Theory Ground_Superposition_Completeness
theory Ground_Superposition_Completeness
imports Ground_Superposition
begin
subsection ‹Redundancy Criterion›
sublocale ground_superposition_calculus ⊆ calculus_with_finitary_standard_redundancy where
Inf = G_Inf and
Bot = G_Bot and
entails = G_entails and
less = "(≺⇩c)"
defines GRed_I = Red_I and GRed_F = Red_F
proof unfold_locales
show "transp (≺⇩c)"
using clause_order.transp_on_less .
next
show "wfP (≺⇩c)"
using wfP_less_cls .
next
show "⋀ι. ι ∈ G_Inf ⟹ prems_of ι ≠ []"
by (auto simp: G_Inf_def)
next
fix ι
have "concl_of ι ≺⇩c main_prem_of ι"
if ι_def: "ι = Infer [P⇩2, P⇩1] C" and
infer: "ground_superposition P⇩2 P⇩1 C"
for P⇩2 P⇩1 C
unfolding ι_def
using infer
using ground_superposition_smaller_conclusion
by simp
moreover have "concl_of ι ≺⇩c main_prem_of ι"
if ι_def: "ι = Infer [P] C" and
infer: "ground_eq_resolution P C"
for P C
unfolding ι_def
using infer
using ground_eq_resolution_smaller_conclusion
by simp
moreover have "concl_of ι ≺⇩c main_prem_of ι"
if ι_def: "ι = Infer [P] C" and
infer: "ground_eq_factoring P C"
for P C
unfolding ι_def
using infer
using ground_eq_factoring_smaller_conclusion
by simp
ultimately show "ι ∈ G_Inf ⟹ concl_of ι ≺⇩c main_prem_of ι"
unfolding G_Inf_def
by fast
qed
subsection ‹Mode Construction›
context ground_superposition_calculus begin
function epsilon :: "_ ⇒ 'f gatom clause ⇒ 'f gterm rel" where
"epsilon N C = {(s, t)| s t C'.
C ∈ N ∧
C = add_mset (Pos (Upair s t)) C' ∧
select C = {#} ∧
is_strictly_maximal_lit (Pos (Upair s t)) C ∧
t ≺⇩t s ∧
(let R⇩C = (⋃D ∈ {D ∈ N. D ≺⇩c C}. epsilon {E ∈ N. E ≼⇩c D} D) in
¬ upair ` (rewrite_inside_gctxt R⇩C)⇧↓ ⊫ C ∧
¬ upair ` (rewrite_inside_gctxt (insert (s, t) R⇩C))⇧↓ ⊫ C' ∧
s ∈ NF (rewrite_inside_gctxt R⇩C))}"
by auto
termination epsilon
proof (relation "{((x1, x2), (y1, y2)). x2 ≺⇩c y2}")
define f :: "'c × 'f gterm uprod literal multiset ⇒ 'f gterm uprod literal multiset" where
"f = (λ(x1, x2). x2)"
have "wfp (λ(x1, x2) (y1, y2). x2 ≺⇩c y2)"
proof (rule wfP_if_convertible_to_wfP)
show "⋀x y. (case x of (x1, x2) ⇒ λ(y1, y2). x2 ≺⇩c y2) y ⟹ (snd x) ≺⇩c (snd y)"
by auto
next
show "wfP (≺⇩c)"
by simp
qed
thus "wf {((x1, x2), (y1, y2)). x2 ≺⇩c y2}"
by (simp add: wfP_def)
next
show "⋀N C x xa xb xc xd. xd ∈ {D ∈ N. D ≺⇩c C} ⟹ (({E ∈ N. E ≼⇩c xd}, xd), N, C) ∈ {((x1, x2), y1, y2). x2 ≺⇩c y2}"
by simp
qed
declare epsilon.simps[simp del]
lemma epsilon_filter_le_conv: "epsilon {D ∈ N. D ≼⇩c C} C = epsilon N C"
proof (intro subset_antisym subrelI)
fix x y
assume "(x, y) ∈ epsilon {D ∈ N. D ≼⇩c C} C"
then obtain C' where
"C ∈ N" and
"C = add_mset (x ≈ y) C'" and
"select C = {#}" and
"is_strictly_maximal_lit (x ≈ y) C" and
"y ≺⇩t x" and
"(let R⇩C = ⋃x∈{D ∈ N. (D ≺⇩c C ∨ D = C) ∧ D ≺⇩c C}. epsilon {E ∈ N. (E ≺⇩c C ∨ E = C) ∧ E ≼⇩c x} x in
¬ upair ` (rewrite_inside_gctxt R⇩C)⇧↓ ⊫ C ∧
¬ upair ` (rewrite_inside_gctxt (insert (x, y) R⇩C))⇧↓ ⊫ C' ∧
x ∈ NF (rewrite_inside_gctxt R⇩C))"
unfolding epsilon.simps[of _ C] mem_Collect_eq
by auto
moreover have "(⋃x∈{D ∈ N. (D ≺⇩c C ∨ D = C) ∧ D ≺⇩c C}. epsilon {E ∈ N. (E ≺⇩c C ∨ E = C) ∧ E ≼⇩c x} x) = (⋃D∈{D ∈ N. D ≺⇩c C}. epsilon {E ∈ N. E ≼⇩c D} D)"
proof (rule SUP_cong)
show "{D ∈ N. (D ≺⇩c C ∨ D = C) ∧ D ≺⇩c C} = {D ∈ N. D ≺⇩c C}"
by metis
next
show "⋀x. x ∈ {D ∈ N. D ≺⇩c C} ⟹ epsilon {E ∈ N. (E ≺⇩c C ∨ E = C) ∧ E ≼⇩c x} x = epsilon {E ∈ N. E ≼⇩c x} x"
by (metis (mono_tags, lifting) clause_order.order.strict_trans1 mem_Collect_eq)
qed
ultimately show "(x, y) ∈ epsilon N C"
unfolding epsilon.simps[of _ C] by simp
next
fix x y
assume "(x, y) ∈ epsilon N C"
then obtain C' where
"C ∈ N" and
"C = add_mset (x ≈ y) C'" and
"select C = {#}" and
"is_strictly_maximal_lit (x ≈ y) C" and
"y ≺⇩t x" and
"(let R⇩C = ⋃x∈{D ∈ N. D ≺⇩c C}. epsilon {E ∈ N. E ≼⇩c x} x in
¬ upair ` (rewrite_inside_gctxt R⇩C)⇧↓ ⊫ C ∧
¬ upair ` (rewrite_inside_gctxt (insert (x, y) R⇩C))⇧↓ ⊫ C' ∧
x ∈ NF (rewrite_inside_gctxt R⇩C))"
unfolding epsilon.simps[of _ C] mem_Collect_eq
by auto
moreover have "(⋃x∈{D ∈ N. (D ≺⇩c C ∨ D = C) ∧ D ≺⇩c C}. epsilon {E ∈ N. (E ≺⇩c C ∨ E = C) ∧ E ≼⇩c x} x) = (⋃D∈{D ∈ N. D ≺⇩c C}. epsilon {E ∈ N. E ≼⇩c D} D)"
proof (rule SUP_cong)
show "{D ∈ N. (D ≺⇩c C ∨ D = C) ∧ D ≺⇩c C} = {D ∈ N. D ≺⇩c C}"
by metis
next
show "⋀x. x ∈ {D ∈ N. D ≺⇩c C} ⟹ epsilon {E ∈ N. (E ≺⇩c C ∨ E = C) ∧ E ≼⇩c x} x = epsilon {E ∈ N. E ≼⇩c x} x"
by (metis (mono_tags, lifting) clause_order.order.strict_trans1 mem_Collect_eq)
qed
ultimately show "(x, y) ∈ epsilon {D ∈ N. (≺⇩c)⇧=⇧= D C} C"
unfolding epsilon.simps[of _ C] by simp
qed
end
lemma (in ground_ordering) Uniq_striclty_maximal_lit_in_ground_cls:
"∃⇩≤⇩1L. is_strictly_maximal_lit L C"
using literal_order.Uniq_is_greatest_in_mset .
lemma (in ground_superposition_calculus) epsilon_eq_empty_or_singleton:
"epsilon N C = {} ∨ (∃s t. epsilon N C = {(s, t)})"
proof -
have "∃⇩≤⇩1 (x, y). ∃C'.
C = add_mset (Pos (Upair x y)) C' ∧ is_strictly_maximal_lit (Pos (Upair x y)) C ∧ y ≺⇩t x"
by (rule Uniq_prodI)
(metis Uniq_D Upair_inject literal_order.Uniq_is_greatest_in_mset term_order.min.absorb3
term_order.min.absorb4 literal.inject(1))
hence Uniq_epsilon: "∃⇩≤⇩1 (x, y). ∃C'.
C ∈ N ∧
C = add_mset (Pos (Upair x y)) C' ∧ select C = {#} ∧
is_strictly_maximal_lit (Pos (Upair x y)) C ∧ y ≺⇩t x ∧
(let R⇩C = ⋃D ∈ {D ∈ N. D ≺⇩c C}. epsilon {E ∈ N. E ≼⇩c D} D in
¬ upair ` (rewrite_inside_gctxt R⇩C)⇧↓ ⊫ C ∧
¬ upair ` (rewrite_inside_gctxt (insert (x, y) R⇩C))⇧↓ ⊫ C' ∧
x ∈ NF (rewrite_inside_gctxt R⇩C))"
using Uniq_antimono'
by (smt (verit) Uniq_def Uniq_prodI case_prod_conv)
show ?thesis
unfolding epsilon.simps[of N C]
using Collect_eq_if_Uniq_prod[OF Uniq_epsilon]
by (smt (verit, best) Collect_cong Collect_empty_eq Uniq_def Uniq_epsilon case_prod_conv
insertCI mem_Collect_eq)
qed
lemma (in ground_superposition_calculus) card_epsilon_le_one:
"card (epsilon N C) ≤ 1"
using epsilon_eq_empty_or_singleton[of N C]
by auto
definition (in ground_superposition_calculus) rewrite_sys where
"rewrite_sys N C ≡ (⋃D ∈ {D ∈ N. D ≺⇩c C}. epsilon {E ∈ N. E ≼⇩c D} D)"
definition (in ground_superposition_calculus) rewrite_sys' where
"rewrite_sys' N ≡ (⋃C ∈ N. epsilon N C)"
lemma (in ground_superposition_calculus) rewrite_sys_alt: "rewrite_sys' {D ∈ N. D ≺⇩c C} = rewrite_sys N C"
unfolding rewrite_sys'_def rewrite_sys_def
proof (rule SUP_cong)
show "{D ∈ N. D ≺⇩c C} = {D ∈ N. D ≺⇩c C}" ..
