Theory Karatsuba.Karatsuba_TM
section "Running Time of Karatsuba Multiplication"
theory "Karatsuba_TM"
imports Karatsuba "../Binary_Representations/Nat_LSBF_TM"
"../Estimation_Method"
begin
text "This theory contains a time monad version of Karatsuba multiplication, which is used to
verify the asymptotic running time of $\\mathcal{O}\\left(n ^ {\\log_2 3}\\right)$."
definition abs_diff_tm :: "nat_lsbf ⇒ nat_lsbf ⇒ nat_lsbf tm" where
"abs_diff_tm xs ys =1 do {
r1 ← xs -⇩n⇩t ys;
r2 ← ys -⇩n⇩t xs;
r1 +⇩n⇩t r2
}"
lemma val_abs_diff_tm[simp, val_simp]: "val (abs_diff_tm xs ys) = abs_diff xs ys"
by (simp add: abs_diff_tm_def abs_diff_def)
lemma time_abs_diff_tm_le: "time (abs_diff_tm xs ys) ≤ 62 * max (length xs) (length ys) + 100"
proof -
have "time (abs_diff_tm xs ys) ≤ time (xs -⇩n⇩t ys) + time (ys -⇩n⇩t xs) +
time ((xs -⇩n ys) +⇩n⇩t (ys -⇩n xs)) + 1"
by (simp add: abs_diff_tm_def)
also have "... ≤ 62 * max (length xs) (length ys) + 100"
apply (estimation estimate: time_subtract_nat_tm_le)
apply (estimation estimate: time_subtract_nat_tm_le)
apply (estimation estimate: time_add_nat_tm_le)
using length_subtract_nat_le[of xs ys] length_subtract_nat_le[of ys xs]
by linarith
finally show ?thesis .
qed
context karatsuba_context
begin
definition fill_abs_diff_x where "fill_abs_diff_x = fill k_div_2 (abs_diff x0 x1)"
definition fill_abs_diff_y where "fill_abs_diff_y = fill k_div_2 (abs_diff y0 y1)"
definition sgnx where "sgnx = (x1 ≤⇩n x0)"
definition sgny where "sgny = (y1 ≤⇩n y0)"
definition sgnxy where "sgnxy = (sgnx = sgny)"
definition r' where "r' = (if sgnxy then add01 -⇩n prod2 else add01 +⇩n prod2)"
definition sr where "sr = r >>⇩n k_div_2"
definition add0sr where "add0sr = prod0 +⇩n sr"
definition s1 where "s1 = prod1 >>⇩n k"
lemma r_r': "r = r'"
unfolding r_def r'_def sgnxy_def sgnx_def sgny_def by argo
lemmas defs3 = fill_abs_diff_x_def fill_abs_diff_y_def sgnx_def sgny_def sgnxy_def r_r' r'_def sr_def add0sr_def s1_def
end
lemma add_nat_carry_aux:
assumes "length x ≤ k"
assumes "length y ≤ k"
assumes "length (x +⇩n y) = k + 1"
shows "max (length x) (length y) = k" "Nat_LSBF.to_nat x + Nat_LSBF.to_nat y ≥ 2 ^ k"
proof -
have "length x = k ∨ length y = k"
proof (rule ccontr)
assume "¬ (length x = k ∨ length y = k)"
then have "max (length x) (length y) < k" using assms by simp
then have "length (add_nat x y) < k + 1" using length_add_nat_upper[of x y] by linarith
then show False using assms by simp
qed
then show "max (length x) (length y) = k" using assms by linarith
then obtain z where "add_nat x y = z @ [True]"
using add_nat_last_bit_True assms by blast
from this[symmetric] have "Nat_LSBF.to_nat x + Nat_LSBF.to_nat y ≥ 2 ^ length z"
using add_nat_correct[of x y] to_nat_length_lower_bound[of z] by argo
also have "2 ^ length z = 2 ^ k" using ‹add_nat x y = z @ [True]› assms by simp
finally show "Nat_LSBF.to_nat x + Nat_LSBF.to_nat y ≥ 2 ^ k" by simp
qed
context begin
private fun f where
"f k = (if k ≤ karatsuba_lower_bound then 2 * k else f (k div 2) + k + 4)"
declare f.simps[simp del]
private lemma f_linear: "f k ≤ 6 * k"
