Theory KanckosLethenNo2Possibilist
subsection‹Formal Study of Version No.2 of Gödel's Argument as
Reported by Kanckos and Lethen, 2019 \<^cite>‹"KanckosLethen19"› (Fig.~11 in \<^cite>‹"C85"›)›
theory KanckosLethenNo2Possibilist imports
HOML
MFilter
BaseDefs
begin
text‹Axioms of Version No. 2 \<^cite>‹"KanckosLethen19"›.›
abbreviation delta ("Δ") where "Δ A ≡ λx.(❙∀ψ. ((A ψ) ❙→ (ψ x)))"
abbreviation N ("𝒩") where "𝒩 φ ≡ λx.(❙□(φ x))"
axiomatization where
Axiom1: "⌊❙∀φ ψ.(((𝒫 φ) ❙∧ (❙□(❙∀x. ((φ x) ❙→ (ψ x))))) ❙→ (𝒫 ψ))⌋" and
Axiom2: "⌊❙∀A .(❙□((❙∀φ.((A φ) ❙→ (𝒫 φ))) ❙→ (𝒫 (Δ A))))⌋" and
Axiom3: "⌊❙∀φ.((𝒫 φ) ❙→ (𝒫 (𝒩 φ)))⌋" and
Axiom4: "⌊❙∀φ.((𝒫 φ) ❙→ (❙¬(𝒫(❙⇁φ))))⌋" and
axB: "⌊❙∀φ.(φ ❙→ ❙□❙◇φ)⌋" and axM: "⌊❙∀φ.((❙□φ) ❙→ φ)⌋" and ax4: "⌊❙∀φ.((❙□φ) ❙→ (❙□❙□φ))⌋"
text‹Sahlqvist correspondences: they are better suited for proof automation.›
lemma axB': "∀x y. ¬(x❙ry) ∨ (y❙rx)" using axB by fastforce
lemma axM': "∀x. (x❙rx)" using axM by blast
lemma ax4': "∀x y z. (((x❙ry) ∧ (y❙rz)) ⟶ (x❙rz))" using ax4 by auto
text‹Proofs for all theorems for No.2 from \<^cite>‹"KanckosLethen19"›.›
theorem Theorem0: "⌊❙∀φ ψ.((❙∀Q. ((Q φ) ❙→ (Q ψ))) ❙→ ((𝒫 φ) ❙→ (𝒫 φ)))⌋" by auto
theorem Theorem1: "⌊𝒫 𝒢⌋" unfolding G_def using Axiom2 axM by blast
theorem Theorem2: "⌊❙∀x. ((𝒢 x)❙→(❙∃y. 𝒢 y))⌋" by blast
theorem Theorem3a: "⌊𝒫 (λx. (❙∃y. 𝒢 y))⌋" by (metis (no_types, lifting) Axiom1 Theorem1)
theorem Theorem3b: "⌊❙□(𝒫 (λx.(❙□(❙∃y. 𝒢 y))))⌋" by (smt Axiom1 G_def Theorem3a Axiom3 Theorem1 axB')
theorem Theorem4: "⌊❙∀x. ❙□((𝒢 x) ❙→ ((𝒫 (λx.(❙□(❙∃y. 𝒢 y)))) ❙→ (❙□(❙∃y. 𝒢 y))))⌋" using G_def by fastforce
theorem Theorem5: "⌊❙∀x. ❙□((𝒢 x) ❙→ (❙□(❙∃y. 𝒢 y)))⌋" by (smt (verit) G_def Theorem3a Theorem3b)
theorem Theorem6: "⌊❙□((❙∃y. 𝒢 y) ❙→ (❙□(❙∃y. 𝒢 y)))⌋" by (smt G_def Theorem3a Theorem3b)
theorem Theorem7: "⌊❙□((❙◇(❙∃y. 𝒢 y)) ❙→ (❙□(❙∃y. 𝒢 y)))⌋" using Theorem6 axB' by blast
theorem Theorem8: "⌊❙□(❙∃y. 𝒢 y)⌋" by (metis Axiom1 Axiom4 Theorem1 Theorem7 axB')
theorem Theorem9: "⌊❙∀φ. ((𝒫 φ) ❙→ ❙◇(❙∃x. φ x))⌋" using Axiom1 Axiom4 axM' by metis
text‹Short proof of Theorem8; analogous to the one presented in Sec. 7 of Benzmüller 2020.›
theorem "⌊❙□(❙∃y. 𝒢 y)⌋"
proof -
have L1: "⌊(❙∃X.((𝒫 X)❙∧❙¬(❙∃X)))❙→(𝒫(λx.(x❙≠x)))⌋" using Axiom1 Axiom3 axB' by blast