next
show "⋀x. x ∈ {D ∈ N. D ≺⇩c C} ⟹ epsilon {D ∈ N. D ≺⇩c C} x = epsilon {E ∈ N. (≺⇩c)⇧=⇧= E x} x"
using epsilon_filter_le_conv
by (smt (verit, best) Collect_cong clause_order.le_less_trans mem_Collect_eq)
qed
lemma (in ground_superposition_calculus) mem_epsilonE:
assumes rule_in: "rule ∈ epsilon N C"
obtains l r C' where
"C ∈ N" and
"rule = (l, r)" and
"C = add_mset (Pos (Upair l r)) C'" and
"select C = {#}" and
"is_strictly_maximal_lit (Pos (Upair l r)) C" and
"r ≺⇩t l" and
"¬ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C" and
"¬ upair ` (rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C)))⇧↓ ⊫ C'" and
"l ∈ NF (rewrite_inside_gctxt (rewrite_sys N C))"
using rule_in
unfolding epsilon.simps[of N C] mem_Collect_eq Let_def rewrite_sys_def
by (metis (no_types, lifting))
lemma (in ground_superposition_calculus) mem_epsilon_iff:
"(l, r) ∈ epsilon N C ⟷
(∃C'. C ∈ N ∧ C = add_mset (Pos (Upair l r)) C' ∧ select C = {#} ∧
is_strictly_maximal_lit (Pos (Upair l r)) C ∧ r ≺⇩t l ∧
¬ upair ` (rewrite_inside_gctxt (rewrite_sys' {D ∈ N. D ≺⇩c C}))⇧↓ ⊫ C ∧
¬ upair ` (rewrite_inside_gctxt (insert (l, r) (rewrite_sys' {D ∈ N. D ≺⇩c C})))⇧↓ ⊫ C' ∧
l ∈ NF (rewrite_inside_gctxt (rewrite_sys' {D ∈ N. D ≺⇩c C})))"
(is "?LHS ⟷ ?RHS")
proof (rule iffI)
assume ?LHS
thus ?RHS
using rewrite_sys_alt
by (auto elim: mem_epsilonE)
next
assume ?RHS
thus ?LHS
unfolding epsilon.simps[of N C] mem_Collect_eq
unfolding rewrite_sys_alt rewrite_sys_def by auto
qed
lemma (in ground_superposition_calculus) rhs_lt_lhs_if_mem_rewrite_sys:
assumes "(t1, t2) ∈ rewrite_sys N C"
shows "t2 ≺⇩t t1"
using assms
unfolding rewrite_sys_def
by (smt (verit, best) UN_iff mem_epsilonE prod.inject)
lemma (in ground_superposition_calculus) rhs_less_trm_lhs_if_mem_rewrite_inside_gctxt_rewrite_sys:
assumes rule_in: "(t1, t2) ∈ rewrite_inside_gctxt (rewrite_sys N C)"
shows "t2 ≺⇩t t1"
proof -
from rule_in obtain ctxt t1' t2' where
"(t1, t2) = (ctxt⟨t1'⟩⇩G, ctxt⟨t2'⟩⇩G) ∧ (t1', t2') ∈ rewrite_sys N C"
unfolding rewrite_inside_gctxt_def mem_Collect_eq
by auto
thus ?thesis
using rhs_lt_lhs_if_mem_rewrite_sys[of t1' t2']
by (metis Pair_inject less_trm_compatible_with_gctxt)
qed
lemma (in ground_superposition_calculus) rhs_lesseq_trm_lhs_if_mem_rtrancl_rewrite_inside_gctxt_rewrite_sys:
assumes rule_in: "(t1, t2) ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧*"
shows "t2 ≼⇩t t1"
using rule_in
proof (induction t2 rule: rtrancl_induct)
case base
show ?case
by order
next
case (step t2 t3)
from step.hyps have "t3 ≺⇩t t2"
using rhs_less_trm_lhs_if_mem_rewrite_inside_gctxt_rewrite_sys by metis
with step.IH show ?case
by order
qed
lemma singleton_eq_CollectD: "{x} = {y. P y} ⟹ P x"
by blast
lemma subset_Union_mem_CollectI: "P x ⟹ f x ⊆ (⋃y ∈ {z. P z}. f y)"
by blast
lemma (in ground_superposition_calculus) rewrite_sys_subset_if_less_cls:
"C ≺⇩c D ⟹ rewrite_sys N C ⊆ rewrite_sys N D"
unfolding rewrite_sys_def
unfolding epsilon_filter_le_conv
by (smt (verit, del_insts) SUP_mono clause_order.dual_order.strict_trans mem_Collect_eq subset_eq)
lemma (in ground_superposition_calculus) mem_rewrite_sys_if_less_cls:
assumes "D ∈ N" and "D ≺⇩c C" and "(u, v) ∈ epsilon N D"
shows "(u, v) ∈ rewrite_sys N C"
unfolding rewrite_sys_def UN_iff
proof (intro bexI)
show "D ∈ {D ∈ N. D ≺⇩c C}"
using ‹D ∈ N› ‹D ≺⇩c C› by simp
next
show "(u, v) ∈ epsilon {E ∈ N. E ≼⇩c D} D"
using ‹(u, v) ∈ epsilon N D› epsilon_filter_le_conv by simp
qed
lemma (in ground_superposition_calculus) less_trm_iff_less_cls_if_lhs_epsilon:
assumes E⇩C: "epsilon N C = {(s, t)}" and E⇩D: "epsilon N D = {(u, v)}"
shows "u ≺⇩t s ⟷ D ≺⇩c C"
proof -
from E⇩C have "(s, t) ∈ epsilon N C"
by simp
then obtain C' where
"C ∈ N" and
C_def: "C = add_mset (Pos (Upair s t)) C'" and
"is_strictly_maximal_lit (Pos (Upair s t)) C" and
"t ≺⇩t s" and
s_irreducible: "s ∈ NF (rewrite_inside_gctxt (rewrite_sys N C))"
by (auto elim!: mem_epsilonE)
hence "∀L ∈# C'. L ≺⇩l Pos (Upair s t)"
by (simp add: literal_order.is_greatest_in_mset_iff)
from E⇩D obtain D' where
"D ∈ N" and
D_def: "D = add_mset (Pos (Upair u v)) D'" and
"is_strictly_maximal_lit (Pos (Upair u v)) D" and
"v ≺⇩t u"
by (auto simp: elim: epsilon.elims dest: singleton_eq_CollectD)
hence "∀L ∈# D'. L ≺⇩l Pos (Upair u v)"
by (simp add: literal_order.is_greatest_in_mset_iff)
show ?thesis
proof (rule iffI)
assume "u ≺⇩t s"
moreover hence "v ≺⇩t s"
using ‹v ≺⇩t u› by order
ultimately have "multp (≺⇩t) {#u, v#} {#s, t#}"
using one_step_implies_multp[of "{#s, t#}" "{#u, v#}" _ "{#}"] by simp
hence "Pos (Upair u v) ≺⇩l Pos (Upair s t)"
by (simp add: less_lit_def)
moreover hence "∀L ∈# D'. L ≺⇩l Pos (Upair s t)"
using ‹∀L ∈# D'. L ≺⇩l Pos (Upair u v)›
by (meson literal_order.transp_on_less transpD)
ultimately show "D ≺⇩c C"
using one_step_implies_multp[of C D _ "{#}"] less_cls_def
by (simp add: D_def C_def)
next
assume "D ≺⇩c C"
have "(u, v) ∈ rewrite_sys N C"
using E⇩D ‹D ∈ N› ‹D ≺⇩c C› mem_rewrite_sys_if_less_cls by auto
hence "(u, v) ∈ rewrite_inside_gctxt (rewrite_sys N C)"
by blast
hence "s ≠ u"
using s_irreducible
by auto
moreover have "¬ (s ≺⇩t u)"
proof (rule notI)
assume "s ≺⇩t u"
moreover hence "t ≺⇩t u"
using ‹t ≺⇩t s› by order
ultimately have "multp (≺⇩t) {#s, t#} {#u, v#}"
using one_step_implies_multp[of "{#u, v#}" "{#s, t#}" _ "{#}"] by simp
hence "Pos (Upair s t) ≺⇩l Pos (Upair u v)"
by (simp add: less_lit_def)
moreover hence "∀L ∈# C'. L ≺⇩l Pos (Upair u v)"
using ‹∀L ∈# C'. L ≺⇩l Pos (Upair s t)›
by (meson literal_order.transp_on_less transpD)
ultimately have "C ≺⇩c D"
using one_step_implies_multp[of D C _ "{#}"] less_cls_def
by (simp add: D_def C_def)
thus False
using ‹D ≺⇩c C› by order
qed
ultimately show "u ≺⇩t s"
by order
qed
qed
lemma (in ground_superposition_calculus) termination_rewrite_sys: "wf ((rewrite_sys N C)¯)"
proof (rule wf_if_convertible_to_wf)
show "wf {(x, y). x ≺⇩t y}"
using wfP_less_trm
by (simp add: wfP_def)
next
fix t s
assume "(t, s) ∈ (rewrite_sys N C)¯"
hence "(s, t) ∈ rewrite_sys N C"
by simp
then obtain D where "D ≺⇩c C" and "(s, t) ∈ epsilon N D"
unfolding rewrite_sys_def using epsilon_filter_le_conv by blast
hence "t ≺⇩t s"
by (auto elim: mem_epsilonE)
thus "(t, s) ∈ {(x, y). x ≺⇩t y}"
by (simp add: )
qed
lemma (in ground_superposition_calculus) termination_Union_rewrite_sys:
"wf ((⋃D ∈ N. rewrite_sys N D)¯)"
proof (rule wf_if_convertible_to_wf)
show "wf {(x, y). x ≺⇩t y}"
using wfP_less_trm
by (simp add: wfP_def)
next
fix t s
assume "(t, s) ∈ (⋃D ∈ N. rewrite_sys N D)¯"
hence "(s, t) ∈ (⋃D ∈ N. rewrite_sys N D)"
by simp
then obtain C where "C ∈ N" "(s, t) ∈ rewrite_sys N C"
by auto
then obtain D where "D ≺⇩c C" and "(s, t) ∈ epsilon N D"
unfolding rewrite_sys_def using epsilon_filter_le_conv by blast
hence "t ≺⇩t s"
by (auto elim: mem_epsilonE)
thus "(t, s) ∈ {(x, y). x ≺⇩t y}"
by simp
qed
lemma (in ground_superposition_calculus) no_crit_pairs:
"{(t1, t2) ∈ ground_critical_pairs (⋃ (epsilon N2 ` N)). t1 ≠ t2} = {}"
proof (rule ccontr)
assume "{(t1, t2).