apply (induction k rule: f.induct)
subgoal for k
apply (cases "k ≤ karatsuba_lower_bound")
subgoal by (simp add: f.simps[of k])
subgoal premises prems
proof (cases "k ≥ 5")
case True
then show ?thesis using prems unfolding f.simps[of k] by simp
next
case False
then consider "k = 2" | "k = 3" | "k = 4" using prems karatsuba_lower_bound_requirement by linarith
then show ?thesis using prems unfolding f.simps[of k] by fastforce
qed
done
done
private lemma f_bound:
assumes "k = 2 ^ l"
assumes "length x = k"
assumes "length y = k"
shows "length (karatsuba_on_power_of_2_length k x y) ≤ f k"
using assms
proof (induction k x y arbitrary: l rule: karatsuba_on_power_of_2_length.induct)
case (1 k x y)
show ?case
proof (cases "k ≤ karatsuba_lower_bound")
case True
then show ?thesis unfolding karatsuba_on_power_of_2_length.simps[of k x y]
using length_grid_mul_nat[of x y] "1.prems" f.simps[of k] by simp
next
case False
then interpret r : karatsuba_context k l x y
using "1.prems" by (unfold_locales; simp)
have len0: "length r.prod0 ≤ f (k div 2)"
unfolding r.prod0_def r.k_div_2_def[symmetric]
by (intro 1(1)[OF r.IH_prems1])
have len1: "length r.prod1 ≤ f (k div 2)"
unfolding r.prod1_def r.k_div_2_def[symmetric]
by (intro 1(2)[OF r.IH_prems2])
have len2: "length r.prod2 ≤ f (k div 2)"
unfolding r.prod2_def r.k_div_2_def[symmetric]
by (intro 1(3)[OF r.IH_prems3])
have len_p01: "length (r.prod0 +⇩n r.prod1) ≤ f (k div 2) + 1"
using length_add_nat_upper[of r.prod0 r.prod1] len0 len1 by linarith
then have "length (r.prod0 +⇩n r.prod1 +⇩n r.prod2) ≤ f (k div 2) + 2"
using length_add_nat_upper[of "r.prod0 +⇩n r.prod1" r.prod2] len2 by linarith
moreover have "length (r.prod0 +⇩n r.prod1 -⇩n r.prod2) ≤ f (k div 2) + 1"
using length_subtract_nat_le[of "r.prod0 +⇩n r.prod1" r.prod2] len_p01 len2
by linarith
ultimately have lenif: "length (if r.sgnxy then r.prod0 +⇩n r.prod1 -⇩n r.prod2
else r.prod0 +⇩n r.prod1 +⇩n r.prod2) ≤ f (k div 2) + 2" (is "length ?if ≤ _")
by simp
have "length (karatsuba_on_power_of_2_length k x y) ≤ max (r.k_div_2 + f (k div 2)) (k + f (k div 2)) + 4"
unfolding r.recursive
apply (estimation estimate: length_add_nat_upper)
apply (subst length_shift_right)
apply (estimation estimate: length_add_nat_upper)
apply (subst length_shift_right)
unfolding r.r_def r.add01_def
apply (subst if_distrib[of length])
apply (estimation estimate: length_add_nat_upper)
apply (estimation estimate: length_subtract_nat_le)
apply (estimation estimate: length_add_nat_upper)
apply (estimation estimate: len0)
apply (estimation estimate: len1)
apply (estimation estimate: len2)
by auto
also have "... = k + f (k div 2) + 4"
using r.k_div_2_less_k by simp
finally show ?thesis unfolding f.simps[of k] using False by simp
qed
qed
lemma length_karatsuba_on_power_of_2_length:
assumes "k = 2 ^ l"
assumes "length x = k"
assumes "length y = k"
shows "length (karatsuba_on_power_of_2_length k x y) ≤ 6 * k"
using f_bound[OF assms] f_linear[of k] by simp
end
function karatsuba_on_power_of_2_length_tm :: "nat ⇒ nat_lsbf ⇒ nat_lsbf ⇒ nat_lsbf tm" where
