Theory Data
section ‹Data Space Assignments›
theory Data
imports DataSpace
begin
subsection ‹Total data space assignments›
definition
Data :: "['d list, 'd dataspace]
=> bool" where
"Data L D = (((length L) = (PartNum D)) ∧
(∀ i ∈ {n. n < (PartNum D)}. (L!i) ∈ (PartDom D i)))"
lemma Data_EmptySet:
"([@ t. True], Abs_dataspace [UNIV])∈ { (L,D) | L D. Data L D }"
apply (unfold Data_def PartDom_def)
apply auto
apply (subst Abs_dataspace_inverse)
apply auto
done
definition
"data =
{ (L,D) |
(L::('d list))
(D::('d dataspace)).
Data L D }"
typedef 'd data = "data :: ('d list * 'd dataspace) set"
unfolding data_def
apply (rule exI)
apply (rule Data_EmptySet)
done
definition
DataValue :: "('d data) => ('d list)" where
"DataValue = fst o Rep_data"
definition
DataSpace :: "('d data) => ('d dataspace)" where
"DataSpace = snd o Rep_data"
definition
DataPart :: "['d data, nat] => 'd" ("(_ !P!/ _)" [10,11]10) where
"DataPart d n = (DataValue d) ! n"
lemma Rep_data_tuple:
"Rep_data D = (DataValue D, DataSpace D)"
by (unfold DataValue_def DataSpace_def, simp)
lemma Rep_data_select:
"(DataValue D, DataSpace D) ∈ data"
apply (subst Rep_data_tuple [THEN sym])
apply (rule Rep_data)
done
lemma Data_select:
"Data (DataValue D) (DataSpace D)"
apply (cut_tac D=D in Rep_data_select)
apply (unfold data_def)
apply auto
done
lemma length_DataValue_PartNum [simp]:
"length (DataValue D) = PartNum (Data.DataSpace D)"
apply (cut_tac D=D in Data_select)
apply (unfold Data_def)
apply auto
done
lemma DataValue_PartDom [simp]:
"i < PartNum (Data.DataSpace D) ⟹
DataValue D ! i ∈ PartDom (Data.DataSpace D) i"
apply (cut_tac D=D in Data_select)
apply (unfold Data_def)
apply auto
done
lemma DataPart_PartDom [simp]:
"i < PartNum (Data.DataSpace d) ⟶ (d !P! i) ∈ ((Data.DataSpace d) !D! i)"
apply (unfold DataPart_def)
apply auto
done
subsection ‹Partial data space assignments›
definition
PData :: "['d option list, 'd dataspace] => bool" where
"PData L D == ((length L) = (PartNum D)) ∧
(∀ i ∈ {n. n < (PartNum D)}.
(L!i) ≠ None ⟶ the (L!i) ∈ (PartDom D i))"
lemma PData_EmptySet:
"([Some (@ t. True)], Abs_dataspace [UNIV]) ∈ { (L,D) | L D. PData L D }"
apply (unfold PData_def PartDom_def)
apply auto
apply (subst Abs_dataspace_inverse)
apply auto
done
definition
"pdata =
{ (L,D) |
(L::('d option list))
(D::('d dataspace)).
PData L D }"
typedef 'd pdata = "pdata :: ('d option list * 'd dataspace) set"
unfolding pdata_def
apply (rule exI)
apply (rule PData_EmptySet)
done
definition
PDataValue :: "('d pdata) => ('d option list)" where
"PDataValue = fst o Rep_pdata"
definition
PDataSpace :: "('d pdata) => ('d dataspace)" where
"PDataSpace = snd o Rep_pdata"
definition
Data2PData :: "('d data) => ('d pdata)" where
"Data2PData D = (let
(L,DP) = Rep_data D;
OL = map Some L
in
Abs_pdata (OL,DP))"
definition
PData2Data :: "('d pdata) => ('d data)" where
"PData2Data D = (let
(OL,DP) = Rep_pdata D;
L = map the OL
in
Abs_data (L,DP))"
definition
DefaultPData :: "('d dataspace) => ('d pdata)" where
"DefaultPData D = Abs_pdata (replicate (PartNum D) None, D)"
definition
OptionOverride :: "('d option * 'd) => 'd" where
"OptionOverride P = (if (fst P) = None then (snd P) else (the (fst P)))"
definition
DataOverride :: "['d pdata, 'd data] => 'd data" ("(_ [D+]/ _)" [10,11]10) where
"DataOverride D1 D2 =
(let
(L1,DP1) = Rep_pdata D1;
(L2,DP2) = Rep_data D2;
L = map OptionOverride (zip L1 L2)
in
Abs_data (L,DP2))"
lemma Rep_pdata_tuple:
"Rep_pdata D = (PDataValue D, PDataSpace D)"
apply (unfold PDataValue_def PDataSpace_def)
apply (simp)
done
lemma Rep_pdata_select:
"(PDataValue D, PDataSpace D) ∈ pdata"
apply (subst Rep_pdata_tuple [THEN sym])
apply (rule Rep_pdata)
done
lemma PData_select:
"PData (PDataValue D) (PDataSpace D)"
apply (cut_tac D=D in Rep_pdata_select)
apply (unfold pdata_def)
apply auto
done
subsubsection ‹‹DefaultPData››
lemma PData_DefaultPData [simp]:
"PData (replicate (PartNum D) None) D"
apply (unfold PData_def)
apply auto
done
lemma pdata_DefaultPData [simp]:
"(replicate (PartNum D) None, D) ∈ pdata "
apply (unfold pdata_def)
apply auto
done
lemma PDataSpace_DefaultPData [simp]:
"PDataSpace (DefaultPData D) = D"
apply (unfold DataSpace_def PDataSpace_def DefaultPData_def)
apply auto
apply (subst Abs_pdata_inverse)
apply auto
done
lemma length_PartNum_PData [simp]:
"length (PDataValue P) = PartNum (PDataSpace P)"
apply (cut_tac D=P in Rep_pdata_select)
apply (unfold pdata_def PData_def)
apply auto
done
subsubsection ‹‹Data2PData››
lemma PData_Data2PData [simp]:
"PData (map Some (DataValue D)) (Data.DataSpace D)"
apply (unfold PData_def)
apply auto
done
lemma pdata_Data2PData [simp]:
"(map Some (DataValue D), Data.DataSpace D) ∈ pdata"
apply (unfold pdata_def)
apply auto
done
lemma DataSpace_Data2PData [simp]:
"(PDataSpace (Data2PData D)) = (Data.DataSpace D)"
apply (unfold DataSpace_def PDataSpace_def Data2PData_def Let_def)
apply auto
apply (cut_tac D=D in Rep_data_tuple)
apply auto
apply (subst Abs_pdata_inverse)
apply auto
done
lemma PDataValue_Data2PData_DataValue [simp]:
"(map the (PDataValue (Data2PData D))) = DataValue D"
apply (unfold DataValue_def PDataValue_def Data2PData_def Let_def)
apply auto
apply (cut_tac D=D in Rep_data_tuple)
apply auto
apply (subst Abs_pdata_inverse)
apply simp
apply (simp del: map_map)
done
lemma DataSpace_PData2Data:
"Data (map the (PDataValue D)) (PDataSpace D) ⟹
(Data.DataSpace (PData2Data D) = (PDataSpace D))"
apply (unfold DataSpace_def PDataSpace_def PData2Data_def Let_def)
apply auto
apply (cut_tac D=D in Rep_pdata_tuple)
apply auto
apply (subst Abs_data_inverse)
apply (unfold data_def)
apply auto
done
lemma PartNum_PDataValue_PartDom [simp]:
"⟦ i < PartNum (PDataSpace Q);
PDataValue Q ! i = Some y ⟧ ⟹
y ∈ PartDom (PDataSpace Q) i"
apply (cut_tac D=Q in Rep_pdata_select)
apply (unfold pdata_def PData_def)
apply auto
done
subsubsection ‹‹DataOverride››
lemma Data_DataOverride:
"((PDataSpace P) = (Data.DataSpace Q)) ⟹
Data (map OptionOverride (zip (PDataValue P) (Data.DataValue Q))) (Data.DataSpace Q)"
apply (unfold Data_def)
apply auto
apply (unfold OptionOverride_def)
apply auto
apply (rename_tac i D)
apply (case_tac "PDataValue P ! i = None")
apply auto
apply (drule sym)
apply auto
done
lemma data_DataOverride:
"((PDataSpace P) = (Data.DataSpace Q)) ⟹
(map OptionOverride (zip (PDataValue P) (Data.DataValue Q)), Data.DataSpace Q) ∈ data"
apply (unfold data_def)
apply auto
apply (rule Data_DataOverride)
apply fast
done
lemma DataSpace_DataOverride [simp]:
"((Data.DataSpace D) = (PDataSpace E)) ⟹
Data.DataSpace (E [D+] D) = (Data.DataSpace D)"
apply (unfold DataSpace_def DataOverride_def Let_def)
apply auto
apply (cut_tac D=D in Rep_data_tuple)
apply (cut_tac D=E in Rep_pdata_tuple)
apply auto
apply (subst Abs_data_inverse)
apply auto
apply (drule sym)
apply simp
apply (rule data_DataOverride)
apply auto
done
lemma DataValue_DataOverride [simp]:
"((PDataSpace P) = (Data.DataSpace Q)) ⟹
(DataValue (P [D+] Q)) = (map OptionOverride (zip (PDataValue P) (Data.DataValue Q)))"
apply (unfold DataValue_def DataOverride_def Let_def)
apply auto
apply (cut_tac D=P in Rep_pdata_tuple)
apply (cut_tac D=Q in Rep_data_tuple)
apply auto
apply (subst Abs_data_inverse)
apply auto
apply (rule data_DataOverride)
apply auto
done
subsubsection ‹‹OptionOverride››
lemma DataValue_OptionOverride_nth:
"⟦ ((PDataSpace P) = (DataSpace Q));
i < PartNum (DataSpace Q) ⟧ ⟹
(DataValue (P [D+] Q) ! i) =
OptionOverride (PDataValue P ! i, DataValue Q ! i)"
apply auto
done
lemma None_OptionOverride [simp]:
"(fst P) = None ⟹ OptionOverride P = (snd P)"
apply (unfold OptionOverride_def)
apply auto
done
lemma Some_OptionOverride [simp]:
"(fst P) ≠ None ⟹ OptionOverride P = the (fst P)"
apply (unfold OptionOverride_def)
apply auto
done
end