Theory Superposition_Calculus.Transitive_Closure_Extra

theory Transitive_Closure_Extra
  imports Main
begin

lemma reflclp_iff: "R x y. R== x y  R x y  x = y"
  by (metis (full_types) sup2CI sup2E)

lemma reflclp_refl: "R== x x"
  by simp

lemma transpD_strict_non_strict:
  assumes "transp R"
  shows "x y z. R x y  R== y z  R x z"
  using transp R[THEN transpD] by blast

lemma transpD_non_strict_strict:
  assumes "transp R"
  shows "x y z. R== x y  R y z  R x z"
  using transp R[THEN transpD] by blast

lemma mem_rtrancl_union_iff_mem_rtrancl_lhs:
  assumes "z. (x, z)  A*  z  Domain B"
  shows "(x, y)  (A  B)*  (x, y)  A*"
  using assms
  by (meson Domain.DomainI in_rtrancl_UnI rtrancl_Un_separatorE)

lemma mem_rtrancl_union_iff_mem_rtrancl_rhs:
  assumes
    "z. (x, z)  B*  z  Domain A"
  shows "(x, y)  (A  B)*  (x, y)  B*"
  using assms
  by (metis mem_rtrancl_union_iff_mem_rtrancl_lhs sup_commute)

end