"karatsuba_on_power_of_2_length_tm k xs ys =1 do {
b ← k ≤⇩t karatsuba_lower_bound;
(if b then grid_mul_nat_tm xs ys else do {
(x0, x1) ← split_tm xs;
(y0, y1) ← split_tm ys;
k_div_2 ← k div⇩t 2;
prod0 ← karatsuba_on_power_of_2_length_tm k_div_2 x0 y0;
prod1 ← karatsuba_on_power_of_2_length_tm k_div_2 x1 y1;
abs_diff_x ← (abs_diff_tm x0 x1 ⤜ fill_tm k_div_2);
abs_diff_y ← (abs_diff_tm y0 y1 ⤜ fill_tm k_div_2);
prod2 ← karatsuba_on_power_of_2_length_tm k_div_2 abs_diff_x abs_diff_y;
sgnx ← x1 ≤⇩n⇩t x0;
sgny ← y1 ≤⇩n⇩t y0;
sgnxy ← sgnx =⇩t sgny;
add01 ← prod0 +⇩n⇩t prod1;
r ← (if sgnxy then add01 -⇩n⇩t prod2 else add01 +⇩n⇩t prod2);
sr ← r >>⇩n⇩t k_div_2;
add0sr ← prod0 +⇩n⇩t sr;
s1 ← prod1 >>⇩n⇩t k;
add0sr +⇩n⇩t s1
})
}"
by pat_completeness simp
termination
by (relation "Wellfounded.measure (λp. size (fst p))") simp_all
declare karatsuba_on_power_of_2_length_tm.simps[simp del]
lemma val_karatsuba_on_power_of_2_length_tm[simp, val_simp]:
assumes "k = 2 ^ l"
assumes "length xs = k" "length ys = k"
shows "val (karatsuba_on_power_of_2_length_tm k xs ys) = karatsuba_on_power_of_2_length k xs ys"
using assms proof (induction k arbitrary: l xs ys rule: less_induct)
case (less k)
show ?case
proof (cases "k ≤ karatsuba_lower_bound")
case True
then show ?thesis
unfolding karatsuba_on_power_of_2_length_tm.simps[of k xs ys]
karatsuba_on_power_of_2_length.simps[of k xs ys]
val_bind_tm val_less_eq_nat_tm val_simps val_grid_mul_nat_tm
by simp
next
case False
interpret r: karatsuba_context k l xs ys
using less False by unfold_locales simp_all
have val0: "val (karatsuba_on_power_of_2_length_tm r.k_div_2 r.x0 r.y0) = r.prod0"
unfolding r.prod0_def
by (intro less.IH[OF r.k_div_2_less_k r.k_div_2 r.length_x_split(1) r.length_y_split(1)])
have val1: "val (karatsuba_on_power_of_2_length_tm r.k_div_2 r.x1 r.y1) = r.prod1"
unfolding r.prod1_def
by (intro less.IH[OF r.k_div_2_less_k r.k_div_2 r.length_x_split(2) r.length_y_split(2)])
have val2: "val (karatsuba_on_power_of_2_length_tm r.k_div_2 r.fill_abs_diff_x r.fill_abs_diff_y) = r.prod2"
unfolding r.prod2_def r.fill_abs_diff_x_def[symmetric] r.fill_abs_diff_y_def[symmetric]
apply (intro less.IH[OF r.k_div_2_less_k r.k_div_2])
subgoal unfolding r.fill_abs_diff_x_def by (rule r.length_fill_abs_diff_x0_x1)
subgoal unfolding r.fill_abs_diff_y_def by (rule r.length_fill_abs_diff_y0_y1)
done
have "val (karatsuba_on_power_of_2_length_tm k xs ys) = r.add0sr +⇩n r.s1"
unfolding karatsuba_on_power_of_2_length_tm.simps[of k xs ys]
val_bind_tm val_less_eq_nat_tm val_simps val_split_tm r.split_x r.split_y
val_divide_nat_tm val_abs_diff_tm val_fill_tm r.k_div_2_def[symmetric]
val_compare_nat_tm val_subtract_nat_tm val_add_nat_tm val_equal_bool_tm val_shift_right_tm
Let_def Product_Type.prod.case r.defs2[symmetric] r.defs3[symmetric] val0 val1 val2
using False by argo
also have "... = karatsuba_on_power_of_2_length k xs ys"
using r.recursive
unfolding karatsuba_on_power_of_2_length.simps[of k xs ys]
Let_def r.split_x r.split_y Product_Type.prod.case r.defs2[symmetric] r.defs3[symmetric] by argo
finally show ?thesis .
