Theory Refine
section ‹Relations and Refinement›
theory Refine
imports
"Automatic_Refinement.Automatic_Refinement"
"Refine_Monadic.Refine_Foreach"
"Sequence_LTL"
"Maps"
begin
subsection ‹Predicate to Set Conversion Setup›
lemma right_unique_pred_set_conv[pred_set_conv]: "right_unique = single_valuedp"
unfolding right_unique_def single_valuedp_def by auto
lemma bi_unique_pred_set_conv[pred_set_conv]: "bi_unique (λ x y. (x, y) ∈ R) ⟷ bijective R"
unfolding bi_unique_def bijective_def by blast
text ‹useful for unfolding equality constants in theorems about predicates›
lemma pred_Id: "HOL.eq = (λ x y. (x, y) ∈ Id)" by simp
lemma pred_bool_Id: "HOL.eq = (λ x y. (x, y) ∈ (Id :: bool rel))" by simp
lemma pred_nat_Id: "HOL.eq = (λ x y. (x, y) ∈ (Id :: nat rel))" by simp
lemma pred_set_Id: "HOL.eq = (λ x y. (x, y) ∈ (Id :: 'a set rel))" by simp
lemma pred_list_Id: "HOL.eq = (λ x y. (x, y) ∈ (Id :: 'a list rel))" by simp
lemma pred_stream_Id: "HOL.eq = (λ x y. (x, y) ∈ (Id :: 'a stream rel))" by simp
lemma eq_onp_Id_on_eq[pred_set_conv]: "eq_onp (λ a. a ∈ A) = (λ x y. (x, y) ∈ Id_on A)"
unfolding eq_onp_def by auto
lemma rel_fun_fun_rel_eq[pred_set_conv]:
"rel_fun (λ x y. (x, y) ∈ A) (λ x y. (x, y) ∈ B) = (λ f g. (f, g) ∈ A → B)"
by (force simp: rel_fun_def fun_rel_def)
lemma rel_prod_prod_rel_eq[pred_set_conv]:
"rel_prod (λ x y. (x, y) ∈ A) (λ x y. (x, y) ∈ B) = (λ f g. (f, g) ∈ A ×⇩r B)"
by (force simp: prod_rel_def elim: rel_prod.cases)
lemma rel_sum_sum_rel_eq[pred_set_conv]:
"rel_sum (λ x y. (x, y) ∈ A) (λ x y. (x, y) ∈ B) = (λ f g. (f, g) ∈ ⟨A, B⟩ sum_rel)"
by (force simp: sum_rel_def elim: rel_sum.cases)
lemma rel_set_set_rel_eq[pred_set_conv]:
"rel_set (λ x y. (x, y) ∈ A) = (λ f g. (f, g) ∈ ⟨A⟩ set_rel)"
unfolding rel_set_def set_rel_def by simp
lemma rel_option_option_rel_eq[pred_set_conv]:
"rel_option (λ x y. (x, y) ∈ A) = (λ f g. (f, g) ∈ ⟨A⟩ option_rel)"
by (force simp: option_rel_def elim: option.rel_cases)
thm image_transfer image_transfer[to_set]
thm fun_upd_transfer fun_upd_transfer[to_set]
subsection ‹Relation Composition›
lemma relcomp_trans_1[trans]:
assumes "(f, g) ∈ A⇩1"
assumes "(g, h) ∈ A⇩2"
shows "(f, h) ∈ A⇩1 O A⇩2"
using relcompI assms by this
lemma relcomp_trans_2[trans]:
assumes "(f, g) ∈ A⇩1 → B⇩1"
assumes "(g, h) ∈ A⇩2 → B⇩2"
shows "(f, h) ∈ A⇩1 O A⇩2 → B⇩1 O B⇩2"
proof -
note assms(1)
also note assms(2)
also note
fun_rel_comp_dist
finally show ?thesis by this
qed
lemma relcomp_trans_3[trans]:
assumes "(f, g) ∈ A⇩1 → B⇩1 → C⇩1"
assumes "(g, h) ∈ A⇩2 → B⇩2 → C⇩2"
shows "(f, h) ∈ A⇩1 O A⇩2 → B⇩1 O B⇩2 → C⇩1 O C⇩2"
proof -
note assms(1)
also note assms(2)
also note
fun_rel_mono[OF order_refl
fun_rel_comp_dist]
finally show ?thesis by this
qed
lemma relcomp_trans_4[trans]:
assumes "(f, g) ∈ A⇩1 → B⇩1 → C⇩1 → D⇩1"
assumes "(g, h) ∈ A⇩2 → B⇩2 → C⇩2 → D⇩2"
shows "(f, h) ∈ A⇩1 O A⇩2 → B⇩1 O B⇩2 → C⇩1 O C⇩2 → D⇩1 O D⇩2"
proof -
note assms(1)
also note assms(2)
also note
fun_rel_mono[OF order_refl
fun_rel_mono[OF order_refl
fun_rel_comp_dist]]
finally show ?thesis by this
qed
lemma relcomp_trans_5[trans]:
assumes "(f, g) ∈ A⇩1 → B⇩1 → C⇩1 → D⇩1 → E⇩1"
