Theory Dirichlet_Series.Liouville_Lambda
section ‹The Liouville $\lambda$ function›
theory Liouville_Lambda
imports
"HOL-Computational_Algebra.Computational_Algebra"
"HOL-Number_Theory.Number_Theory"
Dirichlet_Series
Multiplicative_Function
Moebius_Mu
begin
definition liouville_lambda :: "nat ⇒ 'a :: comm_ring_1" where
"liouville_lambda n = (if n = 0 then 0 else (-1) ^ size (prime_factorization n))"
interpretation liouville_lambda: completely_multiplicative_function' liouville_lambda "λ_. -1"
proof
fix a b :: nat assume "a > 1" "b > 1"
thus "liouville_lambda (a * b) = liouville_lambda a * liouville_lambda b"
by (simp add: liouville_lambda_def prime_factorization_mult power_add)
qed (simp_all add: liouville_lambda_def prime_factorization_prime One_nat_def [symmetric]
del: One_nat_def)
lemma liouville_lambda_prime [simp]: "prime p ⟹ liouville_lambda p = -1"
by (simp add: liouville_lambda_def prime_factorization_prime)
lemma liouville_lambda_prime_power [simp]: "prime p ⟹ liouville_lambda (p ^ k) = (-1) ^ k"
by (simp add: liouville_lambda_def prime_factorization_prime_power)
lemma liouville_lambda_squarefree: "squarefree n ⟹ liouville_lambda n = moebius_mu n"
by (auto simp: liouville_lambda_def moebius_mu_squarefree_eq' intro!: Nat.gr0I)
lemma power_neg_one_If: "(-1) ^ n = (if even n then 1 else -1 :: 'a :: ring_1)"
by (induction n) (simp_all split: if_splits)
lemma liouville_lambda_power_even:
"n > 0 ⟹ even m ⟹ liouville_lambda (n ^ m) = 1"
by (subst liouville_lambda.power) (auto elim!: evenE simp: liouville_lambda_def power_neg_one_If)
lemma liouville_lambda_power_odd:
"odd m ⟹ liouville_lambda (n ^ m) = liouville_lambda n"
by (subst liouville_lambda.power) (auto elim!: oddE simp: liouville_lambda_def power_neg_one_If)
lemma liouville_lambda_power:
"liouville_lambda (n ^ m) =
(if n = 0 ∧ m > 0 then 0 else if even m then 1 else liouville_lambda n)"
by (auto simp: liouville_lambda_power_even liouville_lambda_power_odd power_0_left)
interpretation squarefree: multiplicative_function'
"ind squarefree" "λp k. if k > 1 then 0 else 1" "λ_. 1"
proof
fix p k :: nat assume "prime p" "k > 0"
thus "ind squarefree (p ^ k) = (if 1 < k then 0 else 1 :: 'a)"
by (cases "k = 1") (auto simp: squarefree_power_iff squarefree_prime ind_def)
qed (auto simp: squarefree_mult_coprime squarefree_power_iff ind_def dest: squarefree_multD
simp del: One_nat_def)
interpretation is_nth_power: multiplicative_function "ind (is_nth_power n)"
by standard (auto simp: is_nth_power_mult_coprime_nat_iff)
interpretation is_nth_power: multiplicative_function'
"ind (is_nth_power n)" "λp k. if n dvd k then 1 else 0" "λ_. if n = 1 then 1 else 0"
by standard (simp_all add: is_nth_power_prime_power_nat_iff ind_def)
interpretation is_square: multiplicative_function "ind is_square"
by standard (auto simp: is_nth_power_mult_coprime_nat_iff)
interpretation is_square: multiplicative_function'
"ind is_square" "λp k. if even k then 1 else 0" "λ_. 0"
by standard (simp_all add: is_nth_power_prime_power_nat_iff ind_def)
lemma liouville_lambda_divisors_sum:
"(∑d | d dvd n. liouville_lambda d) = ind is_square n"
proof (rule multiplicative_function_eqI)
show "multiplicative_function (λn. (∑d | d dvd n. liouville_lambda d))"
by (rule liouville_lambda.multiplicative_sum_divisors)
show "multiplicative_function (ind is_square)"
by (rule is_nth_power.multiplicative_function_axioms)
next
fix p k :: nat assume pk: "prime p" "k > 0"
hence p_gt_1: "p > 1" by (simp add: prime_gt_Suc_0_nat)
have "(∑d | d dvd p ^ k. liouville_lambda d) = (∑d∈(λi. p ^ i) ` {..k}. liouville_lambda d)"
using pk by (intro sum.cong refl) (auto intro: le_imp_power_dvd simp: divides_primepow_nat)
also from pk and p_gt_1 have "… = (∑i≤k. liouville_lambda (p ^ i))"
by (subst sum.reindex) (auto simp: inj_on_def prime_gt_1_nat)
also from pk have "… = (∑i≤k. (-1) ^ i)" by (intro sum.cong refl) simp
also have "… = (if even k then 1 else 0)" by (induction k) auto
also from pk have "… = ind is_square (p ^ k)" by (simp add: is_square.prime_power)
finally show "(∑d | d dvd p ^ k. liouville_lambda d) = ind is_square (p ^ k)" .
qed
lemma fds_liouville_lambda_times_zeta: "fds liouville_lambda * fds_zeta = fds_ind is_square"
by (rule fds_eqI) (simp add: liouville_lambda_divisors_sum fds_nth_mult dirichlet_prod_def)
lemma fds_liouville_lambda: "fds liouville_lambda = fds_ind is_square * fds moebius_mu"
proof -
have "fds liouville_lambda * fds_zeta * fds moebius_mu = fds_ind is_square * fds moebius_mu"
by (simp add: fds_liouville_lambda_times_zeta)
also have "fds liouville_lambda * fds_zeta * fds moebius_mu = fds liouville_lambda"
by (simp only: mult.assoc fds_zeta_times_moebius_mu mult_1_right)
finally show ?thesis .
qed
lemma liouville_lambda_altdef:
"liouville_lambda n = (∑d | d ^ 2 dvd n. moebius_mu (n div d ^ 2))"
proof (cases "n = 0")
case False
have "liouville_lambda n = fds_nth (fds liouville_lambda) n" by (simp add: fds_nth_fds)
also have "fds liouville_lambda = fds_ind is_square * (fds moebius_mu :: 'a fds)"
by (rule fds_liouville_lambda)
also have "fds_nth … n = (∑d | d dvd n. ind is_square d * moebius_mu (n div d))"
by (simp add: fds_nth_mult dirichlet_prod_def)
also have "… = (∑d ∈ (λd. d^2) ` {d. d ^ 2 dvd n}. moebius_mu (n div d))" using False
by (intro sum.mono_neutral_cong_right) (auto simp: ind_def is_nth_power_def)
also have "… = (∑d | d ^ 2 dvd n. moebius_mu (n div d ^ 2))"
by (subst sum.reindex) (auto simp: inj_on_def dest: power2_eq_imp_eq)
finally show ?thesis .
qed auto
lemma abs_moebius_mu: "abs (moebius_mu n :: 'a :: linordered_idom) = ind squarefree n"
by (auto simp: ind_def moebius_mu_def)
end