(t1, t2) ∈ ground_critical_pairs (⋃ (epsilon N2 ` N)) ∧ t1 ≠ t2} ≠ {}"
then obtain ctxt l r1 r2 where
"(ctxt⟨r2⟩⇩G, r1) ∈ ground_critical_pairs (⋃ (epsilon N2 ` N))" and
"ctxt⟨r2⟩⇩G ≠ r1" and
rule1_in: "(ctxt⟨l⟩⇩G, r1) ∈ ⋃ (epsilon N2 ` N)" and
rule2_in: "(l, r2) ∈ ⋃ (epsilon N2 ` N)"
unfolding ground_critical_pairs_def mem_Collect_eq by blast
from rule1_in rule2_in obtain C1 C2 where
"C1 ∈ N" and rule1_in': "(ctxt⟨l⟩⇩G, r1) ∈ epsilon N2 C1" and
"C2 ∈ N" and rule2_in': "(l, r2) ∈ epsilon N2 C2"
by auto
from rule1_in' obtain C1' where
C1_def: "C1 = add_mset (Pos (Upair ctxt⟨l⟩⇩G r1)) C1'" and
C1_max: "is_strictly_maximal_lit (Pos (Upair ctxt⟨l⟩⇩G r1)) C1" and
"r1 ≺⇩t ctxt⟨l⟩⇩G" and
l1_irreducible: "ctxt⟨l⟩⇩G ∈ NF (rewrite_inside_gctxt (rewrite_sys N2 C1))"
by (auto elim: mem_epsilonE)
from rule2_in' obtain C2' where
C2_def: "C2 = add_mset (Pos (Upair l r2)) C2'" and
C2_max: "is_strictly_maximal_lit (Pos (Upair l r2)) C2" and
"r2 ≺⇩t l"
by (auto elim: mem_epsilonE)
have "epsilon N2 C1 = {(ctxt⟨l⟩⇩G, r1)}"
using rule1_in' epsilon_eq_empty_or_singleton by fastforce
have "epsilon N2 C2 = {(l, r2)}"
using rule2_in' epsilon_eq_empty_or_singleton by fastforce
show False
proof (cases "ctxt = □⇩G")
case True
hence "¬ (ctxt⟨l⟩⇩G ≺⇩t l)" and "¬ (l ≺⇩t ctxt⟨l⟩⇩G)"
by (simp_all add: irreflpD)
hence "¬ (C1 ≺⇩c C2)" and "¬ (C2 ≺⇩c C1)"
using ‹epsilon N2 C1 = {(ctxt⟨l⟩⇩G, r1)}› ‹epsilon N2 C2 = {(l, r2)}›
less_trm_iff_less_cls_if_lhs_epsilon
by simp_all
hence "C1 = C2"
by order
hence "r1 = r2"
using ‹epsilon N2 C1 = {(ctxt⟨l⟩⇩G, r1)}› ‹epsilon N2 C2 = {(l, r2)}› by simp
moreover have "r1 ≠ r2"
using ‹ctxt⟨r2⟩⇩G ≠ r1›
unfolding ‹ctxt = □⇩G›
by simp
ultimately show ?thesis
by contradiction
next
case False
hence "l ≺⇩t ctxt⟨l⟩⇩G"
by (metis less_trm_if_subterm)
hence "C2 ≺⇩c C1"
using ‹epsilon N2 C1 = {(ctxt⟨l⟩⇩G, r1)}› ‹epsilon N2 C2 = {(l, r2)}›
less_trm_iff_less_cls_if_lhs_epsilon
by simp
have "(l, r2) ∈ rewrite_sys N2 C1"
by (metis ‹C2 ≺⇩c C1› ‹epsilon N2 C2 = {(l, r2)}› mem_epsilonE mem_rewrite_sys_if_less_cls
singletonI)
hence "(ctxt⟨l⟩⇩G, ctxt⟨r2⟩⇩G) ∈ rewrite_inside_gctxt (rewrite_sys N2 C1)"
by auto
thus False
using l1_irreducible by auto
qed
qed
lemma (in ground_superposition_calculus) WCR_Union_rewrite_sys:
"WCR (rewrite_inside_gctxt (⋃D ∈ N. epsilon N2 D))"
unfolding ground_critical_pair_theorem
proof (intro subsetI ballI)
fix tuple
assume tuple_in: "tuple ∈ ground_critical_pairs (⋃ (epsilon N2 ` N))"
then obtain t1 t2 where tuple_def: "tuple = (t1, t2)"
by fastforce
moreover have "(t1, t2) ∈ (rewrite_inside_gctxt (⋃ (epsilon N2 ` N)))⇧↓" if "t1 = t2"
using that by auto
moreover have False if "t1 ≠ t2"
using that tuple_def tuple_in no_crit_pairs by simp
ultimately show "tuple ∈ (rewrite_inside_gctxt (⋃ (epsilon N2 ` N)))⇧↓"
by (cases "t1 = t2") simp_all
qed
lemma (in ground_superposition_calculus)
assumes
"D ≼⇩c C" and
E⇩C_eq: "epsilon N C = {(s, t)}" and
L_in: "L ∈# D" and
topmost_trms_of_L: "mset_uprod (atm_of L) = {#u, v#}"
shows
lesseq_trm_if_pos: "is_pos L ⟹ u ≼⇩t s" and
less_trm_if_neg: "is_neg L ⟹ u ≺⇩t s"
proof -
from E⇩C_eq have "(s, t) ∈ epsilon N C"
by simp
then obtain C' where
C_def: "C = add_mset (Pos (Upair s t)) C'" and
C_max_lit: "is_strictly_maximal_lit (Pos (Upair s t)) C" and
"t ≺⇩t s"
by (auto elim: mem_epsilonE)
have "Pos (Upair s t) ≺⇩l L" if "is_pos L" and "¬ u ≼⇩t s"
proof -
from that(2) have "s ≺⇩t u"
by order
hence "multp (≺⇩t) {#s, t#} {#u, v#}"
using ‹t ≺⇩t s›
by (smt (verit, del_insts) add.right_neutral empty_iff insert_iff one_step_implies_multp
set_mset_add_mset_insert set_mset_empty transpD transp_less_trm union_mset_add_mset_right)
with that(1) show "Pos (Upair s t) ≺⇩l L"
using topmost_trms_of_L
by (cases L) (simp_all add: less_lit_def)
qed
moreover have "Pos (Upair s t) ≺⇩l L" if "is_neg L" and "¬ u ≺⇩t s"
proof -
from that(2) have "s ≼⇩t u"
by order
hence "multp (≺⇩t) {#s, t#} {#u, v, u, v#}"
using ‹t ≺⇩t s›
by (smt (z3) add_mset_add_single add_mset_remove_trivial add_mset_remove_trivial_iff
empty_not_add_mset insert_DiffM insert_noteq_member one_step_implies_multp reflclp_iff
transp_def transp_less_trm union_mset_add_mset_left union_mset_add_mset_right)
with that(1) show "Pos (Upair s t) ≺⇩l L"
using topmost_trms_of_L
by (cases L) (simp_all add: less_lit_def)
qed
moreover have False if "Pos (Upair s t) ≺⇩l L"
proof -
have "C ≺⇩c D"
unfolding less_cls_def
proof (rule multp_if_maximal_of_lhs_is_less)
show "Pos (Upair s t) ∈# C"
by (simp add: C_def)
next
show "L ∈# D"
using L_in by simp
next
show "is_maximal_lit (Pos (Upair s t)) C"
using C_max_lit by auto
next
show "Pos (Upair s t) ≺⇩l L"
using that .
qed simp_all
with ‹D ≼⇩c C› show False
by order
qed
ultimately show "is_pos L ⟹ u ≼⇩t s" and "is_neg L ⟹ u ≺⇩t s"
by argo+
qed
lemma (in ground_ordering) less_trm_const_lhs_if_mem_rewrite_inside_gctxt:
fixes t t1 t2 r
assumes
rule_in: "(t1, t2) ∈ rewrite_inside_gctxt r" and
ball_lt_lhs: "⋀t1 t2. (t1, t2) ∈ r ⟹ t ≺⇩t t1"
shows "t ≺⇩t t1"
proof -
from rule_in obtain ctxt t1' t2' where
rule_in': "(t1', t2') ∈ r" and
l_def: "t1 = ctxt⟨t1'⟩⇩G" and
r_def: "t2 = ctxt⟨t2'⟩⇩G"
unfolding rewrite_inside_gctxt_def by fast
show ?thesis
using ball_lt_lhs[OF rule_in'] lesseq_trm_if_subtermeq[of t1' ctxt] l_def by order
qed
lemma (in ground_superposition_calculus) split_Union_epsilon:
assumes D_in: "D ∈ N"
shows "(⋃C ∈ N. epsilon N C) =
rewrite_sys N D ∪ epsilon N D ∪ (⋃C ∈ {C ∈ N. D ≺⇩c C}. epsilon N C)"
proof -
have "N = {C ∈ N. C ≺⇩c D} ∪ {D} ∪ {C ∈ N. D ≺⇩c C}"
proof (rule partition_set_around_element)
show "totalp_on N (≺⇩c)"
using clause_order.totalp_on_less .
next
show "D ∈ N"
using D_in by simp
qed
hence "(⋃C ∈ N. epsilon N C) =
(⋃C ∈ {C ∈ N. C ≺⇩c D}. epsilon N C) ∪ epsilon N D ∪ (⋃C ∈ {C ∈ N. D ≺⇩c C}. epsilon N C)"
by auto
thus "(⋃C ∈ N. epsilon N C) =
rewrite_sys N D ∪ epsilon N D ∪ (⋃C ∈ {C ∈ N. D ≺⇩c C}. epsilon N C)"
using epsilon_filter_le_conv rewrite_sys_def by simp
qed
lemma (in ground_superposition_calculus) split_Union_epsilon':
assumes D_in: "D ∈ N"
shows "(⋃C ∈ N. epsilon N C) = rewrite_sys N D ∪ (⋃C ∈ {C ∈ N. D ≼⇩c C}. epsilon N C)"
using split_Union_epsilon[OF D_in] D_in by auto
lemma (in ground_superposition_calculus) split_rewrite_sys:
assumes "C ∈ N" and D_in: "D ∈ N" and "D ≺⇩c C"
shows "rewrite_sys N C = rewrite_sys N D ∪ (⋃C' ∈ {C' ∈ N. D ≼⇩c C' ∧ C' ≺⇩c C}. epsilon N C')"
proof -
have "{D ∈ N. D ≺⇩c C} =
{y ∈ {D ∈ N. D ≺⇩c C}. y ≺⇩c D} ∪ {D} ∪ {y ∈ {D ∈ N. D ≺⇩c C}. D ≺⇩c y}"
proof (rule partition_set_around_element)
show "totalp_on {D ∈ N. D ≺⇩c C} (≺⇩c)"
using clause_order.totalp_on_less .
next
from D_in ‹D ≺⇩c C› show "D ∈ {D ∈ N. D ≺⇩c C}"
by simp
qed
also have "… = {x ∈ N. x ≺⇩c C ∧ x ≺⇩c D} ∪ {D} ∪ {x ∈ N. D ≺⇩c x ∧ x ≺⇩c C}"
by auto
also have "… = {x ∈ N. x ≺⇩c D} ∪ {D} ∪ {x ∈ N. D ≺⇩c x ∧ x ≺⇩c C}"
using ‹D ≺⇩c C› clause_order.transp_on_less
by (metis (no_types, opaque_lifting) transpD)
finally have Collect_N_lt_C: "{x ∈ N. x ≺⇩c C} = {x ∈ N. x ≺⇩c D} ∪ {x ∈ N. D ≼⇩c x ∧ x ≺⇩c C}"
by auto
have "rewrite_sys N C = (⋃C' ∈ {D ∈ N. D ≺⇩c C}. epsilon N C')"
using epsilon_filter_le_conv
by (simp add: rewrite_sys_def)
also have "… = (⋃C' ∈ {x ∈ N. x ≺⇩c D}. epsilon N C') ∪ (⋃C' ∈ {x ∈ N. D ≼⇩c x ∧ x ≺⇩c C}. epsilon N C')"
unfolding Collect_N_lt_C by simp
finally show "rewrite_sys N C = rewrite_sys N D ∪ ⋃ (epsilon N ` {C' ∈ N. D ≼⇩c C' ∧ C' ≺⇩c C})"
using epsilon_filter_le_conv
unfolding rewrite_sys_def by simp
qed
lemma (in ground_ordering) mem_join_union_iff_mem_join_lhs':
assumes
ball_R⇩1_rhs_lt_lhs: "⋀t1 t2. (t1, t2) ∈ R⇩1 ⟹ t2 ≺⇩t t1" and
ball_R⇩2_lt_lhs: "⋀t1 t2. (t1, t2) ∈ R⇩2 ⟹ s ≺⇩t t1 ∧ t ≺⇩t t1"
shows "(s, t) ∈ (R⇩1 ∪ R⇩2)⇧↓ ⟷ (s, t) ∈ R⇩1⇧↓"
proof -
have ball_R⇩1_rhs_lt_lhs': "(t1, t2) ∈ R⇩1⇧* ⟹ t2 ≼⇩t t1" for t1 t2
proof (induction t2 rule: rtrancl_induct)
case base
show ?case
by order
next
case (step y z)
thus ?case
using ball_R⇩1_rhs_lt_lhs
by (metis reflclp_iff transpD transp_less_trm)
qed
show ?thesis
proof (rule mem_join_union_iff_mem_join_lhs)
fix u assume "(s, u) ∈ R⇩1⇧*"
hence "u ≼⇩t s"
using ball_R⇩1_rhs_lt_lhs' by metis
show "u ∉ Domain R⇩2"
proof (rule notI)
assume "u ∈ Domain R⇩2"
then obtain u' where "(u, u') ∈ R⇩2"
by auto
hence "s ≺⇩t u"
using ball_R⇩2_lt_lhs by simp
with ‹u ≼⇩t s› show False
by order
qed
next
fix u assume "(t, u) ∈ R⇩1⇧*"
hence "u ≼⇩t t"
using ball_R⇩1_rhs_lt_lhs' by simp
show "u ∉ Domain R⇩2"
proof (rule notI)
assume "u ∈ Domain R⇩2"
then obtain u' where "(u, u') ∈ R⇩2"
by auto
hence "t ≺⇩t u"
using ball_R⇩2_lt_lhs by simp
with ‹u ≼⇩t t› show False
by order
qed
qed
qed
lemma (in ground_ordering) mem_join_union_iff_mem_join_rhs':
assumes
ball_R⇩1_rhs_lt_lhs: "⋀t1 t2. (t1, t2) ∈ R⇩2 ⟹ t2 ≺⇩t t1" and
ball_R⇩2_lt_lhs: "⋀t1 t2. (t1, t2) ∈ R⇩1 ⟹ s ≺⇩t t1 ∧ t ≺⇩t t1"
