Theory Ordered_Resolution_Prover.Map2
section ‹Map Function on Two Parallel Lists›
theory Map2
imports Main
begin
text ‹
This theory defines a map function that applies a (curried) binary function elementwise to two
parallel lists.
The definition is taken from @{url "https://www.isa-afp.org/browser_info/current/AFP/Jinja/Listn.html"}.
›
abbreviation map2 :: "('a ⇒ 'b ⇒ 'c) ⇒ 'a list ⇒ 'b list ⇒ 'c list" where
"map2 f xs ys ≡ map (case_prod f) (zip xs ys)"
lemma map2_empty_iff[simp]: "map2 f xs ys = [] ⟷ xs = [] ∨ ys = []"
by (metis Nil_is_map_conv list.exhaust list.simps(3) zip.simps(1) zip_Cons_Cons zip_Nil)
lemma image_map2: "length t = length s ⟹ g ` set (map2 f t s) = set (map2 (λa b. g (f a b)) t s)"
by auto
lemma map2_tl: "length t = length s ⟹ map2 f (tl t) (tl s) = tl (map2 f t s)"
by (metis (no_types, lifting) hd_Cons_tl list.sel(3) map2_empty_iff map_tl tl_Nil zip_Cons_Cons)
lemma map_zip_assoc:
"map f (zip (zip xs ys) zs) = map (λ(x, y, z). f ((x, y), z)) (zip xs (zip ys zs))"
by (induct zs arbitrary: xs ys) (auto simp add: zip.simps(2) split: list.splits)
lemma set_map2_ex:
assumes "length t = length s"
shows "set (map2 f s t) = {x. ∃i < length t. x = f (s ! i) (t ! i)}"
proof (rule; rule)
fix x
assume "x ∈ set (map2 f s t)"
then obtain i where i_p: "i < length (map2 f s t) ∧ x = map2 f s t ! i"
by (metis in_set_conv_nth)
from i_p have "i < length t"
by auto
moreover from this i_p have "x = f (s ! i) (t ! i)"
using assms by auto
ultimately show "x ∈ {x. ∃i < length t. x = f (s ! i) (t ! i)}"
using assms by auto
next
fix x
assume "x ∈ {x. ∃i < length t. x = f (s ! i) (t ! i)}"
then obtain i where i_p: "i < length t ∧ x = f (s ! i) (t ! i)"
by auto
then have "i < length (map2 f s t)"
using assms by auto
moreover from i_p have "x = map2 f s t ! i"
using assms by auto
ultimately show "x ∈ set (map2 f s t)"
by (metis in_set_conv_nth)
qed
end