qed
qed
fun h where
"h k = (if k ≤ karatsuba_lower_bound then 2 * k + 8 * k * k + 3
else 407 + 224 * k + 3 * h (k div 2))"
declare h.simps[simp del]
lemma time_karatsuba_on_power_of_2_length_tm_le_h:
assumes "k = 2 ^ l"
assumes "length xs = k" "length ys = k"
shows "time (karatsuba_on_power_of_2_length_tm k xs ys) ≤ h k"
using assms proof (induction k arbitrary: xs ys l rule: less_induct)
case (less k)
show ?case
proof (cases "k ≤ karatsuba_lower_bound")
case True
then have "time (karatsuba_on_power_of_2_length_tm k xs ys) ≤
2 * k + 8 * length xs * max (length xs) (length ys) + 3"
unfolding karatsuba_on_power_of_2_length_tm.simps[of k xs ys]
apply (simp add: time_less_eq_nat_tm)
apply (subst Suc_eq_plus1)+
apply (estimation estimate: time_grid_mul_nat_tm_le)
apply (rule order.refl)
done
also have "... = 2 * k + 8 * k * k + 3" unfolding less(3) less(4) by simp
finally show ?thesis unfolding h.simps[of k] using True by simp
next
case False
then interpret r: karatsuba_context k l xs ys
by (unfold_locales; simp add: less)
have val0: "val (karatsuba_on_power_of_2_length_tm r.k_div_2 r.x0 r.y0) = r.prod0"
unfolding r.prod0_def
by (intro val_karatsuba_on_power_of_2_length_tm[OF r.k_div_2 r.length_x_split(1) r.length_y_split(1)])
have val1: "val (karatsuba_on_power_of_2_length_tm r.k_div_2 r.x1 r.y1) = r.prod1"
unfolding r.prod1_def
by (intro val_karatsuba_on_power_of_2_length_tm[OF r.k_div_2 r.length_x_split(2) r.length_y_split(2)])
have val2: "val (karatsuba_on_power_of_2_length_tm r.k_div_2 r.fill_abs_diff_x r.fill_abs_diff_y) = r.prod2"
unfolding r.prod2_def r.fill_abs_diff_x_def[symmetric] r.fill_abs_diff_y_def[symmetric]
apply (intro val_karatsuba_on_power_of_2_length_tm[OF r.k_div_2])
subgoal unfolding r.fill_abs_diff_x_def by (rule r.length_fill_abs_diff_x0_x1)
subgoal unfolding r.fill_abs_diff_y_def by (rule r.length_fill_abs_diff_y0_y1)
done
have len0: "length (r.prod0) ≤ 3 * k"
unfolding r.prod0_def
apply (estimation estimate: length_karatsuba_on_power_of_2_length[OF r.k_div_2 r.length_x_split(1) r.length_y_split(1)])
unfolding r.k_div_2_def
by simp
have len1: "length (r.prod1) ≤ 3 * k"
unfolding r.prod1_def
apply (estimation estimate: length_karatsuba_on_power_of_2_length[OF r.k_div_2 r.length_x_split(2) r.length_y_split(2)])
unfolding r.k_div_2_def
by simp
have len2: "length (r.prod2) ≤ 3 * k"
unfolding r.prod2_def
apply (estimation estimate: length_karatsuba_on_power_of_2_length[OF r.k_div_2 r.length_fill_abs_diff_x0_x1 r.length_fill_abs_diff_y0_y1])
unfolding r.k_div_2_def
by simp
have len01: "length r.add01 ≤ 3 * k + 1"
unfolding r.add01_def
apply (estimation estimate: length_add_nat_upper)
apply (estimation estimate: len0)
apply (estimation estimate: len1)
by simp
have lenr: "length r.r ≤ 3 * k + 2"
unfolding r.r_def if_distrib[of length]
apply (estimation estimate: length_subtract_nat_le)
apply (estimation estimate: length_add_nat_upper)
apply (estimation estimate: len01)
apply (estimation estimate: len2)
by simp
have lensr: "length r.sr ≤ r.k_div_2 + 3 * k + 2"
unfolding r.sr_def
apply (subst length_shift_right)
apply (estimation estimate: lenr)
by simp