shows "(s, t) ∈ (R⇩1 ∪ R⇩2)⇧↓ ⟷ (s, t) ∈ R⇩2⇧↓"
using assms mem_join_union_iff_mem_join_lhs'
by (metis (no_types, opaque_lifting) sup_commute)
lemma (in ground_ordering) mem_join_union_iff_mem_join_lhs'':
assumes
Range_R⇩1_lt_Domain_R⇩2: "⋀t1 t2. t1 ∈ Range R⇩1 ⟹ t2 ∈ Domain R⇩2 ⟹ t1 ≺⇩t t2" and
s_lt_Domain_R⇩2: "⋀t2. t2 ∈ Domain R⇩2 ⟹ s ≺⇩t t2" and
t_lt_Domain_R⇩2: "⋀t2. t2 ∈ Domain R⇩2 ⟹ t ≺⇩t t2"
shows "(s, t) ∈ (R⇩1 ∪ R⇩2)⇧↓ ⟷ (s, t) ∈ R⇩1⇧↓"
proof (rule mem_join_union_iff_mem_join_lhs)
fix u assume "(s, u) ∈ R⇩1⇧*"
hence "u = s ∨ u ∈ Range R⇩1"
by (meson Range.intros rtrancl.cases)
thus "u ∉ Domain R⇩2"
using Range_R⇩1_lt_Domain_R⇩2 s_lt_Domain_R⇩2
by (metis irreflpD term_order.irreflp_on_less)
next
fix u assume "(t, u) ∈ R⇩1⇧*"
hence "u = t ∨ u ∈ Range R⇩1"
by (meson Range.intros rtrancl.cases)
thus "u ∉ Domain R⇩2"
using Range_R⇩1_lt_Domain_R⇩2 t_lt_Domain_R⇩2
by (metis irreflpD term_order.irreflp_on_less)
qed
lemma (in ground_superposition_calculus) lift_entailment_to_Union:
fixes N D
defines "R⇩D ≡ rewrite_sys N D"
assumes
D_in: "D ∈ N" and
R⇩D_entails_D: "upair ` (rewrite_inside_gctxt R⇩D)⇧↓ ⊫ D"
shows
"upair ` (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓ ⊫ D" and
"⋀C. C ∈ N ⟹ D ≺⇩c C ⟹ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ D"
proof -
from R⇩D_entails_D obtain L s t where
L_in: "L ∈# D" and
L_eq_disj_L_eq: "L = Pos (Upair s t) ∧ (s, t) ∈ (rewrite_inside_gctxt R⇩D)⇧↓ ∨
L = Neg (Upair s t) ∧ (s, t) ∉ (rewrite_inside_gctxt R⇩D)⇧↓"
unfolding true_cls_def true_lit_iff
by (metis (no_types, opaque_lifting) image_iff prod.case surj_pair uprod_exhaust)
from L_eq_disj_L_eq show
"upair ` (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓ ⊫ D" and
"⋀C. C ∈ N ⟹ D ≺⇩c C ⟹ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ D"
unfolding atomize_all atomize_conj atomize_imp
proof (elim disjE conjE)
assume L_def: "L = Pos (Upair s t)" and "(s, t) ∈ (rewrite_inside_gctxt R⇩D)⇧↓"
have "R⇩D ⊆ (⋃D ∈ N. epsilon N D)" and
"∀C. C ∈ N ⟶ D ≺⇩c C ⟶ R⇩D ⊆ rewrite_sys N C"
unfolding R⇩D_def rewrite_sys_def
using D_in clause_order.transp_on_less[THEN transpD]
using epsilon_filter_le_conv
by (auto intro: Collect_mono)
hence "rewrite_inside_gctxt R⇩D ⊆ rewrite_inside_gctxt (⋃D ∈ N. epsilon N D)" and
"∀C. C ∈ N ⟶ D ≺⇩c C ⟶ rewrite_inside_gctxt R⇩D ⊆ rewrite_inside_gctxt (rewrite_sys N C)"
by (auto intro!: rewrite_inside_gctxt_mono)
hence "(s, t) ∈ (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓" and
"∀C. C ∈ N ⟶ D ≺⇩c C ⟶ (s, t) ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
by (auto intro!: join_mono intro: set_mp[OF _ ‹(s, t) ∈ (rewrite_inside_gctxt R⇩D)⇧↓›])
thus "upair ` (rewrite_inside_gctxt (⋃ (epsilon N ` N)))⇧↓ ⊫ D ∧
(∀C. C ∈ N ⟶ D ≺⇩c C ⟶ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ D)"
unfolding true_cls_def true_lit_iff
using L_in L_def by blast
next
have "(t1, t2) ∈ R⇩D ⟹ t2 ≺⇩t t1" for t1 t2
by (auto simp: R⇩D_def rewrite_sys_def elim: mem_epsilonE)
hence ball_R⇩D_rhs_lt_lhs: "(t1, t2) ∈ rewrite_inside_gctxt R⇩D ⟹ t2 ≺⇩t t1" for t1 t2
by (smt (verit, ccfv_SIG) Pair_inject less_trm_compatible_with_gctxt mem_Collect_eq
rewrite_inside_gctxt_def)
assume L_def: "L = Neg (Upair s t)" and "(s, t) ∉ (rewrite_inside_gctxt R⇩D)⇧↓"
have "(s, t) ∈ (rewrite_inside_gctxt R⇩D ∪ rewrite_inside_gctxt (⋃C ∈ {C ∈ N. D ≼⇩c C}. epsilon N C))⇧↓ ⟷
(s, t) ∈ (rewrite_inside_gctxt R⇩D)⇧↓"
proof (rule mem_join_union_iff_mem_join_lhs')
show "⋀t1 t2. (t1, t2) ∈ rewrite_inside_gctxt R⇩D ⟹ t2 ≺⇩t t1"
using ball_R⇩D_rhs_lt_lhs by simp
next
have ball_Rinf_minus_lt_lhs: "s ≺⇩t fst rule ∧ t ≺⇩t fst rule"
if rule_in: "rule ∈ (⋃C ∈ {C ∈ N. D ≼⇩c C}. epsilon N C)"
for rule
proof -
from rule_in obtain C where
"C ∈ N" and "D ≼⇩c C" and "rule ∈ epsilon N C"
by auto
have epsilon_C_eq: "epsilon N C = {(fst rule, snd rule)}"
using ‹rule ∈ epsilon N C› epsilon_eq_empty_or_singleton by force
show ?thesis
using less_trm_if_neg[OF ‹D ≼⇩c C› epsilon_C_eq L_in]
by (simp add: L_def)
qed
show "⋀t1 t2. (t1, t2) ∈ rewrite_inside_gctxt (⋃ (epsilon N ` {C ∈ N. (≺⇩c)⇧=⇧= D C})) ⟹
s ≺⇩t t1 ∧ t ≺⇩t t1"
using less_trm_const_lhs_if_mem_rewrite_inside_gctxt
using ball_Rinf_minus_lt_lhs
by force
qed
moreover have
"(s, t) ∈ (rewrite_inside_gctxt R⇩D ∪ rewrite_inside_gctxt (⋃C' ∈ {C' ∈ N. D ≼⇩c C' ∧ C' ≺⇩c C}. epsilon N C'))⇧↓ ⟷
(s, t) ∈ (rewrite_inside_gctxt R⇩D)⇧↓"
if "C ∈ N" and "D ≺⇩c C"
for C
proof (rule mem_join_union_iff_mem_join_lhs')
show "⋀t1 t2. (t1, t2) ∈ rewrite_inside_gctxt R⇩D ⟹ t2 ≺⇩t t1"
using ball_R⇩D_rhs_lt_lhs by simp
next
have ball_lt_lhs: "s ≺⇩t t1 ∧ t ≺⇩t t1"
if "C ∈ N" and "D ≺⇩c C" and
rule_in: "(t1, t2) ∈ (⋃C' ∈ {C' ∈ N. D ≼⇩c C' ∧ C' ≺⇩c C}. epsilon N C')"
for C t1 t2
proof -
from rule_in obtain C' where
"C' ∈ N" and "D ≼⇩c C'" and "C' ≺⇩c C" and "(t1, t2) ∈ epsilon N C'"
by (auto simp: rewrite_sys_def)
have epsilon_C'_eq: "epsilon N C' = {(t1, t2)}"
using ‹(t1, t2) ∈ epsilon N C'› epsilon_eq_empty_or_singleton by force
show ?thesis
using less_trm_if_neg[OF ‹D ≼⇩c C'› epsilon_C'_eq L_in]
by (simp add: L_def)
qed
show "⋀t1 t2. (t1, t2) ∈ rewrite_inside_gctxt (⋃ (epsilon N ` {C' ∈ N. (≺⇩c)⇧=⇧= D C' ∧ C' ≺⇩c C})) ⟹
s ≺⇩t t1 ∧ t ≺⇩t t1"
using less_trm_const_lhs_if_mem_rewrite_inside_gctxt
using ball_lt_lhs[OF that(1,2)]
by (metis (no_types, lifting))
qed
ultimately have "(s, t) ∉ (rewrite_inside_gctxt R⇩D ∪ rewrite_inside_gctxt (⋃C ∈ {C ∈ N. D ≼⇩c C}. epsilon N C))⇧↓" and
"∀C. C ∈ N ⟶ D ≺⇩c C ⟶
(s, t) ∉ (rewrite_inside_gctxt R⇩D ∪ rewrite_inside_gctxt (⋃C' ∈ {C' ∈ N. D ≼⇩c C' ∧ C' ≺⇩c C}. epsilon N C'))⇧↓"
using ‹(s, t) ∉ (rewrite_inside_gctxt R⇩D)⇧↓› by simp_all
hence "(s, t) ∉ (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓" and
"∀C. C ∈ N ⟶ D ≺⇩c C ⟶ (s, t) ∉ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
using split_Union_epsilon'[OF D_in, folded R⇩D_def]
using split_rewrite_sys[OF _ D_in, folded R⇩D_def]
by (simp_all add: rewrite_inside_gctxt_union)
hence "(Upair s t) ∉ upair ` (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓" and
"∀C. C ∈ N ⟶ D ≺⇩c C ⟶ (Upair s t) ∉ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
unfolding atomize_conj
by (meson sym_join true_lit_simps(2) true_lit_uprod_iff_true_lit_prod(2))
thus "upair ` (rewrite_inside_gctxt (⋃ (epsilon N ` N)))⇧↓ ⊫ D ∧
(∀C. C ∈ N ⟶ D ≺⇩c C ⟶ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ D)"
unfolding true_cls_def true_lit_iff
using L_in L_def by metis
qed
qed
lemma (in ground_superposition_calculus)
assumes productive: "epsilon N C = {(l, r)}"
shows
true_cls_if_productive_epsilon:
"upair ` (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓ ⊫ C"
"⋀D. D ∈ N ⟹ C ≺⇩c D ⟹ upair ` (rewrite_inside_gctxt (rewrite_sys N D))⇧↓ ⊫ C" and
false_cls_if_productive_epsilon:
"¬ upair ` (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓ ⊫ C - {#Pos (Upair l r)#}"
"⋀D. D ∈ N ⟹ C ≺⇩c D ⟹ ¬ upair ` (rewrite_inside_gctxt (rewrite_sys N D))⇧↓ ⊫ C - {#Pos (Upair l r)#}"
proof -
from productive have "(l, r) ∈ epsilon N C"
by simp
then obtain C' where
C_in: "C ∈ N" and
C_def: "C = add_mset (Pos (Upair l r)) C'" and
"select C = {#}" and
"is_strictly_maximal_lit (Pos (Upair l r)) C" and
"r ≺⇩t l" and
e: "¬ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C" and
f: "¬ upair ` (rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C)))⇧↓ ⊫ C'" and
"l ∈ NF (rewrite_inside_gctxt (rewrite_sys N C))"
by (rule mem_epsilonE) blast
have "(l, r) ∈ (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓"
using C_in ‹(l, r) ∈ epsilon N C› mem_rewrite_inside_gctxt_if_mem_rewrite_rules by blast
thus "upair ` (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓ ⊫ C"
using C_def by blast
have "rewrite_inside_gctxt (⋃D ∈ N. epsilon N D) =
rewrite_inside_gctxt (rewrite_sys N C ∪ epsilon N C ∪ (⋃D ∈ {D ∈ N. C ≺⇩c D}. epsilon N D))"
using split_Union_epsilon[OF C_in] by simp
also have "… =
rewrite_inside_gctxt (rewrite_sys N C ∪ epsilon N C) ∪
rewrite_inside_gctxt (⋃D ∈ {D ∈ N. C ≺⇩c D}. epsilon N D)"
by (simp add: rewrite_inside_gctxt_union)
finally have rewrite_inside_gctxt_Union_epsilon_eq:
"rewrite_inside_gctxt (⋃D ∈ N. epsilon N D) =
rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C)) ∪
rewrite_inside_gctxt (⋃D ∈ {D ∈ N. C ≺⇩c D}. epsilon N D)"
unfolding productive by simp
have mem_join_union_iff_mem_lhs:"(t1, t2) ∈ (rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C)) ∪
rewrite_inside_gctxt (⋃D ∈ {D ∈ N. C ≺⇩c D}. epsilon N D))⇧↓ ⟷
(t1, t2) ∈ (rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C)))⇧↓"
if "t1 ≼⇩t l" and "t2 ≼⇩t l"
for t1 t2
proof (rule mem_join_union_iff_mem_join_lhs')
fix s1 s2 assume "(s1, s2) ∈ rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C))"
moreover have "s2 ≺⇩t s1" if "(s1, s2) ∈ rewrite_inside_gctxt {(l, r)}"
proof (rule rhs_lt_lhs_if_rule_in_rewrite_inside_gctxt[OF that])
