Theory HOL_Algebra_Alignment_Galois
subsection ‹Alignment With Galois Definitions from HOL-Algebra›
theory HOL_Algebra_Alignment_Galois
imports
"HOL-Algebra.Galois_Connection"
HOL_Algebra_Alignment_Orders
Galois
begin
named_theorems HOL_Algebra_galois_alignment
context galois_connection
begin
context
fixes L R l r
defines "L ≡ (⊑⇘𝒳⇙)↾⇘carrier 𝒳⇙↿⇘carrier 𝒳⇙" and "R ≡ (⊑⇘𝒴⇙)↾⇘carrier 𝒴⇙↿⇘carrier 𝒴⇙"
and "l ≡ π⇧*" and "r ≡ π⇩*"
notes defs[simp] = L_def R_def l_def r_def and rel_restrict_right_eq[simp]
and rel_restrict_leftI[intro!] rel_restrict_leftE[elim!]
begin
interpretation galois L R l r .
lemma mono_wrt_rel_lower [HOL_Algebra_galois_alignment]: "(L ⇛⇩m R) l"
using lower_closed upper_closed by (fastforce intro: use_iso2[OF lower_iso])
lemma mono_wrt_rel_upper [HOL_Algebra_galois_alignment]: "(R ⇛⇩m L) r"
using lower_closed upper_closed by (fastforce intro: use_iso2[OF upper_iso])
lemma half_galois_prop_left [HOL_Algebra_galois_alignment]: "(L ⇩h⊴ R) l r"
using galois_property lower_closed by (intro half_galois_prop_leftI) fastforce
lemma half_galois_prop_right [HOL_Algebra_galois_alignment]: "(L ⊴⇩h R) l r"
using galois_property upper_closed by (intro half_galois_prop_rightI) fastforce
lemma galois_prop [HOL_Algebra_galois_alignment]: "(L ⊴ R) l r"
using half_galois_prop_left half_galois_prop_right by blast
lemma galois_connection [HOL_Algebra_galois_alignment]: "(L ⊣ R) l r"
using mono_wrt_rel_lower mono_wrt_rel_upper galois_prop by blast
end
end
context galois_bijection
begin
context
fixes L R l r
defines "L ≡ (⊑⇘𝒳⇙)↾⇘carrier 𝒳⇙↿⇘carrier 𝒳⇙" and "R ≡ (⊑⇘𝒴⇙)↾⇘carrier 𝒴⇙↿⇘carrier 𝒴⇙"
and "l ≡ π⇧*" and "r ≡ π⇩*"
notes defs[simp] = L_def R_def l_def r_def and rel_restrict_right_eq[simp]
and rel_restrict_leftI[intro!] rel_restrict_leftE[elim!]
in_codom_rel_restrict_leftE[elim!]
begin
interpretation galois R L r l .
lemma half_galois_prop_left_right_left [HOL_Algebra_galois_alignment]: "(R ⇩h⊴ L) r l"
using gal_bij_conn.right lower_inv_eq upper_closed upper_inv_eq
by (intro half_galois_prop_leftI; elim left_GaloisE) (auto; metis)
lemma half_galois_prop_right_right_left [HOL_Algebra_galois_alignment]: "(R ⊴⇩h L) r l"
using gal_bij_conn.left lower_closed lower_inv_eq upper_inv_eq
by (intro half_galois_prop_rightI; elim Galois_rightE) (auto; metis)
lemma prop_right_right_left [HOL_Algebra_galois_alignment]: "(R ⊴ L) r l"
using half_galois_prop_left_right_left half_galois_prop_right_right_left by blast
lemma galois_equivalence [HOL_Algebra_galois_alignment]: "(L ≡⇩G R) l r"
using gal_bij_conn.galois_connection prop_right_right_left
by (intro galois.galois_equivalenceI) auto
end
end
end