theory Ordered_Resolution_Prover_Extra imports "Ordered_Resolution_Prover.Abstract_Substitution" begin section ‹Abstract Substitution Extra› lemma (in substitution_ops) subst_atm_of_eqI: "L ⋅l σ⇩L = K ⋅l σ⇩K ⟹ atm_of L ⋅a σ⇩L = atm_of K ⋅a σ⇩K" by (cases L; cases K) (simp_all add: subst_lit_def) lemma (in substitution_ops) set_mset_subst_cls_conv: "set_mset (C ⋅ σ) = (λL. L ⋅l σ) ` set_mset C" by (simp add: subst_cls_def) end