show "⋀s1 s2. (s1, s2) ∈ {(l, r)} ⟹ s2 ≺⇩t s1"
using ‹r ≺⇩t l› by simp
qed simp_all
moreover have "s2 ≺⇩t s1" if "(s1, s2) ∈ rewrite_inside_gctxt (rewrite_sys N C)"
proof (rule rhs_lt_lhs_if_rule_in_rewrite_inside_gctxt[OF that])
show "⋀s1 s2. (s1, s2) ∈ rewrite_sys N C ⟹ s2 ≺⇩t s1"
by (simp add: rhs_lt_lhs_if_mem_rewrite_sys)
qed simp
ultimately show "s2 ≺⇩t s1"
using rewrite_inside_gctxt_union[of "{(l, r)}", simplified] by blast
next
have ball_lt_lhs: "t1 ≺⇩t s1 ∧ t2 ≺⇩t s1"
if rule_in: "(s1, s2) ∈ (⋃D ∈ {D ∈ N. C ≺⇩c D}. epsilon N D)"
for s1 s2
proof -
from rule_in obtain D where
"D ∈ N" and "C ≺⇩c D" and "(s1, s2) ∈ epsilon N D"
by (auto simp: rewrite_sys_def)
have E⇩D_eq: "epsilon N D = {(s1, s2)}"
using ‹(s1, s2) ∈ epsilon N D› epsilon_eq_empty_or_singleton by force
have "l ≺⇩t s1"
using ‹C ≺⇩c D›
using less_trm_iff_less_cls_if_lhs_epsilon[OF E⇩D_eq productive]
by metis
with ‹t1 ≼⇩t l› ‹t2 ≼⇩t l› show ?thesis
by (metis reflclp_iff transpD transp_less_trm)
qed
thus "⋀l r. (l, r) ∈ rewrite_inside_gctxt (⋃ (epsilon N ` {D ∈ N. C ≺⇩c D})) ⟹ t1 ≺⇩t l ∧ t2 ≺⇩t l"
using rewrite_inside_gctxt_Union_epsilon_eq
using less_trm_const_lhs_if_mem_rewrite_inside_gctxt
by presburger
qed
have neg_concl1: "¬ upair ` (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓ ⊫ C'"
unfolding true_cls_def Set.bex_simps
proof (intro ballI)
fix L assume L_in: "L ∈# C'"
hence "L ∈# C"
by (simp add: C_def)
obtain t1 t2 where
atm_L_eq: "atm_of L = Upair t1 t2"
by (metis uprod_exhaust)
hence trms_of_L: "mset_uprod (atm_of L) = {#t1, t2#}"
by simp
hence "t1 ≼⇩t l" and "t2 ≼⇩t l"
unfolding atomize_conj
using less_trm_if_neg[OF reflclp_refl productive ‹L ∈# C›]
using lesseq_trm_if_pos[OF reflclp_refl productive ‹L ∈# C›]
by (metis (no_types, opaque_lifting) add_mset_commute sup2CI)
have "(t1, t2) ∉ (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓" if L_def: "L = Pos (Upair t1 t2)"
proof -
from that have "(t1, t2) ∉ (rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C)))⇧↓"
using f ‹L ∈# C'› by blast
thus ?thesis
using rewrite_inside_gctxt_Union_epsilon_eq mem_join_union_iff_mem_lhs[OF ‹t1 ≼⇩t l› ‹t2 ≼⇩t l›]
by simp
qed
moreover have "(t1, t2) ∈ (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓"
if L_def: "L = Neg (Upair t1 t2)"
proof -
from that have "(t1, t2) ∈ (rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C)))⇧↓"
using f ‹L ∈# C'›
by (meson true_lit_uprod_iff_true_lit_prod(2) sym_join true_cls_def true_lit_simps(2))
thus ?thesis
using rewrite_inside_gctxt_Union_epsilon_eq
mem_join_union_iff_mem_lhs[OF ‹t1 ≼⇩t l› ‹t2 ≼⇩t l›]
by simp
qed
ultimately show "¬ upair ` (rewrite_inside_gctxt (⋃ (epsilon N ` N)))⇧↓ ⊫l L"
using atm_L_eq true_lit_uprod_iff_true_lit_prod[OF sym_join] true_lit_simps
by (smt (verit, ccfv_SIG) literal.exhaust_sel)
qed
then show "¬ upair ` (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓ ⊫ C - {#Pos (Upair l r)#}"
by (simp add: C_def)
fix D
assume "D ∈ N" and "C ≺⇩c D"
have "(l, r) ∈ rewrite_sys N D"
using C_in ‹(l, r) ∈ epsilon N C› ‹C ≺⇩c D› mem_rewrite_sys_if_less_cls by metis
hence "(l, r) ∈ (rewrite_inside_gctxt (rewrite_sys N D))⇧↓"
by auto
thus "upair ` (rewrite_inside_gctxt (rewrite_sys N D))⇧↓ ⊫ C"
using C_def by blast
from ‹D ∈ N› have "rewrite_sys N D ⊆ (⋃D ∈ N. epsilon N D)"
by (simp add: split_Union_epsilon')
hence "rewrite_inside_gctxt (rewrite_sys N D) ⊆ rewrite_inside_gctxt (⋃D ∈ N. epsilon N D)"
using rewrite_inside_gctxt_mono by metis
hence "(rewrite_inside_gctxt (rewrite_sys N D))⇧↓ ⊆ (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓"
using join_mono by metis
have "¬ upair ` (rewrite_inside_gctxt (rewrite_sys N D))⇧↓ ⊫ C'"
unfolding true_cls_def Set.bex_simps
proof (intro ballI)
fix L assume L_in: "L ∈# C'"
hence "L ∈# C"
by (simp add: C_def)
obtain t1 t2 where
atm_L_eq: "atm_of L = Upair t1 t2"
by (metis uprod_exhaust)
hence trms_of_L: "mset_uprod (atm_of L) = {#t1, t2#}"
by simp
hence "t1 ≼⇩t l" and "t2 ≼⇩t l"
unfolding atomize_conj
using less_trm_if_neg[OF reflclp_refl productive ‹L ∈# C›]
using lesseq_trm_if_pos[OF reflclp_refl productive ‹L ∈# C›]
by (metis (no_types, opaque_lifting) add_mset_commute sup2CI)
have "(t1, t2) ∉ (rewrite_inside_gctxt (rewrite_sys N D))⇧↓" if L_def: "L = Pos (Upair t1 t2)"
proof -
from that have "(t1, t2) ∉ (rewrite_inside_gctxt (insert (l, r) (rewrite_sys N C)))⇧↓"
using f ‹L ∈# C'› by blast
thus ?thesis
using rewrite_inside_gctxt_Union_epsilon_eq
using mem_join_union_iff_mem_lhs[OF ‹t1 ≼⇩t l› ‹t2 ≼⇩t l›]
using ‹(rewrite_inside_gctxt (rewrite_sys N D))⇧↓ ⊆ (rewrite_inside_gctxt (⋃ (epsilon N ` N)))⇧↓› by auto
qed
moreover have "(t1, t2) ∈ (rewrite_inside_gctxt (rewrite_sys N D))⇧↓" if L_def: "L = Neg (Upair t1 t2)"
using e
proof (rule contrapos_np)
assume "(t1, t2) ∉ (rewrite_inside_gctxt (rewrite_sys N D))⇧↓"
hence "(t1, t2) ∉ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
using rewrite_sys_subset_if_less_cls[OF ‹C ≺⇩c D›]
by (meson join_mono rewrite_inside_gctxt_mono subsetD)
thus "upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C"
using neg_literal_notin_imp_true_cls[of "Upair t1 t2" C "upair ` _⇧↓"]
unfolding uprod_mem_image_iff_prod_mem[OF sym_join]
using L_def L_in C_def
by simp
qed
ultimately show "¬ upair ` (rewrite_inside_gctxt (rewrite_sys N D))⇧↓ ⊫l L"
using atm_L_eq true_lit_uprod_iff_true_lit_prod[OF sym_join] true_lit_simps
by (smt (verit, ccfv_SIG) literal.exhaust_sel)
qed
thus "¬ upair ` (rewrite_inside_gctxt (rewrite_sys N D))⇧↓ ⊫ C - {#Pos (Upair l r)#}"
by (simp add: C_def)
qed
lemma from_neq_double_rtrancl_to_eqE:
assumes "x ≠ y" and "(x, z) ∈ r⇧*" and "(y, z) ∈ r⇧*"
obtains
w where "(x, w) ∈ r" and "(w, z) ∈ r⇧*" |
w where "(y, w) ∈ r" and "(w, z) ∈ r⇧*"
using assms
by (metis converse_rtranclE)
lemma ex_step_if_joinable:
assumes "asymp R" "(x, z) ∈ r⇧*" and "(y, z) ∈ r⇧*"
shows
"R⇧=⇧= z y ⟹ R y x ⟹ ∃w. (x, w) ∈ r ∧ (w, z) ∈ r⇧*"
"R⇧=⇧= z x ⟹ R x y ⟹ ∃w. (y, w) ∈ r ∧ (w, z) ∈ r⇧*"
using assms
by (metis asympD converse_rtranclE reflclp_iff)+
lemma (in ground_superposition_calculus) trans_join_rewrite_inside_gctxt_rewrite_sys:
"trans ((rewrite_inside_gctxt (rewrite_sys N C))⇧↓)"
proof (rule trans_join)
have "wf ((rewrite_inside_gctxt (rewrite_sys N C))¯)"
proof (rule wf_converse_rewrite_inside_gctxt)
fix s t
assume "(s, t) ∈ rewrite_sys N C"
then obtain D where "(s, t) ∈ epsilon N D"
unfolding rewrite_sys_def
using epsilon_filter_le_conv by auto
thus "t ≺⇩t s"
by (auto elim: mem_epsilonE)
qed auto
thus "SN (rewrite_inside_gctxt (rewrite_sys N C))"
by (simp only: SN_iff_wf)
next
show "WCR (rewrite_inside_gctxt (rewrite_sys N C))"
unfolding rewrite_sys_def epsilon_filter_le_conv
using WCR_Union_rewrite_sys
by (metis (mono_tags, lifting))
qed
lemma (in ground_ordering) true_cls_insert_and_not_true_clsE:
assumes
"upair ` (rewrite_inside_gctxt (insert r R))⇧↓ ⊫ C" and
"¬ upair ` (rewrite_inside_gctxt R)⇧↓ ⊫ C"
obtains t t' where
"Pos (Upair t t') ∈# C" and
"t ≺⇩t t'" and
"(t, t') ∈ (rewrite_inside_gctxt (insert r R))⇧↓" and
"(t, t') ∉ (rewrite_inside_gctxt R)⇧↓"
proof -
assume hyp: "⋀t t'. Pos (Upair t t') ∈# C ⟹ t ≺⇩t t' ⟹ (t, t') ∈ (rewrite_inside_gctxt (insert r R))⇧↓ ⟹
(t, t') ∉ (rewrite_inside_gctxt R)⇧↓ ⟹ thesis"
from assms obtain L where
"L ∈# C" and
entails_L: "upair ` (rewrite_inside_gctxt (insert r R))⇧↓ ⊫l L" and
doesnt_entail_L: "¬ upair ` (rewrite_inside_gctxt R)⇧↓ ⊫l L"
by (meson true_cls_def)
have "totalp_on (set_uprod (atm_of L)) (≺⇩t)"
using totalp_less_trm totalp_on_subset by blast
then obtain t t' where "atm_of L = Upair t t'" and "t ≼⇩t t'"
using ex_ordered_Upair by metis
show ?thesis
proof (cases L)
case (Pos A)
hence L_def: "L = Pos (Upair t t')"
using ‹atm_of L = Upair t t'› by simp
moreover have "(t, t') ∈ (rewrite_inside_gctxt (insert r R))⇧↓"
using entails_L
unfolding L_def
unfolding true_lit_uprod_iff_true_lit_prod[OF sym_join]
by (simp add: true_lit_def)
moreover have "(t, t') ∉ (rewrite_inside_gctxt R)⇧↓"
using doesnt_entail_L
unfolding L_def
unfolding true_lit_uprod_iff_true_lit_prod[OF sym_join]
by (simp add: true_lit_def)
ultimately show ?thesis
using hyp ‹L ∈# C› ‹t ≼⇩t t'› by auto
next
case (Neg A)
hence L_def: "L = Neg (Upair t t')"
using ‹atm_of L = Upair t t'› by simp
have "(t, t') ∉ (rewrite_inside_gctxt (insert r R))⇧↓"
using entails_L
unfolding L_def
unfolding true_lit_uprod_iff_true_lit_prod[OF sym_join]
by (simp add: true_lit_def)
moreover have "(t, t') ∈ (rewrite_inside_gctxt R)⇧↓"
using doesnt_entail_L
unfolding L_def
unfolding true_lit_uprod_iff_true_lit_prod[OF sym_join]
by (simp add: true_lit_def)
moreover have "(rewrite_inside_gctxt R)⇧↓ ⊆ (rewrite_inside_gctxt (insert r R))⇧↓"
using join_mono rewrite_inside_gctxt_mono
by (metis subset_insertI)
ultimately have False
by auto
thus ?thesis ..
