Theory Ground_Ordering
theory Ground_Ordering
imports
Ground_Clause
Transitive_Closure_Extra
Clausal_Calculus_Extra
Min_Max_Least_Greatest.Min_Max_Least_Greatest_Multiset
Term_Ordering_Lifting
begin
locale ground_ordering = term_ordering_lifting less_trm
for
less_trm :: "'f gterm ⇒ 'f gterm ⇒ bool" (infix "≺⇩t" 50) +
assumes
wfP_less_trm[intro]: "wfP (≺⇩t)" and
totalp_less_trm[intro]: "totalp (≺⇩t)" and
less_trm_compatible_with_gctxt[simp]: "⋀ctxt t t'. t ≺⇩t t' ⟹ ctxt⟨t⟩⇩G ≺⇩t ctxt⟨t'⟩⇩G" and
less_trm_if_subterm[simp]: "⋀t ctxt. ctxt ≠ □⇩G ⟹ t ≺⇩t ctxt⟨t⟩⇩G"
begin
abbreviation lesseq_trm (infix "≼⇩t" 50) where
"lesseq_trm ≡ (≺⇩t)⇧=⇧="
lemma lesseq_trm_if_subtermeq: "t ≼⇩t ctxt⟨t⟩⇩G"
using less_trm_if_subterm
by (metis gctxt_ident_iff_eq_GHole reflclp_iff)
abbreviation lesseq_lit (infix "≼⇩l" 50) where
"lesseq_lit ≡ (≺⇩l)⇧=⇧="
abbreviation lesseq_cls (infix "≼⇩c" 50) where
"lesseq_cls ≡ (≺⇩c)⇧=⇧="
lemma wfP_less_lit[simp]: "wfp (≺⇩l)"
unfolding less_lit_def
using wfP_less_trm wfP_multp wfP_if_convertible_to_wfP by meson
lemma wfP_less_cls[simp]: "wfp (≺⇩c)"
using wfP_less_lit wfP_multp less_cls_def by metis
sublocale term_order: linorder lesseq_trm less_trm
proof unfold_locales
show "⋀x y. x ≼⇩t y ∨ y ≼⇩t x"
by (metis reflclp_iff totalpD totalp_less_trm)
qed
sublocale literal_order: linorder lesseq_lit less_lit
proof unfold_locales
have "totalp_on A (≺⇩l)" for A
proof (rule totalp_onI)
fix L1 L2 :: "'f gatom literal"
assume "L1 ≠ L2"
show "L1 ≺⇩l L2 ∨ L2 ≺⇩l L1"
unfolding less_lit_def
proof (rule totalp_multp[THEN totalpD])
show "totalp (≺⇩t)"
using totalp_less_trm .
next
show "transp (≺⇩t)"
using transp_less_trm .
next
obtain x1 y1 x2 y2 :: "'f gterm" where
"atm_of L1 = Upair x1 y1" and "atm_of L2 = Upair x2 y2"
using uprod_exhaust by metis
thus "mset_lit L1 ≠ mset_lit L2"
using ‹L1 ≠ L2›
by (cases L1; cases L2) (auto simp add: add_eq_conv_ex)
qed
qed
thus "⋀x y. x ≼⇩l y ∨ y ≼⇩l x"
by (metis reflclp_iff totalpD)
qed
sublocale clause_order: linorder lesseq_cls less_cls
proof unfold_locales
show "⋀x y. x ≼⇩c y ∨ y ≼⇩c x"
unfolding less_cls_def
using totalp_multp[OF literal_order.totalp_on_less literal_order.transp_on_less]
by (metis reflclp_iff totalpD)
qed
abbreviation is_maximal_lit :: "'f gatom literal ⇒ 'f gatom clause ⇒ bool" where
"is_maximal_lit L M ≡ is_maximal_in_mset_wrt (≺⇩l) M L"
abbreviation is_strictly_maximal_lit :: "'f gatom literal ⇒ 'f gatom clause ⇒ bool" where
"is_strictly_maximal_lit L M ≡ is_greatest_in_mset_wrt (≺⇩l) M L"
lemma less_trm_compatible_with_gctxt':
assumes "ctxt⟨t⟩⇩G ≺⇩t ctxt⟨t'⟩⇩G"
shows "t ≺⇩t t'"
proof(rule ccontr)
assume "¬ t ≺⇩t t'"
hence "t' ≼⇩t t"
by order
show False
proof(cases "t' = t")
case True
then have "ctxt⟨t⟩⇩G = ctxt⟨t'⟩⇩G"
by blast
then show False
using assms by order
next
case False
then have "t' ≺⇩t t"
using ‹t' ≼⇩t t› by order
then have "ctxt⟨t'⟩⇩G ≺⇩t ctxt⟨t⟩⇩G"
using less_trm_compatible_with_gctxt by metis
then show ?thesis
using assms by order
qed
qed
lemma less_trm_compatible_with_gctxt_iff: "ctxt⟨t⟩⇩G ≺⇩t ctxt⟨t'⟩⇩G ⟷ t ≺⇩t t'"
using less_trm_compatible_with_gctxt less_trm_compatible_with_gctxt'
by blast
lemma context_less_term_lesseq:
assumes
"⋀t. ctxt⟨t⟩⇩G ≺⇩t ctxt'⟨t⟩⇩G"
"t ≼⇩t t'"
shows "ctxt⟨t⟩⇩G ≺⇩t ctxt'⟨t'⟩⇩G"
using assms less_trm_compatible_with_gctxt
by (metis reflclp_iff term_order.dual_order.strict_trans)
lemma context_lesseq_term_less:
assumes
"⋀t. ctxt⟨t⟩⇩G ≼⇩t ctxt'⟨t⟩⇩G"
"t ≺⇩t t'"
shows "ctxt⟨t⟩⇩G ≺⇩t ctxt'⟨t'⟩⇩G"
using assms less_trm_compatible_with_gctxt term_order.dual_order.strict_trans1
by blast
end
end