assumes "(g, h) ∈ A⇩2 → B⇩2 → C⇩2 → D⇩2 → E⇩2"
shows "(f, h) ∈ A⇩1 O A⇩2 → B⇩1 O B⇩2 → C⇩1 O C⇩2 → D⇩1 O D⇩2 → E⇩1 O E⇩2"
proof -
note assms(1)
also note assms(2)
also note
fun_rel_mono[OF order_refl
fun_rel_mono[OF order_refl
fun_rel_mono[OF order_refl
fun_rel_comp_dist]]]
finally show ?thesis by this
qed
subsection ‹Relation Basics›
lemma inv_fun_rel_eq[simp]: "(A→B)¯ = A¯→B¯"
by (auto dest: fun_relD)
lemma inv_option_rel_eq[simp]: "(⟨K⟩option_rel)¯ = ⟨K¯⟩option_rel"
by (auto simp: option_rel_def)
lemma inv_prod_rel_eq[simp]: "(P ×⇩r Q)¯ = P¯ ×⇩r Q¯"
by (auto)
lemma inv_sum_rel_eq[simp]: "(⟨P,Q⟩sum_rel)¯ = ⟨P¯,Q¯⟩sum_rel"
by (auto simp: sum_rel_def)
lemma set_rel_converse[simp]: "(⟨A⟩ set_rel)¯ = ⟨A¯⟩ set_rel" unfolding set_rel_def by auto
lemma build_rel_domain[simp]: "Domain (br α I) = Collect I" unfolding build_rel_def by auto
lemma build_rel_range[simp]: "Range (br α I) = α ` Collect I" unfolding build_rel_def by auto
lemma build_rel_image[simp]: "br α I `` A = α ` (A ∩ Collect I)" unfolding build_rel_def by auto
lemma prod_rel_domain[simp]: "Domain (A ×⇩r B) = Domain A × Domain B" unfolding prod_rel_def by auto
lemma prod_rel_range[simp]: "Range (A ×⇩r B) = Range A × Range B" unfolding prod_rel_def by auto
lemma member_Id_on[iff]: "(x, y) ∈ Id_on A ⟷ x = y ∧ y ∈ A" unfolding Id_on_def by auto
lemma bijective_Id_on[intro!, simp]: "bijective (Id_on A)" unfolding bijective_def by auto
lemma relcomp_Id_on[simp]: "Id_on A O Id_on B = Id_on (A ∩ B)" by auto
lemma prod_rel_Id_on[simp]: "Id_on A ×⇩r Id_on B = Id_on (A × B)" by auto
lemma set_rel_Id_on[simp]: "⟨Id_on S⟩ set_rel = Id_on (Pow S)" unfolding set_rel_def by auto
subsection ‹Parametricity›
lemmas basic_param[param] =
option.rel_transfer[unfolded pred_bool_Id, to_set]
All_transfer[unfolded pred_bool_Id, to_set]
Ex_transfer[unfolded pred_bool_Id, to_set]
Union_transfer[to_set]
image_transfer[to_set]
Image_parametric[to_set]
lemma Sigma_param[param]: "(Sigma, Sigma) ∈ ⟨A⟩ set_rel → (A → ⟨B⟩ set_rel) → ⟨A ×⇩r B⟩ set_rel"
unfolding Sigma_def by parametricity
lemma set_filter_param[param]:
"(Set.filter, Set.filter) ∈ (A → bool_rel) → ⟨A⟩ set_rel → ⟨A⟩ set_rel"
unfolding Set.filter_def fun_rel_def set_rel_def by blast
lemma is_singleton_param[param]:
assumes "bijective A"
shows "(is_singleton, is_singleton) ∈ ⟨A⟩ set_rel → bool_rel"
using assms unfolding is_singleton_def set_rel_def bijective_def by auto blast+
lemma the_elem_param[param]:
assumes "is_singleton S" "is_singleton T"
assumes "(S, T) ∈ ⟨A⟩ set_rel"
shows "(the_elem S, the_elem T) ∈ A"
using assms unfolding set_rel_def is_singleton_def by auto
subsection ‹Lists›
lemma list_all2_list_rel_conv[pred_set_conv]:
"list_all2 (λ x y. (x, y) ∈ R) = (λ x y. (x, y) ∈ ⟨R⟩ list_rel)"
unfolding list_rel_def by simp
lemmas list_rel_single_valued[iff] = list_rel_sv_iff
lemmas list_rel_simps[simp] =
list.rel_eq_onp[to_set]
list.rel_conversep[to_set, symmetric]
list.rel_compp[to_set]
lemmas list_rel_param[param] =
list.set_transfer[to_set]
list.pred_transfer[unfolded pred_bool_Id, to_set, folded pred_list_listsp]
