Theory Sturm_Ex
section ‹Example usage of the ``sturm'' method›
theory Sturm_Ex
imports "../Sturm"
begin
text ‹
In this section, we give a variety of statements about real polynomials that can b
proven by the \emph{sturm} method.
›
lemma
"∀x::real. x^2 + 1 ≠ 0"
by sturm
lemma
fixes x :: real
shows "x^2 + 1 ≠ 0" by sturm
lemma "(x::real) > 1 ⟹ x^3 > 1" by sturm
lemma "∀x::real. x*x ≠ -1" by sturm
schematic_goal A:
"card {x::real. -0.010831 < x ∧ x < 0.010831 ∧
1/120*x^5 + 1/24*x^4 +1/6*x^3 - 49/16777216*x^2 - 17/2097152*x = 0}
= ?n"
by sturm
lemma "card {x::real. x^3 + x = 2*x^2 ∧ x^3 - 6*x^2 + 11*x = 6} = 1"
by sturm
schematic_goal "card {x::real. x^3 + x = 2*x^2 ∨ x^3 - 6*x^2 + 11*x = 6} = ?n" by sturm
lemma
"card {x::real. -0.010831 < x ∧ x < 0.010831 ∧
poly [:0, -17/2097152, -49/16777216, 1/6, 1/24, 1/120:] x = 0} = 3"
by sturm
lemma "∀x::real. x*x ≠ 0 ∨ x*x - 1 ≠ 2*x" by sturm
lemma "(x::real)*x+1 ≠ 0 ∧ (x^2+1)*(x^2+2) ≠ 0" by sturm
text‹3 examples related to continued fraction approximants to exp: LCP›
lemma fixes x::real
shows "-7.29347719 ≤ x ⟹ 0 < x^5 + 30*x^4 + 420*x^3 + 3360*x^2 + 15120*x + 30240"
by sturm
lemma fixes x::real
shows "0 < x^6 + 42*x^5 + 840*x^4 + 10080*x^3 + 75600*x⇧2 + 332640*x + 665280"
by sturm
schematic_goal "card {x::real. x^7 + 56*x^6 + 1512*x^5 + 25200*x^4 + 277200*x^3 + 1995840*x^2 + 8648640*x = -17297280} = ?n"
by sturm
end