Theory Splay_Map
section "Splay Tree Implementation of Maps"
theory Splay_Map
imports
Splay_Tree
"HOL-Data_Structures.Map_Specs"
begin
function splay :: "'a::linorder ⇒ ('a*'b) tree ⇒ ('a*'b) tree" where
"splay x Leaf = Leaf" |
"x = fst a ⟹ splay x (Node t1 a t2) = Node t1 a t2" |
"x = fst a ⟹ x < fst b ⟹ splay x (Node (Node t1 a t2) b t3) = Node t1 a (Node t2 b t3)" |
"x < fst a ⟹ splay x (Node Leaf a t) = Node Leaf a t" |
"x < fst a ⟹ x < fst b ⟹ splay x (Node (Node Leaf a t1) b t2) = Node Leaf a (Node t1 b t2)" |
"x < fst a ⟹ x < fst b ⟹ t1 ≠ Leaf ⟹
splay x (Node (Node t1 a t2) b t3) =
(case splay x t1 of Node t11 y t12 ⇒ Node t11 y (Node t12 a (Node t2 b t3)))" |
"fst a < x ⟹ x < fst b ⟹ splay x (Node (Node t1 a Leaf) b t2) = Node t1 a (Node Leaf b t2)" |
"fst a < x ⟹ x < fst b ⟹ t2 ≠ Leaf ⟹
splay x (Node (Node t1 a t2) b t3) =
(case splay x t2 of Node t21 y t22 ⇒ Node (Node t1 a t21) y (Node t22 b t3))" |
"fst a < x ⟹ x = fst b ⟹ splay x (Node t1 a (Node t2 b t3)) = Node (Node t1 a t2) b t3" |
"fst a < x ⟹ splay x (Node t a Leaf) = Node t a Leaf" |
"fst a < x ⟹ x < fst b ⟹ t2 ≠ Leaf ⟹
splay x (Node t1 a (Node t2 b t3)) =
(case splay x t2 of Node t21 y t22 ⇒ Node (Node t1 a t21) y (Node t22 b t3))" |
"fst a < x ⟹ x < fst b ⟹ splay x (Node t1 a (Node Leaf b t2)) = Node (Node t1 a Leaf) b t2" |
"fst a < x ⟹ fst b < x ⟹ splay x (Node t1 a (Node t2 b Leaf)) = Node (Node t1 a t2) b Leaf" |
"fst a < x ⟹ fst b < x ⟹ t3 ≠ Leaf ⟹
splay x (Node t1 a (Node t2 b t3)) =
(case splay x t3 of Node t31 y t32 ⇒ Node (Node (Node t1 a t2) b t31) y t32)"
apply(atomize_elim)
apply(auto)
apply (subst (asm) neq_Leaf_iff)
apply(auto)
apply (metis tree.exhaust surj_pair less_linear)+
done
termination splay
by lexicographic_order
lemma splay_code: "splay (x::_::linorder) t = (case t of Leaf ⇒ Leaf |
Node al a ar ⇒ (case cmp x (fst a) of
EQ ⇒ t |
LT ⇒ (case al of
Leaf ⇒ t |
Node bl b br ⇒ (case cmp x (fst b) of
EQ ⇒ Node bl b (Node br a ar) |
LT ⇒ if bl = Leaf then Node bl b (Node br a ar)
else case splay x bl of
Node bll y blr ⇒ Node bll y (Node blr b (Node br a ar)) |
GT ⇒ if br = Leaf then Node bl b (Node br a ar)
else case splay x br of
Node brl y brr ⇒ Node (Node bl b brl) y (Node brr a ar))) |
GT ⇒ (case ar of
Leaf ⇒ t |
Node bl b br ⇒ (case cmp x (fst b) of
EQ ⇒ Node (Node al a bl) b br |
LT ⇒ if bl = Leaf then Node (Node al a bl) b br
else case splay x bl of
Node bll y blr ⇒ Node (Node al a bll) y (Node blr b br) |
GT ⇒ if br=Leaf then Node (Node al a bl) b br
else case splay x br of
Node bll y blr ⇒ Node (Node (Node al a bl) b bll) y blr))))"
by(auto split!: tree.split)
definition lookup :: "('a*'b)tree ⇒ 'a::linorder ⇒ 'b option" where "lookup t x =
(case splay x t of Leaf ⇒ None | Node _ (a,b) _ ⇒ if x=a then Some b else None)"
hide_const (open) insert