qed
qed
lemma (in ground_superposition_calculus) model_preconstruction:
fixes
N :: "'f gatom clause set" and
C :: "'f gatom clause"
defines
"entails ≡ λE C. upair ` (rewrite_inside_gctxt E)⇧↓ ⊫ C"
assumes "saturated N" and "{#} ∉ N" and C_in: "C ∈ N"
shows
"epsilon N C = {} ⟷ entails (rewrite_sys N C) C"
"⋀D. D ∈ N ⟹ C ≺⇩c D ⟹ entails (rewrite_sys N D) C"
unfolding atomize_all atomize_conj atomize_imp
using wfP_less_cls C_in
proof (induction C rule: wfP_induct_rule)
case (less C)
note IH = less.IH
from ‹{#} ∉ N› ‹C ∈ N› have "C ≠ {#}"
by metis
define I where
"I = (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
have "refl I"
by (simp only: I_def refl_join)
have "trans I"
unfolding I_def
using trans_join_rewrite_inside_gctxt_rewrite_sys .
have "sym I"
by (simp only: I_def sym_join)
have "compatible_with_gctxt I"
by (simp only: I_def compatible_with_gctxt_join compatible_with_gctxt_rewrite_inside_gctxt)
note I_interp = ‹refl I› ‹trans I› ‹sym I› ‹compatible_with_gctxt I›
have i: "(epsilon N C = {}) ⟷ entails (rewrite_sys N C) C"
proof (rule iffI)
show "entails (rewrite_sys N C) C ⟹ epsilon N C = {}"
unfolding entails_def rewrite_sys_def
by (metis (no_types) empty_iff equalityI mem_epsilonE rewrite_sys_def subsetI)
next
assume "epsilon N C = {}"
have cond_conv: "(∃L. L ∈# select C ∨ (select C = {#} ∧ is_maximal_lit L C ∧ is_neg L)) ⟷
(∃A. Neg A ∈# C ∧ (Neg A ∈# select C ∨ select C = {#} ∧ is_maximal_lit (Neg A) C))"
by (metis (no_types, opaque_lifting) is_pos_def literal_order.is_maximal_in_mset_iff
literal.disc(2) literal.exhaust mset_subset_eqD select_negative_lits select_subset)
show "entails (rewrite_sys N C) C"
proof (cases "∃L. is_maximal_lit L (select C) ∨ (select C = {#} ∧ is_maximal_lit L C ∧ is_neg L)")
case ex_neg_lit_sel_or_max: True
hence "∃A. Neg A ∈# C ∧ (is_maximal_lit (Neg A) (select C) ∨ select C = {#} ∧ is_maximal_lit (Neg A) C)"
by (metis is_pos_def literal.exhaust literal_order.is_maximal_in_mset_iff mset_subset_eqD
select_negative_lits select_subset)
then obtain s s' where
"Neg (Upair s s') ∈# C" and
sel_or_max: "select C = {#} ∧ is_maximal_lit (Neg (Upair s s')) C ∨ is_maximal_lit (Neg (Upair s s')) (select C)"
by (metis uprod_exhaust)
then obtain C' where
C_def: "C = add_mset (Neg (Upair s s')) C'"
by (metis mset_add)
show ?thesis
proof (cases "upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫l Pos (Upair s s')")
case True
hence "(s, s') ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
by (meson sym_join true_lit_simps(1) true_lit_uprod_iff_true_lit_prod(1))
have "s = s' ∨ s ≺⇩t s' ∨ s' ≺⇩t s"
using totalp_less_trm
by (metis totalpD)
thus ?thesis
proof (rule disjE)
assume "s = s'"
define ι :: "'f gatom clause inference" where
"ι = Infer [C] C'"
have "ground_eq_resolution C C'"
proof (rule ground_eq_resolutionI)
show "C = add_mset (Neg (Upair s s')) C'"
by (simp only: C_def)
next
show "Neg (Upair s s') = Neg (Upair s s)"
by (simp only: ‹s = s'›)
next
show "select C = {#} ∧ is_maximal_lit (s !≈ s') C ∨ is_maximal_lit (s !≈ s') (select C)"
using sel_or_max .
qed simp
hence "ι ∈ G_Inf"
by (auto simp only: ι_def G_Inf_def)
moreover have "⋀t. t ∈ set (prems_of ι) ⟹ t ∈ N"
using ‹C ∈ N›
by (simp add: ι_def)
ultimately have "ι ∈ Inf_from N"
by (auto simp: Inf_from_def)
hence "ι ∈ Red_I N"
using ‹saturated N›
by (auto simp: saturated_def)
then obtain DD where
DD_subset: "DD ⊆ N" and
"finite DD" and
DD_entails_C': "G_entails DD {C'}" and
ball_DD_lt_C: "∀D ∈ DD. D ≺⇩c C"
unfolding Red_I_def redundant_infer_def
by (auto simp: ι_def)
moreover have "∀D∈DD. entails (rewrite_sys N C) D"
using IH[THEN conjunct2, rule_format, of _ C]
using ‹C ∈ N› DD_subset ball_DD_lt_C
by blast
ultimately have "entails (rewrite_sys N C) C'"
using I_interp DD_entails_C'
unfolding entails_def G_entails_def
by (simp add: I_def true_clss_def)
then show "entails (rewrite_sys N C) C"
using C_def entails_def by simp
next
from ‹(s, s') ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓› obtain u where
s_u: "(s, u) ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧*" and
s'_u: "(s', u) ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧*"
by auto
moreover hence "u ≼⇩t s" and "u ≼⇩t s'"
using rhs_lesseq_trm_lhs_if_mem_rtrancl_rewrite_inside_gctxt_rewrite_sys by simp_all
moreover assume "s ≺⇩t s' ∨ s' ≺⇩t s"
ultimately obtain u⇩0 where
"s' ≺⇩t s ⟹ (s, u⇩0) : rewrite_inside_gctxt (rewrite_sys N C)"
"s ≺⇩t s' ⟹ (s', u⇩0) : rewrite_inside_gctxt (rewrite_sys N C)" and
"(u⇩0, u) : (rewrite_inside_gctxt (rewrite_sys N C))⇧*"
using ex_step_if_joinable[OF _ s_u s'_u]
by (metis asympD asymp_less_trm)
then obtain ctxt t t' where
s_eq_if: "s' ≺⇩t s ⟹ s = ctxt⟨t⟩⇩G" and
s'_eq_if: "s ≺⇩t s' ⟹ s' = ctxt⟨t⟩⇩G" and
"u⇩0 = ctxt⟨t'⟩⇩G" and
"(t, t') ∈ rewrite_sys N C"
by (smt (verit) Pair_inject ‹s ≺⇩t s' ∨ s' ≺⇩t s› asympD asymp_less_trm mem_Collect_eq
rewrite_inside_gctxt_def)
then obtain D where
"(t, t') ∈ epsilon N D" and "D ∈ N" and "D ≺⇩c C"
unfolding rewrite_sys_def epsilon_filter_le_conv by auto
then obtain D' where
D_def: "D = add_mset (Pos (Upair t t')) D'" and
sel_D: "select D = {#}" and
max_t_t': "is_strictly_maximal_lit (Pos (Upair t t')) D" and
"t' ≺⇩t t"
by (elim mem_epsilonE) fast
have superI: "ground_neg_superposition D C (add_mset (Neg (Upair s⇩1⟨t'⟩⇩G s⇩1')) (C' + D'))"
if "{s, s'} = {s⇩1⟨t⟩⇩G, s⇩1'}" and "s⇩1' ≺⇩t s⇩1⟨t⟩⇩G"
for s⇩1 s⇩1'
proof (rule ground_neg_superpositionI)
show "C = add_mset (Neg (Upair s s')) C'"
by (simp only: C_def)
next
show "D = add_mset (Pos (Upair t t')) D'"
by (simp only: D_def)
next
show "D ≺⇩c C"
using ‹D ≺⇩c C› .
next
show "select C = {#} ∧ is_maximal_lit (Neg (Upair s s')) C ∨ is_maximal_lit (s !≈ s') (select C)"
using sel_or_max .
next
show "select D = {#}"
using sel_D .
next
show "is_strictly_maximal_lit (Pos (Upair t t')) D"
using max_t_t' .
next
show "t' ≺⇩t t"
using ‹t' ≺⇩t t› .
next
from that(1) show "Neg (Upair s s') = Neg (Upair s⇩1⟨t⟩⇩G s⇩1')"
by fastforce
next
from that(2) show "s⇩1' ≺⇩t s⇩1⟨t⟩⇩G" .