have len0sr: "length r.add0sr ≤ r.k_div_2 + 3 * k + 3"
unfolding r.add0sr_def
apply (estimation estimate: length_add_nat_upper)
apply (estimation estimate: len0)
apply (estimation estimate: lensr)
by simp
have lens1: "length r.s1 ≤ 4 * k"
unfolding r.s1_def
apply (subst length_shift_right)
apply (estimation estimate: len1)
by simp
have time0: "time (karatsuba_on_power_of_2_length_tm r.k_div_2 r.x0 r.y0) ≤ h r.k_div_2"
by (intro less.IH[OF r.k_div_2_less_k r.k_div_2 r.length_x_split(1) r.length_y_split(1)])
have time1: "time (karatsuba_on_power_of_2_length_tm r.k_div_2 r.x1 r.y1) ≤ h r.k_div_2"
by (intro less.IH[OF r.k_div_2_less_k r.k_div_2 r.length_x_split(2) r.length_y_split(2)])
have time2: "time (karatsuba_on_power_of_2_length_tm r.k_div_2 r.fill_abs_diff_x r.fill_abs_diff_y) ≤ h r.k_div_2"
apply (intro less.IH[OF r.k_div_2_less_k r.k_div_2])
subgoal unfolding r.fill_abs_diff_x_def using r.length_fill_abs_diff_x0_x1 by assumption
subgoal unfolding r.fill_abs_diff_y_def using r.length_fill_abs_diff_y0_y1 by assumption
done
have "time (karatsuba_on_power_of_2_length_tm k xs ys) =
time (k ≤⇩t karatsuba_lower_bound) +
time (split_tm xs) +
time (split_tm ys) +
time (k div⇩t 2) +
time (karatsuba_on_power_of_2_length_tm r.k_div_2 r.x0 r.y0) +
time (karatsuba_on_power_of_2_length_tm r.k_div_2 r.x1 r.y1) +
time (abs_diff_tm r.x0 r.x1) + time (fill_tm r.k_div_2 (abs_diff r.x0 r.x1)) +
time (abs_diff_tm r.y0 r.y1) + time (fill_tm r.k_div_2 (abs_diff r.y0 r.y1)) +
time (karatsuba_on_power_of_2_length_tm r.k_div_2 r.fill_abs_diff_x r.fill_abs_diff_y) +
time (r.x1 ≤⇩n⇩t r.x0) +
time (r.y1 ≤⇩n⇩t r.y0) +
time (r.sgnx =⇩t r.sgny) +
time (add_nat_tm r.prod0 r.prod1) +
(if r.sgnxy then time (r.add01 -⇩n⇩t r.prod2)
else time (r.add01 +⇩n⇩t r.prod2)) +
time (r.r >>⇩n⇩t r.k_div_2) +
time (r.prod0 +⇩n⇩t r.sr) +
time (r.prod1 >>⇩n⇩t k) +
time (r.add0sr +⇩n⇩t r.s1) + 1"
unfolding karatsuba_on_power_of_2_length_tm.simps[of k xs ys]
tm_time_simps if_distrib[of time] val_less_eq_nat_tm val_split_tm r.defs1
Product_Type.prod.case val_divide_nat_tm r.defs2[symmetric] r.defs3[symmetric]
val_abs_diff_tm val_simps val_fill_tm val_karatsuba_on_power_of_2_length_tm
val_compare_nat_tm Let_def val0 val1 val2 val_add_nat_tm val_equal_bool_tm
val_subtract_nat_tm
by (auto simp: False r.defs2[symmetric] r.defs3[symmetric])
also have "... ≤ 2 * k + 2 +
(10 * k + 16) + (10 * k + 16) +
(8 * k + 11) +
h (k div 2) +
h (k div 2) +
(31 * k + 100) +
(2 * k + 5) +
(31 * k + 100) +
(2 * k + 5) +
h (k div 2) +
(7 * k + 23) +
(7 * k + 23) +
2 +
(6 * k + 3) +
(90 * k + 78) +
(k + 3) +
(7 * k + 7) +
(2 * k + 3) +
(8 * k + 9) +
1"
apply (intro add_mono)
subgoal by (estimation estimate: time_less_eq_nat_tm_le) simp
subgoal by (estimation estimate: time_split_tm_le) (simp add: less)
subgoal by (estimation estimate: time_split_tm_le) (simp add: less)
subgoal by (estimation estimate: time_divide_nat_tm_le) simp
subgoal by (estimation estimate: time0) (simp add: r.k_div_2_def)
subgoal by (estimation estimate: time1) (simp add: r.k_div_2_def)
subgoal apply (estimation estimate: time_abs_diff_tm_le) unfolding r.length_x_split r.k_div_2_def by simp