fun update :: "'a::linorder ⇒ 'b ⇒ ('a*'b) tree ⇒ ('a*'b) tree" where
"update x y t = (if t = Leaf then Node Leaf (x,y) Leaf
else case splay x t of
Node l a r ⇒ if x = fst a then Node l (x,y) r
else if x < fst a then Node l (x,y) (Node Leaf a r) else Node (Node l a Leaf) (x,y) r)"
definition delete :: "'a::linorder ⇒ ('a*'b) tree ⇒ ('a*'b) tree" where
"delete x t = (if t = Leaf then Leaf
else case splay x t of Node l a r ⇒
if x = fst a
then if l = Leaf then r else case splay_max l of Node l' m r' ⇒ Node l' m r
else Node l a r)"
subsection "Functional Correctness Proofs"
lemma splay_Leaf_iff: "(splay x t = Leaf) = (t = Leaf)"
by(induction x t rule: splay.induct) (auto split: tree.splits)
subsubsection "Proofs for lookup"
lemma splay_map_of_inorder:
"splay x t = Node l a r ⟹ sorted1(inorder t) ⟹
map_of (inorder t) x = (if x = fst a then Some(snd a) else None)"
by(induction x t arbitrary: l a r rule: splay.induct)
(auto simp: map_of_simps splay_Leaf_iff split: tree.splits)
lemma lookup_eq:
"sorted1(inorder t) ⟹ lookup t x = map_of (inorder t) x"
by(auto simp: lookup_def splay_Leaf_iff splay_map_of_inorder split: tree.split)
subsubsection "Proofs for update"
lemma inorder_splay: "inorder(splay x t) = inorder t"
by(induction x t rule: splay.induct)
(auto simp: neq_Leaf_iff split: tree.split)
lemma sorted_splay:
"sorted1(inorder t) ⟹ splay x t = Node l a r ⟹
sorted(map fst (inorder l) @ x # map fst (inorder r))"
unfolding inorder_splay[of x t, symmetric]
by(induction x t arbitrary: l a r rule: splay.induct)
(auto simp: sorted_lems sorted_Cons_le sorted_snoc_le splay_Leaf_iff split: tree.splits)
lemma inorder_update_splay:
"sorted1(inorder t) ⟹ inorder(update x y t) = upd_list x y (inorder t)"
using inorder_splay[of x t, symmetric] sorted_splay[of t x]
by(auto simp: upd_list_simps upd_list_Cons upd_list_snoc neq_Leaf_iff split: tree.split)
subsubsection "Proofs for delete"
lemma inorder_splay_maxD:
"splay_max t = Node l a r ⟹ sorted1(inorder t) ⟹
inorder l @ [a] = inorder t ∧ r = Leaf"
by(induction t arbitrary: l a r rule: splay_max.induct)
(auto simp: sorted_lems split: tree.splits if_splits)
lemma inorder_delete_splay:
"sorted1(inorder t) ⟹ inorder(delete x t) = del_list x (inorder t)"
using inorder_splay[of x t, symmetric] sorted_splay[of t x]
by (auto simp: del_list_simps del_list_sorted_app delete_def del_list_notin_Cons inorder_splay_maxD
split: tree.splits)
subsubsection "Overall Correctness"
interpretation Map_by_Ordered
where empty = empty and lookup = lookup and update = update
and delete = delete and inorder = inorder and inv = "λ_. True"
proof (standard, goal_cases)
case 2 thus ?case by(simp add: lookup_eq)
next
case 3 thus ?case by(simp add: inorder_update_splay del: update.simps)
next
case 4 thus ?case by(simp add: inorder_delete_splay)
qed (auto simp: empty_def)
end