qed simp_all
have "ground_neg_superposition D C (add_mset (Neg (Upair ctxt⟨t'⟩⇩G s')) (C' + D'))"
if ‹s' ≺⇩t s›
proof (rule superI)
from that show "{s, s'} = {ctxt⟨t⟩⇩G, s'}"
using s_eq_if by simp
next
from that show "s' ≺⇩t ctxt⟨t⟩⇩G"
using s_eq_if by simp
qed
moreover have "ground_neg_superposition D C (add_mset (Neg (Upair ctxt⟨t'⟩⇩G s)) (C' + D'))"
if ‹s ≺⇩t s'›
proof (rule superI)
from that show "{s, s'} = {ctxt⟨t⟩⇩G, s}"
using s'_eq_if by auto
next
from that show "s ≺⇩t ctxt⟨t⟩⇩G"
using s'_eq_if by simp
qed
ultimately obtain CD where
super: "ground_neg_superposition D C CD" and
CD_eq1: "s' ≺⇩t s ⟹ CD = add_mset (Neg (Upair ctxt⟨t'⟩⇩G s')) (C' + D')" and
CD_eq2: "s ≺⇩t s' ⟹ CD = add_mset (Neg (Upair ctxt⟨t'⟩⇩G s)) (C' + D')"
using ‹s ≺⇩t s' ∨ s' ≺⇩t s› s'_eq_if s_eq_if by metis
define ι :: "'f gatom clause inference" where
"ι = Infer [D, C] CD"
have "ι ∈ G_Inf"
using ground_superposition_if_ground_neg_superposition[OF super]
by (auto simp only: ι_def G_Inf_def)
moreover have "⋀t. t ∈ set (prems_of ι) ⟹ t ∈ N"
using ‹C ∈ N› ‹D ∈ N›
by (auto simp add: ι_def)
ultimately have "ι ∈ Inf_from N"
by (auto simp: Inf_from_def)
hence "ι ∈ Red_I N"
using ‹saturated N›
by (auto simp: saturated_def)
then obtain DD where
DD_subset: "DD ⊆ N" and
"finite DD" and
DD_entails_CD: "G_entails (insert D DD) {CD}" and
ball_DD_lt_C: "∀D∈DD. D ≺⇩c C"
unfolding Red_I_def redundant_infer_def mem_Collect_eq
by (auto simp: ι_def)
moreover have "∀D∈ insert D DD. entails (rewrite_sys N C) D"
using IH[THEN conjunct2, rule_format, of _ C]
using ‹C ∈ N› ‹D ∈ N› ‹D ≺⇩c C› DD_subset ball_DD_lt_C
by (metis in_mono insert_iff)
ultimately have "entails (rewrite_sys N C) CD"
using I_interp DD_entails_CD
unfolding entails_def G_entails_def
by (simp add: I_def true_clss_def)
moreover have "¬ entails (rewrite_sys N C) D'"
unfolding entails_def
using false_cls_if_productive_epsilon(2)[OF _ ‹C ∈ N› ‹D ≺⇩c C›]
by (metis D_def ‹(t, t') ∈ epsilon N D› add_mset_remove_trivial empty_iff
epsilon_eq_empty_or_singleton singletonD)
moreover have "¬ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫l
(Neg (Upair ctxt⟨t'⟩⇩G s'))"
if "s' ≺⇩t s"
using ‹(u⇩0, u) ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧*› ‹u⇩0 = ctxt⟨t'⟩⇩G› s'_u by blast
moreover have "¬ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫l
(Neg (Upair ctxt⟨t'⟩⇩G s))"
if "s ≺⇩t s'"
using ‹(u⇩0, u) ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧*› ‹u⇩0 = ctxt⟨t'⟩⇩G› s_u by blast
ultimately show "entails (rewrite_sys N C) C"
unfolding entails_def C_def
using ‹s ≺⇩t s' ∨ s' ≺⇩t s› CD_eq1 CD_eq2 by fast
qed
next
case False
thus ?thesis
using ‹Neg (Upair s s') ∈# C›
by (auto simp add: entails_def true_cls_def)
qed
next
case False
hence "select C = {#}"
using literal_order.ex_maximal_in_mset by blast
from False obtain A where Pos_A_in: "Pos A ∈# C" and max_Pos_A: "is_maximal_lit (Pos A) C"
using ‹select C = {#}› literal_order.ex_maximal_in_mset[OF ‹C ≠ {#}›]
by (metis is_pos_def literal_order.is_maximal_in_mset_iff)
then obtain C' where C_def: "C = add_mset (Pos A) C'"
by (meson mset_add)
have "totalp_on (set_uprod A) (≺⇩t)"
using totalp_less_trm totalp_on_subset by blast
then obtain s s' where A_def: "A = Upair s s'" and "s' ≼⇩t s"
using ex_ordered_Upair[of A "(≺⇩t)"] by fastforce
show ?thesis
proof (cases "upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C' ∨ s = s'")
case True
then show ?thesis
using ‹epsilon N C = {}›
using A_def C_def entails_def by blast
next
case False
from False have "¬ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C'"
by simp
from False have "s' ≺⇩t s"
using ‹s' ≼⇩t s› asymp_less_trm[THEN asympD] by auto
then show ?thesis
proof (cases "is_strictly_maximal_lit (Pos A) C")
case strictly_maximal: True
show ?thesis
proof (cases "s ∈ NF (rewrite_inside_gctxt (rewrite_sys N C))")
case s_irreducible: True
hence e_or_f_doesnt_hold: "upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C ∨
upair ` (rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C)))⇧↓ ⊫ C'"
using ‹epsilon N C = {}›[unfolded epsilon.simps[of N C]]
using ‹C ∈ N› C_def ‹select C = {#}› strictly_maximal ‹s' ≺⇩t s›
unfolding A_def rewrite_sys_def
by (smt (verit, best) Collect_empty_eq)
show ?thesis
proof (cases "upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C")
case e_doesnt_hold: True
thus ?thesis
by (simp add: entails_def)
next
case e_holds: False
hence R_C_doesnt_entail_C': "¬ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C'"
unfolding C_def by simp
show ?thesis
proof (cases "upair ` (rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C)))⇧↓ ⊫ C'")
case f_doesnt_hold: True
then obtain C'' t t' where C'_def: "C' = add_mset (Pos (Upair t t')) C''" and
"t' ≺⇩t t" and
"(t, t') ∈ (rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C)))⇧↓" and
"(t, t') ∉ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
using f_doesnt_hold R_C_doesnt_entail_C'
using true_cls_insert_and_not_true_clsE
by (metis insert_DiffM join_sym Upair_sym)
have "Pos (Upair t t') ≺⇩l Pos (Upair s s')"
using strictly_maximal
by (simp add: A_def C'_def C_def literal_order.is_greatest_in_mset_iff)
have "¬ (t ≺⇩t s)"
proof (rule notI)
assume "t ≺⇩t s"
have "(t, t') ∈ (rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C)))⇧↓ ⟷
(t, t') ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
unfolding rewrite_inside_gctxt_union[of "{(s, s')}" "rewrite_sys N C", simplified]
proof (rule mem_join_union_iff_mem_join_rhs')
show "⋀t1 t2. (t1, t2) ∈ rewrite_inside_gctxt {(s, s')} ⟹ t ≺⇩t t1 ∧ t' ≺⇩t t1"
using ‹t ≺⇩t s› ‹t' ≺⇩t t›
by (smt (verit, ccfv_threshold) fst_conv singletonD
less_trm_const_lhs_if_mem_rewrite_inside_gctxt transpD transp_less_trm)
next
show "⋀t1 t2. (t1, t2) ∈ rewrite_inside_gctxt (rewrite_sys N C) ⟹ t2 ≺⇩t t1"
using rhs_less_trm_lhs_if_mem_rewrite_inside_gctxt_rewrite_sys by force
qed
thus False
using ‹(t, t') ∈ (rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C)))⇧↓›
using ‹(t, t') ∉ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓›
by metis
qed
moreover have "¬ (s ≺⇩t t)"
proof (rule notI)
assume "s ≺⇩t t"
hence "multp (≺⇩t) {#s, s'#} {#t, t'#}"
using ‹s' ≺⇩t s› ‹t' ≺⇩t t›
using one_step_implies_multp[of _ _ _ "{#}", simplified]
by (metis (mono_tags, opaque_lifting) empty_not_add_mset insert_iff
set_mset_add_mset_insert set_mset_empty singletonD transpD transp_less_trm)
hence "Pos (Upair s s') ≺⇩l Pos (Upair t t')"
by (simp add: less_lit_def)
thus False
using ‹t ≈ t' ≺⇩l s ≈ s'› by order
qed
ultimately have "t = s"
by order
hence "t' ≺⇩t s'"
using ‹t' ≺⇩t t› ‹s' ≺⇩t s›
using ‹Pos (Upair t t') ≺⇩l Pos (Upair s s')›
unfolding less_lit_def
by (simp add: multp_cancel_add_mset transp_less_trm)
obtain t'' where
"(t, t'') ∈ rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C))" and
"(t'', t') ∈ (rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C)))⇧↓"
using ‹(t, t') ∈ (rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C)))⇧↓›[THEN joinD]
using ex_step_if_joinable[OF asymp_less_trm _ _ _ ‹t' ≺⇩t t›]
by (smt (verit, ccfv_threshold) ‹t = s› converse_rtranclE insertCI joinI_right
join_sym r_into_rtrancl mem_rewrite_inside_gctxt_if_mem_rewrite_rules rtrancl_join_join)
have "t'' ≺⇩t t"
proof (rule predicate_holds_of_mem_rewrite_inside_gctxt[of _ _ _ "λx y. y ≺⇩t x"])
show "(t, t'') ∈ rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C))"
using ‹(t, t'') ∈ rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C))› .
next
show "⋀t1 t2. (t1, t2) ∈ insert (s, s') (rewrite_sys N C) ⟹ t2 ≺⇩t t1"
by (metis ‹s' ≺⇩t s› insert_iff old.prod.inject rhs_lt_lhs_if_mem_rewrite_sys)
next
show "⋀t1 t2 ctxt σ. (t1, t2) ∈ insert (s, s') (rewrite_sys N C) ⟹
t2 ≺⇩t t1 ⟹ ctxt⟨t2⟩⇩G ≺⇩t ctxt⟨t1⟩⇩G"
by (simp only: less_trm_compatible_with_gctxt)
qed
have "(t, t'') ∈ rewrite_inside_gctxt {(s, s')}"
using ‹(t, t'') ∈ rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C))›
using ‹t = s› s_irreducible mem_rewrite_step_union_NF
using rewrite_inside_gctxt_insert by blast
hence "∃ctxt. s = ctxt⟨s⟩⇩G ∧ t'' = ctxt⟨s'⟩⇩G"
by (simp add: ‹t = s› rewrite_inside_gctxt_def)
hence "t'' = s'"
by (metis gctxt_ident_iff_eq_GHole)
moreover have "(t'', t') ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
proof (rule mem_join_union_iff_mem_join_rhs'[THEN iffD1])
show "(t'', t') ∈ (rewrite_inside_gctxt {(s, s')} ∪
rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
using ‹(t'', t') ∈ (rewrite_inside_gctxt (insert (s, s') (rewrite_sys N C)))⇧↓›
using rewrite_inside_gctxt_union[of "{_}", simplified] by metis
next
show "⋀t1 t2. (t1, t2) ∈ rewrite_inside_gctxt (rewrite_sys N C) ⟹ t2 ≺⇩t t1"
using rhs_less_trm_lhs_if_mem_rewrite_inside_gctxt_rewrite_sys .
next
show "⋀t1 t2. (t1, t2) ∈ rewrite_inside_gctxt {(s, s')} ⟹ t'' ≺⇩t t1 ∧ t' ≺⇩t t1"
using ‹t' ≺⇩t t› ‹t'' ≺⇩t t›
unfolding ‹t = s›
using less_trm_const_lhs_if_mem_rewrite_inside_gctxt by fastforce
qed
ultimately have "(s', t') ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
by simp
let ?concl = "add_mset (Neg (Upair s' t')) (add_mset (Pos (Upair t t')) C'')"
define ι :: "'f gatom clause inference" where
"ι = Infer [C] ?concl"
have eq_fact: "ground_eq_factoring C ?concl"
proof (rule ground_eq_factoringI)
show "C = add_mset (Pos (Upair s s')) (add_mset (Pos (Upair t t')) C'')"
by (simp add: C_def C'_def A_def)
next
show "select C = {#}"
using ‹select C = {#}› .
next
show "is_maximal_lit (Pos (Upair s s')) C"
by (metis A_def max_Pos_A)
next
show "s' ≺⇩t s"
using ‹s' ≺⇩t s› .
next
show "Pos (Upair t t') = Pos (Upair s t')"
unfolding ‹t = s› ..
next
show "add_mset (Neg (Upair s' t')) (add_mset (Pos (Upair t t')) C'') =
add_mset (Neg (Upair s' t')) (add_mset (Pos (Upair s t')) C'')"
by (auto simp add: ‹t = s›)
qed simp_all
hence "ι ∈ G_Inf"
by (auto simp: ι_def G_Inf_def)
moreover have "⋀t. t ∈ set (prems_of ι) ⟹ t ∈ N"
using ‹C ∈ N›
by (auto simp add: ι_def)
ultimately have "ι ∈ Inf_from N"
by (auto simp: Inf_from_def)
hence "ι ∈ Red_I N"
using ‹saturated N›
by (auto simp: saturated_def)
then obtain DD where
DD_subset: "DD ⊆ N" and
"finite DD" and
DD_entails_C': "G_entails DD {?concl}" and
ball_DD_lt_C: "∀D∈DD. D ≺⇩c C"
unfolding Red_I_def redundant_infer_def
by (auto simp: ι_def)
have "∀D∈DD. entails (rewrite_sys N C) D"
using IH[THEN conjunct2, rule_format, of _ C]
using ‹C ∈ N› DD_subset ball_DD_lt_C
by blast
hence "entails (rewrite_sys N C) ?concl"
unfolding entails_def I_def[symmetric]
using DD_entails_C'[unfolded G_entails_def]
using I_interp
by (simp add: true_clss_def)
thus "entails (rewrite_sys N C) C"
unfolding entails_def I_def[symmetric]
unfolding C_def C'_def A_def
using I_def ‹(s', t') ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓› by blast
next
case f_holds: False
hence False
using e_or_f_doesnt_hold e_holds by metis
thus ?thesis ..
