_predI) (blast elim!: in_domE g1.galois_connectionE)
  moreover from galois mono_R2_R1_r2
    have "(in_codom (≤R2) m in_codom (≤R1)) r2"
    by (intro mono_wrt_predI) (blast elim!: in_codomE g2.galois_connectionE)
  ultimately show ?thesis using assms
    by (intro galois_connectionI galois_propI mono_wrt_rel_leftI
      flip.mono_wrt_rel_leftI)
    auto
qed

lemma galois_connectionI':
  assumes "((≤L1)  (≤R1)) l1 r1" "((≤L2)  (≤R2)) l2 r2"
  and "((≤L1) m (≤L2)) l1" "((≤R2) m (≤R1)) r2"
  and "(in_dom (≤L1)  in_codom (≤R2)  (⟷))
    (rel_bimap l1 r2 (≤R1)) (rel_bimap l1 r2 (≤L2))"
  shows "((≤L)  (≤R)) l r"
  using assms by (intro galois_connectionI) auto

end

context transport_comp_same
begin

corollary galois_connectionI:
  assumes "((≤L1)  (≤R1)) l1 r1" "((≤R1)  (≤R2)) l2 r2"
  shows "((≤L)  (≤R)) l r"
  using assms by (rule galois_connectionI) auto

end


end