Theory HOL-Hoare.Hoare_Syntax
section ‹Concrete syntax for Hoare logic, with translations for variables›
theory Hoare_Syntax
imports Main
begin
syntax
"_assign" :: "idt ⇒ 'b ⇒ 'com" ("(2_ :=/ _)" [70, 65] 61)
"_Seq" :: "'com ⇒ 'com ⇒ 'com" ("(_;/ _)" [61,60] 60)
"_Cond" :: "'bexp ⇒ 'com ⇒ 'com ⇒ 'com" ("(IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61)
"_While" :: "'bexp ⇒ 'assn ⇒ 'var ⇒ 'com ⇒ 'com" ("(WHILE _/ INV {(_)} / VAR {(_)} //DO _ /OD)" [0,0,0,0] 61)
text ‹The ‹VAR {_}› syntax supports two variants:
▪ ‹VAR {x = t}› where ‹t::nat› is the decreasing expression,
the variant, and ‹x› a variable that can be referred to from inner annotations.
The ‹x› can be necessary for nested loops, e.g. to prove that the inner loops do not mess with ‹t›.
▪ ‹VAR {t}› where the variable is omitted because it is not needed.
›
syntax
"_While0" :: "'bexp ⇒ 'assn ⇒ 'com ⇒ 'com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61)
text ‹The ‹_While0› syntax is translated into the ‹_While› syntax with the trivial variant 0.
This is ok because partial correctness proofs do not make use of the variant.›
syntax
"_hoare_vars" :: "[idts, 'assn,'com, 'assn] ⇒ bool" ("VARS _// {_} // _ // {_}" [0,0,55,0] 50)
"_hoare_vars_tc" :: "[idts, 'assn, 'com, 'assn] ⇒ bool" ("VARS _// [_] // _ // [_]" [0,0,55,0] 50)
syntax (output)
"_hoare" :: "['assn, 'com, 'assn] ⇒ bool" ("({_}//_//{_})" [0,55,0] 50)
"_hoare_tc" :: "['assn, 'com, 'assn] ⇒ bool" ("([_]//_//[_])" [0,55,0] 50)
text ‹Completeness requires(?) the ability to refer to an outer variant in an inner invariant.
Thus we need to abstract over a variable equated with the variant, the ‹x› in ‹VAR {x = t}›.
But the ‹x› should only occur in invariants. To enforce this, syntax translations in ‹hoare_syntax.ML›
separate the program from its annotations and only the latter are abstracted over over ‹x›.
(Thus ‹x› can also occur in inner variants, but that neither helps nor hurts.)›