qed
qed
next
case s_reducible: False
hence "∃ss. (s, ss) ∈ rewrite_inside_gctxt (rewrite_sys N C)"
unfolding NF_def by auto
then obtain ctxt t t' D where
"D ∈ N" and
"D ≺⇩c C" and
"(t, t') ∈ epsilon N D" and
"s = ctxt⟨t⟩⇩G"
using epsilon_filter_le_conv
by (auto simp: rewrite_inside_gctxt_def rewrite_sys_def)
obtain D' where
D_def: "D = add_mset (Pos (Upair t t')) D'" and
"select D = {#}" and
max_t_t': "is_strictly_maximal_lit (t ≈ t') D" and
"t' ≺⇩t t"
using ‹(t, t') ∈ epsilon N D›
by (elim mem_epsilonE) simp
let ?concl = "add_mset (Pos (Upair ctxt⟨t'⟩⇩G s')) (C' + D')"
define ι :: "'f gatom clause inference" where
"ι = Infer [D, C] ?concl"
have super: "ground_pos_superposition D C ?concl"
proof (rule ground_pos_superpositionI)
show "C = add_mset (Pos (Upair s s')) C'"
by (simp only: C_def A_def)
next
show "D = add_mset (Pos (Upair t t')) D'"
by (simp only: D_def)
next
show "D ≺⇩c C"
using ‹D ≺⇩c C› .
next
show "select D = {#}"
using ‹select D = {#}› .
next
show "select C = {#}"
using ‹select C = {#}› .
next
show "is_strictly_maximal_lit (s ≈ s') C"
using A_def strictly_maximal by simp
next
show "is_strictly_maximal_lit (t ≈ t') D"
using max_t_t' .
next
show "t' ≺⇩t t"
using ‹t' ≺⇩t t› .
next
show "Pos (Upair s s') = Pos (Upair ctxt⟨t⟩⇩G s')"
by (simp only: ‹s = ctxt⟨t⟩⇩G›)
next
show "s' ≺⇩t ctxt⟨t⟩⇩G"
using ‹s' ≺⇩t s›
unfolding ‹s = ctxt⟨t⟩⇩G› .
qed simp_all
hence "ι ∈ G_Inf"
using ground_superposition_if_ground_pos_superposition
by (auto simp: ι_def G_Inf_def)
moreover have "⋀t. t ∈ set (prems_of ι) ⟹ t ∈ N"
using ‹C ∈ N› ‹D ∈ N›
by (auto simp add: ι_def)
ultimately have "ι ∈ Inf_from N"
by (auto simp only: Inf_from_def)
hence "ι ∈ Red_I N"
using ‹saturated N›
by (auto simp only: saturated_def)
then obtain DD where
DD_subset: "DD ⊆ N" and
"finite DD" and
DD_entails_concl: "G_entails (insert D DD) {?concl}" and
ball_DD_lt_C: "∀D∈DD. D ≺⇩c C"
unfolding Red_I_def redundant_infer_def mem_Collect_eq
by (auto simp: ι_def)
moreover have "∀D∈ insert D DD. entails (rewrite_sys N C) D"
using IH[THEN conjunct2, rule_format, of _ C]
using ‹C ∈ N› ‹D ∈ N› ‹D ≺⇩c C› DD_subset ball_DD_lt_C
by (metis in_mono insert_iff)
ultimately have "entails (rewrite_sys N C) ?concl"
using I_interp DD_entails_concl
unfolding entails_def G_entails_def
by (simp add: I_def true_clss_def)
moreover have "¬ entails (rewrite_sys N C) D'"
unfolding entails_def
using false_cls_if_productive_epsilon(2)[OF _ ‹C ∈ N› ‹D ≺⇩c C›]
by (metis D_def ‹(t, t') ∈ epsilon N D› add_mset_remove_trivial empty_iff
epsilon_eq_empty_or_singleton singletonD)
ultimately have "entails (rewrite_sys N C) {#Pos (Upair ctxt⟨t'⟩⇩G s')#}"
unfolding entails_def
using ‹¬ upair ` (rewrite_inside_gctxt (rewrite_sys N C))⇧↓ ⊫ C'›
by fastforce
hence "(ctxt⟨t'⟩⇩G, s') ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
by (simp add: entails_def true_cls_def uprod_mem_image_iff_prod_mem[OF sym_join])
moreover have "(ctxt⟨t⟩⇩G, ctxt⟨t'⟩⇩G) ∈ rewrite_inside_gctxt (rewrite_sys N C)"
using ‹(t, t') ∈ epsilon N D› ‹D ∈ N› ‹D ≺⇩c C› rewrite_sys_def epsilon_filter_le_conv
by (auto simp: rewrite_inside_gctxt_def)
ultimately have "(ctxt⟨t⟩⇩G, s') ∈ (rewrite_inside_gctxt (rewrite_sys N C))⇧↓"
using r_into_rtrancl rtrancl_join_join by metis
hence "entails (rewrite_sys N C) {#Pos (Upair ctxt⟨t⟩⇩G s')#}"
unfolding entails_def true_cls_def by auto
thus ?thesis
using A_def C_def ‹s = ctxt⟨t⟩⇩G› entails_def by fastforce
qed
next
case False
hence "2 ≤ count C (Pos A)"
using max_Pos_A
by (metis literal_order.count_ge_2_if_maximal_in_mset_and_not_greatest_in_mset)
then obtain C' where C_def: "C = add_mset (Pos A) (add_mset (Pos A) C')"
using two_le_countE by metis
define ι :: "'f gatom clause inference" where
"ι = Infer [C] (add_mset (Pos (Upair s s')) (add_mset (Neg (Upair s' s')) C'))"
let ?concl = "add_mset (Pos (Upair s s')) (add_mset (Neg (Upair s' s')) C')"
have eq_fact: "ground_eq_factoring C ?concl"
proof (rule ground_eq_factoringI)
show "C = add_mset (Pos A) (add_mset (Pos A) C')"
by (simp add: C_def)
next
show "Pos A = Pos (Upair s s')"
by (simp add: A_def)
next
show "Pos A = Pos (Upair s s')"
by (simp add: A_def)
next
show "select C = {#}"
using ‹select C = {#}› .
next
show "is_maximal_lit (Pos A) C"
using max_Pos_A .
next
show "s' ≺⇩t s"
using ‹s' ≺⇩t s› .
qed simp_all
hence "ι ∈ G_Inf"
by (auto simp: ι_def G_Inf_def)
moreover have "⋀t. t ∈ set (prems_of ι) ⟹ t ∈ N"
using ‹C ∈ N›
by (auto simp add: ι_def)
ultimately have "ι ∈ Inf_from N"
by (auto simp: Inf_from_def)
hence "ι ∈ Red_I N"
using ‹saturated N›
by (auto simp: saturated_def)
then obtain DD where
DD_subset: "DD ⊆ N" and
"finite DD" and
DD_entails_concl: "G_entails DD {?concl}" and
ball_DD_lt_C: "∀D∈DD. D ≺⇩c C"
unfolding Red_I_def redundant_infer_def mem_Collect_eq
by (auto simp: ι_def)
moreover have "∀D∈DD. entails (rewrite_sys N C) D"
using IH[THEN conjunct2, rule_format, of _ C]
using ‹C ∈ N› DD_subset ball_DD_lt_C
by blast
ultimately have "entails (rewrite_sys N C) ?concl"
using I_interp DD_entails_concl
unfolding entails_def G_entails_def
by (simp add: I_def true_clss_def)
then show ?thesis
by (simp add: entails_def A_def C_def joinI_right pair_imageI)
qed
qed
qed
qed
moreover have iib: "entails (rewrite_sys N D) C" if "D ∈ N" and "C ≺⇩c D" for D
using epsilon_eq_empty_or_singleton[of N C, folded ]
proof (elim disjE exE)
assume "epsilon N C = {}"
hence "entails (rewrite_sys N C) C"
unfolding i by simp
thus ?thesis
using lift_entailment_to_Union(2)[OF ‹C ∈ N› _ that]
by (simp only: entails_def)
next
fix l r assume "epsilon N C = {(l, r)}"
thus ?thesis
using true_cls_if_productive_epsilon(2)[OF ‹epsilon N C = {(l, r)}› that]
by (simp only: entails_def)
qed
ultimately show ?case
by metis
qed
lemma (in ground_superposition_calculus) model_construction:
fixes
N :: "'f gatom clause set" and
C :: "'f gatom clause"
defines
"entails ≡ λE C. upair ` (rewrite_inside_gctxt E)⇧↓ ⊫ C"
assumes "saturated N" and "{#} ∉ N" and C_in: "C ∈ N"
shows "entails (⋃D ∈ N. epsilon N D) C"
using epsilon_eq_empty_or_singleton[of N C]
proof (elim disjE exE)
assume "epsilon N C = {}"
hence "entails (rewrite_sys N C) C"
using model_preconstruction(1)[OF assms(2,3,4)] by (metis entails_def)
thus ?thesis
using lift_entailment_to_Union(1)[OF ‹C ∈ N›]
by (simp only: entails_def)
next
fix l r assume "epsilon N C = {(l, r)}"
thus ?thesis
using true_cls_if_productive_epsilon(1)[OF ‹epsilon N C = {(l, r)}›]
by (simp only: entails_def)
qed
subsection ‹Static Refutational Completeness›
lemma (in ground_superposition_calculus) statically_complete:
fixes N :: "'f gatom clause set"
assumes "saturated N" and "G_entails N {{#}}"
shows "{#} ∈ N"
using ‹G_entails N {{#}}›
proof (rule contrapos_pp)
assume "{#} ∉ N"
define I :: "'f gterm rel" where
"I = (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))⇧↓"
show "¬ G_entails N G_Bot"
unfolding G_entails_def not_all not_imp
proof (intro exI conjI)
show "refl I"
by (simp only: I_def refl_join)
next
show "trans I"
unfolding I_def
proof (rule trans_join)
have "wf ((rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))¯)"
proof (rule wf_converse_rewrite_inside_gctxt)
fix s t
assume "(s, t) ∈ (⋃D ∈ N. epsilon N D)"
then obtain C where "C ∈ N" "(s, t) ∈ epsilon N C"
by auto
thus "t ≺⇩t s"
by (auto elim: mem_epsilonE)
qed auto
thus "SN (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))"
unfolding SN_iff_wf .
next
show "WCR (rewrite_inside_gctxt (⋃D ∈ N. epsilon N D))"
using WCR_Union_rewrite_sys .
qed
next
show "sym I"
by (simp only: I_def sym_join)
next
show "compatible_with_gctxt I"
unfolding I_def
by (simp only: I_def compatible_with_gctxt_join compatible_with_gctxt_rewrite_inside_gctxt)
next
show "upair ` I ⊫s N"
unfolding I_def
using model_construction[OF ‹saturated N› ‹{#} ∉ N›]
by (simp add: true_clss_def)
next
show "¬ upair ` I ⊫s G_Bot"
by simp
qed
qed
sublocale ground_superposition_calculus ⊆ statically_complete_calculus where
Bot = G_Bot and
Inf = G_Inf and
entails = G_entails and
Red_I = Red_I and
Red_F = Red_F
proof unfold_locales
fix B :: "'f gatom clause" and N :: "'f gatom clause set"
assume "B ∈ G_Bot" and "saturated N"
hence "B = {#}"
by simp
assume "G_entails N {B}"
hence "{#} ∈ N"
unfolding ‹B = {#}›
using statically_complete[OF ‹saturated N›] by argo
thus "∃B'∈G_Bot. B' ∈ N"
by auto
qed
end