Theory SimplifiedOntologicalArgument

section ‹Selected Simplified Ontological Argument \label{sec:selected}›

theory SimplifiedOntologicalArgument imports 
  HOML
begin
text ‹Positive properties:›
consts posProp::"γσ" ("𝒫")

text ‹An entity x is God-like if it possesses all positive properties.›
definition G ("𝒢") where "𝒢(x)  Φ.(𝒫(Φ)  Φ(x))"

text ‹The axiom's of the simplified variant are presented next; these axioms are further motivated in cite"C85" and "J52").› 
text ‹Self-difference is not a positive property (possible alternative: 
      the empty property is not a positive property).›
axiomatization where CORO1: "¬(𝒫(λx.(xx)))" 
text ‹A property entailed by a positive property is positive.›
axiomatization where CORO2: "Φ Ψ. 𝒫(Φ)  (x. Φ(x)  Ψ(x))  𝒫(Ψ)" 
text ‹Being Godlike is a positive property.›
axiomatization where AXIOM3: "𝒫 𝒢" 

subsection‹Verifying the Selected Simplified Ontological Argument (version 1)›

text ‹The existence of a non-exemplified positive property implies that self-difference 
      (or, alternatively, the empty property) is a positive property.›
lemma LEMMA1: "(Φ.(𝒫(Φ)  ¬(x. Φ(x))))  𝒫(λx.(xx))" 
  using CORO2 by meson 
text ‹A non-exemplified positive property does not exist.›
lemma LEMMA2: "¬(Φ.(𝒫(Φ)  ¬(x. Φ(x))))" 
  using CORO1 LEMMA1 by blast
text ‹Positive properties are exemplified.›
lemma LEMMA3: "Φ.(𝒫(Φ)  (x. Φ(x)))" 
  using LEMMA2 by blast
text ‹There exists a God-like entity.›
theorem THEOREM3': "x. 𝒢(x)" 
  using AXIOM3 LEMMA3 by auto
text ‹Necessarily, there exists a God-like entity.›
theorem THEOREM3: "(x. 𝒢(x))" 
  using THEOREM3' by simp
text ‹However, the possible existence of Godlike entity is not implied.›
theorem CORO: "(x. 𝒢(x))" 
  nitpick oops (*Countermodel*)

subsection‹Verifying the Selected Simplified Ontological Argument (version 2)›

text ‹We switch to logic T.›
axiomatization where T: "φ. φ  φ" 
lemma T': "φ. φ  φ" using T by metis
text ‹Positive properties are possibly exemplified.›
theorem THEOREM1: "Φ. 𝒫(Φ)  (x. Φ(x))" 
  using CORO1 CORO2 T' by metis
text ‹Possibly there exists a God-like entity.›
theorem CORO: "(x. 𝒢(x))" 
  using AXIOM3 THEOREM1 by auto
text ‹The possible existence of a God-like entity impplies the necessary  existence of a God-like entity.›
theorem THEOREM2: "(x. 𝒢(x))  (x. 𝒢(x))" 
  using AXIOM3 CORO1 CORO2 by metis
text ‹Necessarily, there exists a God-like entity.›
theorem THEO3: "(x. 𝒢(x))" 
  using CORO THEOREM2 by blast 
text ‹There exists a God-like entity.›
theorem THEO3': "x. 𝒢(x)" 
  using T THEO3 by metis

text ‹Modal collapse is not implied; nitpick reports a countermodel.›

lemma MC: "Φ. Φ  Φ" nitpick oops

text ‹Consistency of the theory; nitpick reports a model.›
lemma True nitpick[satisfy] oops (*Model found*)
end