have L2: "⌊❙¬(𝒫(λx.(x❙≠x)))⌋" using Axiom1 Axiom4 by metis
have L3: "⌊❙¬(❙∃X.((𝒫 X) ❙∧ ❙¬(❙∃ X)))⌋" using L1 L2 by blast
have T2: "⌊𝒫 𝒢⌋" by (smt Axiom1 Axiom2 G_def axM')
have T3: "⌊❙∃y. 𝒢 y⌋" using L3 T2 by blast
have T6: "⌊❙□(❙∃y. 𝒢 y)⌋" by (simp add: T3)
thus ?thesis by blast qed
theorem T5: "⌊(❙◇(❙∃y. 𝒢 y)) ❙→ ❙□(❙∃y. 𝒢 y)⌋"
proof -
have L1: "⌊(❙∃X.((𝒫 X)❙∧❙¬(❙∃X)))❙→(𝒫(λx.(x❙≠x)))⌋" using Axiom1 Axiom3 axB' by blast
have L2: "⌊❙¬(𝒫(λx.(x❙≠x)))⌋" using Axiom1 Axiom4 by metis
have L3: "⌊❙¬(❙∃X.((𝒫 X) ❙∧ ❙¬(❙∃ X)))⌋" using L1 L2 by blast
have T2: "⌊𝒫 𝒢⌋" by (smt Axiom1 Axiom2 G_def axM')
have T3: "⌊❙∃y. 𝒢 y⌋" using L3 T2 by blast
have T6: "⌊❙□(❙∃y. 𝒢 y)⌋" by (simp add: T3)
thus ?thesis by blast qed
text‹Another short proof of Theorem8.›
theorem "⌊❙□(❙∃y. 𝒢 y)⌋"
proof -
have T1: "⌊𝒫 𝒢⌋" unfolding G_def using Axiom2 axM by blast
have T3a: "⌊𝒫 (λx. (❙∃y. 𝒢 y))⌋" by (metis (no_types, lifting) Axiom1 T1)
have T3b: "⌊❙□(𝒫 (λx.(❙□(❙∃y. 𝒢 y))))⌋" by (smt Axiom1 G_def T3a Axiom3 T1 axB')
have T6: "⌊❙□((❙∃y. 𝒢 y) ❙→ (❙□(❙∃y. 𝒢 y)))⌋" by (smt G_def T3a T3b)
have T7: "⌊❙□((❙◇(❙∃y. 𝒢 y)) ❙→ (❙□(❙∃y. 𝒢 y)))⌋" using T6 axB' by blast
thus ?thesis by (smt Axiom1 Axiom4 T3b axB') qed
text‹Are the axioms of the simplified versions implied?›
text‹Actualist version of the axioms.›
lemma A1': "⌊❙¬(𝒫(λx.(x❙≠x)))⌋" using Theorem9 by blast
lemma A2': "⌊❙∀X Y.(((𝒫 X) ❙∧ ((X❙⊑Y)❙∨(X⇛Y))) ❙→ (𝒫 Y))⌋" nitpick oops
lemma A3: "⌊❙∀𝒵.((𝒫𝗈𝗌 𝒵) ❙→ (❙∀X.((X⨅𝒵) ❙→ (𝒫 X))))⌋" nitpick oops
text‹Possibilist version of the axioms.›
abbreviation a ("_❙⊑⇧p_") where "X❙⊑⇧pY ≡ ❙∀z.((X z) ❙→ (Y z))"
abbreviation b ("_⇛⇧p_") where "X⇛⇧pY ≡ ❙□(X❙⊑⇧pY)"
abbreviation d ("_⨅⇧p_") where "X⨅⇧p𝒵 ≡ ❙□(❙∀u.((X u) ❙↔ (❙∀Y.((𝒵 Y) ❙→ (Y u)))))"
lemma A1'P: "⌊❙¬(𝒫(λx.(x❙≠x)))⌋" using Theorem9 by blast
lemma A2'P: "⌊❙∀X Y.(((𝒫 X) ❙∧ ((X❙⊑⇧pY)❙∨(X⇛⇧pY))) ❙→ (𝒫 Y))⌋" oops
lemma A2'aP: "⌊❙∀X Y.(((𝒫 X) ❙∧ (X⇛⇧pY)) ❙→ (𝒫 Y))⌋" using Axiom1 axM' by metis
lemma A2'bP: "⌊❙∀X Y.(((𝒫 X) ❙∧ (X❙⊑⇧pY)) ❙→ (𝒫 Y))⌋" oops
lemma A3P: "⌊❙∀𝒵.((𝒫𝗈𝗌 𝒵) ❙→ (❙∀X.((X⨅⇧p𝒵) ❙→ (𝒫 X))))⌋"
by (smt (verit, del_insts) Axiom1 Axiom2 axM')
text‹Are Axiom2 and A3 equivalent? Only when assuming Axiom1 and axiom M.›
lemma "⌊❙∀A .(❙□((❙∀φ.((A φ) ❙→ (𝒫 φ))) ❙→ (𝒫 (Δ A))))⌋ ≡ ⌊❙∀𝒵.((𝒫𝗈𝗌 𝒵) ❙→ (❙∀X.((X⨅⇧p𝒵) ❙→ (𝒫 X))))⌋"
by (smt (verit, ccfv_threshold) Axiom1 axM')
end