Theory Sep_Tactics
section "Separation Logic Tactics"
theory Sep_Tactics
imports Separation_Algebra
begin
ML_file ‹sep_tactics.ML›
text ‹A number of proof methods to assist with reasoning about separation logic.›
section ‹Selection (move-to-front) tactics›
method_setup sep_select = ‹
Scan.lift Parse.int >> (fn n => fn ctxt => SIMPLE_METHOD' (sep_select_tac ctxt n))
› "Select nth separation conjunct in conclusion"
method_setup sep_select_asm = ‹
Scan.lift Parse.int >> (fn n => fn ctxt => SIMPLE_METHOD' (sep_select_asm_tac ctxt n))
› "Select nth separation conjunct in assumptions"
section ‹Substitution›
method_setup "sep_subst" = ‹
Scan.lift (Args.mode "asm" -- Scan.optional (Args.parens (Scan.repeat Parse.nat)) [0]) --
Attrib.thms >> (fn ((asm, occs), thms) => fn ctxt =>
SIMPLE_METHOD' ((if asm then sep_subst_asm_tac else sep_subst_tac) ctxt occs thms))
›
"single-step substitution after solving one separation logic assumption"
section ‹Forward Reasoning›
method_setup "sep_drule" = ‹
Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_dtac ctxt thms))
› "drule after separating conjunction reordering"
method_setup "sep_frule" = ‹
Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_ftac ctxt thms))
› "frule after separating conjunction reordering"
section ‹Backward Reasoning›
method_setup "sep_rule" = ‹
Attrib.thms >> (fn thms => fn ctxt => SIMPLE_METHOD' (sep_rtac ctxt thms))
› "applies rule after separating conjunction reordering"
section ‹Cancellation of Common Conjuncts via Elimination Rules›
named_theorems sep_cancel
text ‹
The basic ‹sep_cancel_tac› is minimal. It only eliminates
erule-derivable conjuncts between an assumption and the conclusion.
To have a more useful tactic, we augment it with more logic, to proceed as
follows:
\begin{itemize}
\item try discharge the goal first using ‹tac›
\item if that fails, invoke ‹sep_cancel_tac›
\item if ‹sep_cancel_tac› succeeds
\begin{itemize}
\item try to finish off with tac (but ok if that fails)
\item try to finish off with @{term sep_true} (but ok if that fails)
\end{itemize}
\end{itemize}
›
ML ‹
fun sep_cancel_smart_tac ctxt tac =
let fun TRY' tac = tac ORELSE' (K all_tac)
in
tac
ORELSE' (sep_cancel_tac ctxt tac
THEN' TRY' tac
THEN' TRY' (resolve_tac ctxt @{thms TrueI}))
ORELSE' (eresolve_tac ctxt @{thms sep_conj_sep_emptyE}
THEN' sep_cancel_tac ctxt tac
THEN' TRY' tac
THEN' TRY' (resolve_tac ctxt @{thms TrueI}))
end;
fun sep_cancel_smart_tac_rules ctxt etacs =
sep_cancel_smart_tac ctxt (FIRST' ([assume_tac ctxt] @ etacs));
val sep_cancel_syntax = Method.sections [
Args.add -- Args.colon >>
K (Method.modifier (Named_Theorems.add @{named_theorems sep_cancel}) ⌂)];
›
method_setup sep_cancel = ‹
sep_cancel_syntax >> (fn _ => fn ctxt =>
let
val etacs = map (eresolve_tac ctxt o single)
(rev (Named_Theorems.get ctxt @{named_theorems sep_cancel}));
in
SIMPLE_METHOD' (sep_cancel_smart_tac_rules ctxt etacs)
end)
› "Separating conjunction conjunct cancellation"
text ‹
As above, but use blast with a depth limit to figure out where cancellation
can be done.›
method_setup sep_cancel_blast = ‹
sep_cancel_syntax >> (fn _ => fn ctxt =>
let
val rules = rev (Named_Theorems.get ctxt @{named_theorems sep_cancel});
val tac = Blast.depth_tac (ctxt addIs rules) 10;
in
SIMPLE_METHOD' (sep_cancel_smart_tac ctxt tac)
end)
› "Separating conjunction conjunct cancellation using blast"
end