subgoal apply (estimation estimate: time_fill_tm_le) using r.length_abs_diff_x0_x1 r.k_div_2_def by simp
subgoal apply (estimation estimate: time_abs_diff_tm_le) unfolding r.length_y_split r.k_div_2_def by simp
subgoal apply (estimation estimate: time_fill_tm_le) using r.length_abs_diff_y0_y1 r.k_div_2_def by simp
subgoal by (estimation estimate: time2) (simp add: r.k_div_2_def)
subgoal apply (estimation estimate: time_compare_nat_tm_le) using r.length_x_split r.k_div_2_def by simp
subgoal apply (estimation estimate: time_compare_nat_tm_le) using r.length_y_split r.k_div_2_def by simp
subgoal using time_equal_bool_tm_le by simp
subgoal
apply (estimation estimate: time_add_nat_tm_le)
apply (estimation estimate: len0)
apply (estimation estimate: len1)
by simp
subgoal
apply (estimation estimate: time_subtract_nat_tm_le)
apply (estimation estimate: time_add_nat_tm_le)
apply (estimation estimate: len01)
apply (estimation estimate: len2)
by simp
subgoal using r.k_div_2_def by simp
subgoal
apply (estimation estimate: time_add_nat_tm_le)
apply (estimation estimate: len0)
apply (estimation estimate: lensr)
using r.k_div_2_def by simp
subgoal by simp
subgoal
apply (estimation estimate: time_add_nat_tm_le)
apply (estimation estimate: len0sr)
apply (estimation estimate: lens1)
using r.k_div_2_less_k by presburger
subgoal by simp
done
also have "... = 407 + 224 * k + 3 * h (k div 2)"
by simp
finally show ?thesis unfolding h.simps[of k] using False by simp
qed
qed
lemma n_div_2: "n div 2 = nat ⌊real n / 2⌋"
by linarith
function h_real :: "nat ⇒ real" where
"x ≤ karatsuba_lower_bound ⟹ h_real x = 8 * x * x + 2 * x + 3"
| "x > karatsuba_lower_bound ⟹ h_real x = 407 + 224 * x + 3 * h_real (nat (⌊real x / 2⌋))"
by force simp_all
termination
by (relation "Wellfounded.measure (λx. x)") (simp_all add: n_div_2[symmetric])
lemma h_h_real: "real (h k) = h_real k"
apply (induction k rule: h.induct)
subgoal for k
apply (cases "k ≤ karatsuba_lower_bound")
by (simp_all add: h_real.simps[of k] h.simps[of k] n_div_2 del: h_real.simps)
done
lemma h_real_bigo: "h_real ∈ O(λn. real n powr log 2 3)"
by (master_theorem 1 p': 1) (auto simp: powr_divide)
definition karatsuba_mul_nat_tm :: "nat_lsbf ⇒ nat_lsbf ⇒ nat_lsbf tm" where
"karatsuba_mul_nat_tm xs ys =1 do {
lenx ← length_tm xs;
leny ← length_tm ys;
k ← max_nat_tm lenx leny ⤜ next_power_of_2_tm;
fillx ← fill_tm k xs;
filly ← fill_tm k ys;
karatsuba_on_power_of_2_length_tm k fillx filly
}"
lemma val_karatsuba_mul_nat_tm[simp, val_simp]: "val (karatsuba_mul_nat_tm xs ys) = karatsuba_mul_nat xs ys"
proof -
define k where "k = next_power_of_2 (max (length xs) (length ys))"
then obtain l where "k = 2 ^ l" using next_power_of_2_is_power_of_2 by auto
have "val (karatsuba_on_power_of_2_length_tm k (fill k xs) (fill k ys)) =
karatsuba_on_power_of_2_length k (fill k xs) (fill k ys)"
apply (intro val_karatsuba_on_power_of_2_length_tm[OF ‹k = 2 ^ l›])
unfolding k_def using next_power_of_2_lower_bound[of "max (length xs) (length ys)"] by auto
then show ?thesis
unfolding karatsuba_mul_nat_tm_def karatsuba_mul_nat.simps val_simp Let_def k_def .