list.rel_transfer[unfolded pred_bool_Id, to_set]
lemmas null_param[param] = null_transfer[unfolded pred_bool_Id, to_set]
thm param_set list.set_transfer[to_set]
lemmas scan_param[param] = scan.transfer[to_set]
lemma bind_param[param]: "(List.bind, List.bind) ∈ ⟨A⟩ list_rel → (A → ⟨B⟩ list_rel) → ⟨B⟩ list_rel"
unfolding List.bind_def by parametricity
lemma set_id_param[param]: "(set, id) ∈ ⟨A⟩ list_set_rel → ⟨A⟩ set_rel"
unfolding list_set_rel_def relcomp_unfold in_br_conv by auto parametricity
subsection ‹Streams›
definition stream_rel :: "('a × 'b) set ⇒ ('a stream × 'b stream) set" where
[to_relAPP]: "stream_rel R ≡ {(x, y). stream_all2 (λ x y. (x, y) ∈ R) x y}"
lemma stream_all2_stream_rel_conv[pred_set_conv]:
"stream_all2 (λ x y. (x, y) ∈ R) = (λ x y. (x, y) ∈ ⟨R⟩ stream_rel)"
unfolding stream_rel_def by simp
lemmas stream_rel_coinduct'[case_names stream_rel, coinduct set: stream_rel] =
stream_rel_coinduct[to_set]
lemmas stream_rel_intros = stream.rel_intros[to_set]
lemmas stream_rel_cases = stream.rel_cases[to_set]
lemmas stream_rel_inject[iff] = stream.rel_inject[to_set]
lemma stream_rel_single_valued[iff]: "single_valued (⟨A⟩ stream_rel) ⟷ single_valued A"
proof
show "single_valued A" if "single_valued (⟨A⟩ stream_rel)"
proof (intro single_valuedI)
fix x y z
assume "(x, y) ∈ A" "(x, z) ∈ A"
then have "(sconst x, sconst y) ∈ ⟨A⟩ stream_rel" "(sconst x, sconst z) ∈ ⟨A⟩ stream_rel"
unfolding stream_rel_sconst[to_set] by this
then have "sconst y = sconst z" using single_valuedD that by metis
then show "y = z" by simp
qed
show "single_valued A ⟹ single_valued (⟨A⟩ stream_rel)"
using stream.right_unique_rel[to_set, to_set] by this
qed
lemmas stream_rel_simps[simp] =
stream.rel_eq[unfolded pred_Id, THEN IdD, to_set]
stream.rel_eq_onp[to_set]
stream.rel_conversep[to_set]
stream.rel_compp[to_set]
lemmas stream_rel_param[param] =
stream.ctr_transfer[to_set]
stream.sel_transfer[to_set]
stream.pred_transfer[unfolded pred_bool_Id, to_set, folded pred_stream_streamsp]
stream.rel_transfer[unfolded pred_bool_Id, to_set]
stream.map_transfer[to_set]
stream.set_transfer[to_set]
stream.case_transfer[to_set]
stream.corec_transfer[unfolded pred_bool_Id, to_set]
lemma stream_Rangep_rel: "Rangep (stream_all2 R) = pred_stream (Rangep R)"
proof -
have 1: "pred_stream (Rangep R) v" if "stream_all2 R u v" for u v
using that by (coinduction arbitrary: u v) (auto elim: stream.rel_cases)
have 2: "stream_all2 R (smap (λ y. SOME x. R x y) v) v" if "pred_stream (Rangep R) v" for v
using that by (coinduction arbitrary: v) (auto intro: someI)
show ?thesis using 1 2 by blast
qed
lemmas stream_rel_domain[simp] = stream.Domainp_rel[to_set]
lemmas stream_rel_range[simp] = stream_Rangep_rel[to_set]
lemma stream_param[param]:
assumes"(HOL.eq, HOL.eq) ∈ R → R → bool_rel"
shows "(HOL.eq, HOL.eq) ∈ ⟨R⟩ stream_rel → ⟨R⟩ stream_rel → bool_rel"
proof -
have "(stream_all2 HOL.eq, stream_all2 HOL.eq) ∈ ⟨R⟩ stream_rel → ⟨R⟩ stream_rel → bool_rel"
using assms by parametricity
then show ?thesis unfolding stream.rel_eq by this
qed
lemmas szip_param[param] = szip_transfer[to_set]
