Theory Taylor_Models_Misc
theory Taylor_Models_Misc
imports
"HOL-Library.Float"
"HOL-Library.Function_Algebras"
"HOL-Decision_Procs.Approximation"
"Affine_Arithmetic.Floatarith_Expression"
begin
text ‹This theory contains anything that doesn't belong anywhere else.›
lemma of_nat_real_float_equiv: "(of_nat n :: real) = (of_nat n :: float)"
by (induction n, simp_all add: of_nat_def)
lemma fact_real_float_equiv: "(fact n :: float) = (fact n :: real)"
by (induction n) simp_all
lemma Some_those_length:
"those ys = Some xs ⟹ length xs = length ys"
by (induction ys arbitrary: xs) (auto split: option.splits)
lemma those_eq_None_iff: "those ys = None ⟷ None ∈ set ys"
by (induction ys) (auto simp: split: option.splits)
lemma those_eq_Some_iff: "those ys = (Some xs) ⟷ (ys = map Some xs)"
by (induction ys arbitrary: xs) (auto simp: split: option.splits)
lemma Some_those_nth:
assumes "those ys = Some xs"
assumes "i < length xs"
shows "Some (xs!i) = ys!i"
using Some_those_length[OF assms(1)] assms
by (induction xs ys arbitrary: i rule: list_induct2)
(auto split: option.splits nat.splits simp: nth_Cons)
lemma fun_pow: "f^n = (λx. (f x)^n)"
by (induction n, simp_all)
context includes floatarith_notation begin
text ‹Translate floatarith expressions by a vector of floats.›
fun fa_translate :: "float list ⇒ floatarith ⇒ floatarith"
where "fa_translate v (Add a b) = Add (fa_translate v a) (fa_translate v b)"
| "fa_translate v (Minus a) = Minus (fa_translate v a)"
| "fa_translate v (Mult a b) = Mult (fa_translate v a) (fa_translate v b)"
| "fa_translate v (Inverse a) = Inverse (fa_translate v a)"
| "fa_translate v (Cos a) = Cos (fa_translate v a)"
| "fa_translate v (Arctan a) = Arctan (fa_translate v a)"
| "fa_translate v (Min a b) = Min (fa_translate v a) (fa_translate v b)"
| "fa_translate v (Max a b) = Max (fa_translate v a) (fa_translate v b)"
| "fa_translate v (Abs a) = Abs (fa_translate v a)"
| "fa_translate v (Sqrt a) = Sqrt (fa_translate v a)"
| "fa_translate v (Exp a) = Exp (fa_translate v a)"
| "fa_translate v (Ln a) = Ln (fa_translate v a)"
| "fa_translate v (Var n) = Add (Var n) (Num (v!n))"
| "fa_translate v (Power a n) = Power (fa_translate v a) n"
| "fa_translate v (Powr a b) = Powr (fa_translate v a) (fa_translate v b)"
| "fa_translate v (Floor x) = Floor (fa_translate v x)"
| "fa_translate v (Num c) = Num c"
| "fa_translate v Pi = Pi"
lemma fa_translate_correct:
assumes "max_Var_floatarith f ≤ length I"
assumes "length v = length I"
shows "interpret_floatarith (fa_translate v f) I = interpret_floatarith f (map2 (+) I v)"
using assms
by (induction f, simp_all)
primrec vars_floatarith where
"vars_floatarith (Add a b) = (vars_floatarith a) ∪ (vars_floatarith b)"
| "vars_floatarith (Mult a b) = (vars_floatarith a) ∪ (vars_floatarith b)"
| "vars_floatarith (Inverse a) = vars_floatarith a"
| "vars_floatarith (Minus a) = vars_floatarith a"
| "vars_floatarith (Num a) = {}"
| "vars_floatarith (Var i) = {i}"
| "vars_floatarith (Cos a) = vars_floatarith a"
| "vars_floatarith (Arctan a) = vars_floatarith a"
| "vars_floatarith (Abs a) = vars_floatarith a"
| "vars_floatarith (Max a b) = (vars_floatarith a) ∪ (vars_floatarith b)"
| "vars_floatarith (Min a b) = (vars_floatarith a) ∪ (vars_floatarith b)"
| "vars_floatarith (Pi) = {}"
| "vars_floatarith (Sqrt a) = vars_floatarith a"
| "vars_floatarith (Exp a) = vars_floatarith a"
| "vars_floatarith (Powr a b) = (vars_floatarith a) ∪ (vars_floatarith b)"
| "vars_floatarith (Ln a) = vars_floatarith a"
| "vars_floatarith (Power a n) = vars_floatarith a"
| "vars_floatarith (Floor a) = vars_floatarith a"
lemma finite_vars_floatarith[simp]: "finite (vars_floatarith x)"
by (induction x) auto
end
lemma max_Var_floatarith_eq_Max_vars_floatarith:
"max_Var_floatarith fa = (if vars_floatarith fa = {} then 0 else Suc (Max (vars_floatarith fa)))"
by (induction fa) (auto split: if_splits simp: Max_Un Max_eq_iff max_def)
end