Theory Sep_Heap_Instance
section "Standard Heaps as an Instance of Separation Algebra"
theory Sep_Heap_Instance
imports Separation_Algebra
begin
text ‹
Example instantiation of a the separation algebra to a map, i.e.\ a
function from any type to @{typ "'a option"}.
›
class opt =
fixes none :: 'a
begin
definition "domain f ≡ {x. f x ≠ none}"
end
instantiation option :: (type) opt
begin
definition none_def [simp]: "none ≡ None"
instance ..
end
instantiation "fun" :: (type, opt) zero
begin
definition zero_fun_def: "0 ≡ λs. none"
instance ..
end
instantiation "fun" :: (type, opt) sep_algebra
begin
definition
plus_fun_def: "m1 + m2 ≡ λx. if m2 x = none then m1 x else m2 x"
definition
sep_disj_fun_def: "sep_disj m1 m2 ≡ domain m1 ∩ domain m2 = {}"
instance
apply standard
apply (simp add: sep_disj_fun_def domain_def zero_fun_def)
apply (fastforce simp: sep_disj_fun_def)
apply (simp add: plus_fun_def zero_fun_def)
apply (simp add: plus_fun_def sep_disj_fun_def domain_def)
apply (rule ext)
apply fastforce
apply (rule ext)
apply (simp add: plus_fun_def)
apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
apply fastforce
apply (simp add: sep_disj_fun_def domain_def plus_fun_def)
apply fastforce
done
end
text ‹
For the actual option type @{const domain} and ‹+› are
just @{const dom} and ‹++›:
›
lemma domain_conv: "domain = dom"
by (rule ext) (simp add: domain_def dom_def)
lemma plus_fun_conv: "a + b = a ++ b"
by (auto simp: plus_fun_def map_add_def split: option.splits)
lemmas map_convs = domain_conv plus_fun_conv
text ‹
Any map can now act as a separation heap without further work:
›
lemma
fixes h :: "(nat => nat) => 'foo option"
shows "(P ** Q ** H) h = (Q ** H ** P) h"
by (simp add: sep_conj_ac)
end