lemmas siterate_param[param] = siterate_transfer[to_set]
lemmas sscan_param[param] = sscan.transfer[to_set]
lemma streams_param[param]: "(streams, streams) ∈ ⟨A⟩ set_rel → ⟨⟨A⟩ stream_rel⟩ set_rel"
proof (intro fun_relI set_relI)
fix S T
assume 1: "(S, T) ∈ ⟨A⟩ set_rel"
obtain f where 2: "⋀ x. x ∈ S ⟹ f x ∈ T ∧ (x, f x) ∈ A"
using 1 unfolding set_rel_def by auto metis
have 3: "f ` S ⊆ T" "(id, f) ∈ Id_on S → A" using 2 by auto
obtain g where 4: "⋀ y. y ∈ T ⟹ g y ∈ S ∧ (g y, y) ∈ A"
using 1 unfolding set_rel_def by auto metis
have 5: "g ` T ⊆ S" "(g, id) ∈ Id_on T → A" using 4 by auto
show "∃ v ∈ streams T. (u, v) ∈ ⟨A⟩ stream_rel" if "u ∈ streams S" for u
proof
show "smap f u ∈ streams T" using smap_streams 3 that by blast
have "(smap id u, smap f u) ∈ ⟨A⟩ stream_rel" using 3 that by parametricity auto
then show "(u, smap f u) ∈ ⟨A⟩ stream_rel" by simp
qed
show "∃ u ∈ streams S. (u, v) ∈ ⟨A⟩ stream_rel" if "v ∈ streams T" for v
proof
show "smap g v ∈ streams S" using smap_streams 5 that by blast
have "(smap g v, smap id v) ∈ ⟨A⟩ stream_rel" using 5 that by parametricity auto
then show "(smap g v, v) ∈ ⟨A⟩ stream_rel" by simp
qed
qed
lemma holds_param[param]: "(holds, holds) ∈ (A → bool_rel) → (⟨A⟩ stream_rel → bool_rel)"
unfolding holds.simps by parametricity
lemma HLD_param[param]:
assumes "single_valued A" "single_valued (A¯)"
shows "(HLD, HLD) ∈ ⟨A⟩ set_rel → ⟨A⟩ stream_rel → bool_rel"
using assms unfolding HLD_def by parametricity
lemma ev_param[param]: "(ev, ev) ∈ (⟨A⟩ stream_rel → bool_rel) → (⟨A⟩ stream_rel → bool_rel)"
proof safe
fix P Q u v
assume 1: "(P, Q) ∈ ⟨A⟩ stream_rel → bool_rel" "(u, v) ∈ ⟨A⟩ stream_rel"
note 2 = 1[param_fo] stream_rel_param(3)[param_fo]
show "ev Q v" if "ev P u" using that 2 by (induct arbitrary: v) (blast+)
show "ev P u" if "ev Q v" using that 2 by (induct arbitrary: u) (blast+)
qed
lemma alw_param[param]: "(alw, alw) ∈ (⟨A⟩ stream_rel → bool_rel) → (⟨A⟩ stream_rel → bool_rel)"
proof safe
fix P Q u v
assume 1: "(P, Q) ∈ ⟨A⟩ stream_rel → bool_rel" "(u, v) ∈ ⟨A⟩ stream_rel"
note 2 = 1[param_fo] stream_rel_param(3)[param_fo]
show "alw Q v" if "alw P u" using that 2 by (coinduction arbitrary: u v) (auto, blast)
show "alw P u" if "alw Q v" using that 2 by (coinduction arbitrary: u v) (auto, blast)
qed
subsection ‹Functional Relations›
lemma br_set_rel: "⟨br f P⟩ set_rel = br (image f) (λ A. Ball A P)"
using br_set_rel_alt by (auto simp: build_rel_def)
lemma br_list_rel: "⟨br f P⟩ list_rel = br (map f) (list_all P)"
proof safe
fix u v
show "(u, v) ∈ br (map f) (list_all P)" if "(u, v) ∈ ⟨br f P⟩ list_rel"
using that unfolding build_rel_def by induct auto
show "(u, v) ∈ ⟨br f P⟩ list_rel" if "(u, v) ∈ br (map f) (list_all P)"
using that unfolding build_rel_def by (induct u arbitrary: v) (auto)
qed
lemma br_list_set_rel: "⟨br f P⟩ list_set_rel = br (set ∘ map f) (λ s. list_all P s ∧ distinct (map f s))"
unfolding list_set_rel_def br_list_rel
unfolding br_chain
by rule
lemma br_fun_rel1: "Id → br f P = br (comp f) (All ∘ comp P)"
unfolding fun_rel_def Ball_def by (auto simp: build_rel_def)
term "set ∘ map f ∘ map g ∘ map h"
term "set ∘ sort"
end