qed
definition time_karatsuba_mul_nat_bound where
"time_karatsuba_mul_nat_bound m = 53 + 218 * (next_power_of_2 m) + h (next_power_of_2 m)"
text "The following two lemmas are one way to formally express the more informal statement
''Karatsuba Multiplication needs $\\mathcal{O}\\left(n ^ {\\log_2 3}\\right)$ bit operations for
input numbers of length $n$''."
theorem time_karatsuba_mul_nat_tm_le:
assumes "max (length xs) (length ys) = m"
shows "time (karatsuba_mul_nat_tm xs ys) ≤ time_karatsuba_mul_nat_bound m"
proof -
define k where "k = next_power_of_2 m"
then obtain l where "k = 2 ^ l" using next_power_of_2_is_power_of_2 by auto
have lens: "length xs ≤ k" "length ys ≤ k"
using assms next_power_of_2_lower_bound[of m] k_def by simp_all
have "time (karatsuba_mul_nat_tm xs ys) =
time (length_tm xs) +
time (length_tm ys) +
time (max_nat_tm (length xs) (length ys)) +
time (next_power_of_2_tm (max (length xs) (length ys))) +
time (fill_tm k xs) +
time (fill_tm k ys) +
time (karatsuba_on_power_of_2_length_tm k (fill k xs) (fill k ys)) + 1"
unfolding karatsuba_mul_nat_tm_def tm_time_simps val_simp Let_def
assms k_def[symmetric] by presburger
also have "... ≤
(k + 1) + (k + 1) + (2 * k + 3) +
(208 * k + 37) +
(3 * k + 5) +
(3 * k + 5) +
h k +
1"
apply (intro add_mono order.refl)
subgoal by (simp add: lens)
subgoal by (simp add: lens)
subgoal apply (estimation estimate: time_max_nat_tm_le) using lens by simp
subgoal apply (estimation estimate: time_next_power_of_2_tm_le) using lens by simp
subgoal apply (estimation estimate: time_fill_tm_le) using lens by simp
subgoal apply (estimation estimate: time_fill_tm_le) using lens by simp
subgoal apply (intro time_karatsuba_on_power_of_2_length_tm_le_h[OF ‹k = 2 ^ l›]) using lens
by auto
done
also have "... = 53 + 218 * k + h k" by simp
finally show ?thesis unfolding k_def time_karatsuba_mul_nat_bound_def[symmetric] .
qed
theorem time_karatsuba_mul_nat_bound_bigo: "time_karatsuba_mul_nat_bound ∈ O(λm. m powr log 2 3)"
proof -
define t where "t = (λm. real (53 + 218 * m + h m))"
then have "time_karatsuba_mul_nat_bound = t ∘ next_power_of_2"
unfolding time_karatsuba_mul_nat_bound_def by auto
also have "... ∈ O(λm. m powr log 2 3)"
apply (intro powr_bigo_linear_index_transformation)
subgoal
proof -
have "(λx. real (next_power_of_2 x)) ∈ O(λx. real (2 * x + 1))"
apply (intro landau_mono_always)
using next_power_of_2_upper_bound' real_mono by simp_all
moreover have "(λx. real (2 * x + 1)) ∈ O(real)" by auto
ultimately show "(λx. real (next_power_of_2 x)) ∈ O(real)"
using landau_o.big.trans by blast
qed
subgoal unfolding t_def real_linear real_multiplicative h_h_real
apply (intro sum_in_bigo)
subgoal by auto
subgoal by auto
subgoal using h_real_bigo .
done
subgoal by auto
done
finally show ?thesis .
qed
end