Theory Derivatives

section "Derivatives of regular expressions"

(* Author: Christian Urban *)

theory Derivatives
imports Regular_Exp
begin

text‹This theory is based on work by Brozowski cite"Brzozowski64" and Antimirov cite"Antimirov95".›

subsection ‹Brzozowski's derivatives of regular expressions›

fun
  deriv :: "'a  'a rexp  'a rexp"
where
  "deriv c (Zero) = Zero"
| "deriv c (One) = Zero"
| "deriv c (Atom c') = (if c = c' then One else Zero)"
| "deriv c (Plus r1 r2) = Plus (deriv c r1) (deriv c r2)"
| "deriv c (Times r1 r2) = 
    (if nullable r1 then Plus (Times (deriv c r1) r2) (deriv c r2) else Times (deriv c r1) r2)"
| "deriv c (Star r) = Times (deriv c r) (Star r)"

fun 
  derivs :: "'a list  'a rexp  'a rexp"
where
  "derivs [] r = r"
| "derivs (c # s) r = derivs s (deriv c r)"


lemma atoms_deriv_subset: "atoms (deriv x r)  atoms r"
by (induction r) (auto)

lemma atoms_derivs_subset: "atoms (derivs w r)  atoms r"
by (induction w arbitrary: r) (auto dest: atoms_deriv_subset[THEN subsetD])

lemma lang_deriv: "lang (deriv c r) = Deriv c (lang r)"
by (induct r) (simp_all add: nullable_iff)

lemma lang_derivs: "lang (derivs s r) = Derivs s (lang r)"
by (induct s arbitrary: r) (simp_all add: lang_deriv)

text ‹A regular expression matcher:›

definition matcher :: "'a rexp  'a list  bool" where
"matcher r s = nullable (derivs s r)"

lemma matcher_correctness: "matcher r s  s  lang r"
by (induct s arbitrary: r)
   (simp_all add: nullable_iff lang_deriv matcher_def Deriv_def)


subsection ‹Antimirov's partial derivatives›

abbreviation
  "Timess rs r  (r'  rs. {Times r' r})"

lemma Timess_eq_image:
  "Timess rs r = (λr'. Times r' r) ` rs"
  by auto

primrec
  pderiv :: "'a  'a rexp  'a rexp set"
where
  "pderiv c Zero = {}"
| "pderiv c One = {}"
| "pderiv c (Atom c') = (if c = c' then {One} else {})"
| "pderiv c (Plus r1 r2) = (pderiv c r1)  (pderiv c r2)"
| "pderiv c (Times r1 r2) = 
    (if nullable r1 then Timess (pderiv c r1) r2  pderiv c r2 else Timess (pderiv c r1) r2)"
| "pderiv c (Star r) = Timess (pderiv c r) (Star r)"

primrec
  pderivs :: "'a list  'a rexp  ('a rexp) set"
where
  "pderivs [] r = {r}"
| "pderivs (c # s) r =  (pderivs s ` pderiv c r)"

abbreviation
 pderiv_set :: "'a  'a rexp set  'a rexp set"
where
  "pderiv_set c rs   (pderiv c ` rs)"

abbreviation
  pderivs_set :: "'a list  'a rexp set  'a rexp set"
where
  "pderivs_set s rs   (pderivs s ` rs)"

lemma pderivs_append:
  "pderivs (s1 @ s2) r =  (pderivs s2 ` pderivs s1 r)"
by (induct s1 arbitrary: r) (simp_all)

lemma pderivs_snoc:
  shows "pderivs (s @ [c]) r = pderiv_set c (pderivs s r)"
by (simp add: pderivs_append)

lemma pderivs_simps [simp]:
  shows "pderivs s Zero = (if s = [] then {Zero} else {})"
  and   "pderivs s One = (if s = [] then {One} else {})"
  and   "pderivs s (Plus r1 r2) = (if s = [] then {Plus r1 r2} else (pderivs s r1)  (pderivs s r2))"
by (induct s) (simp_all)

lemma pderivs_Atom:
  shows "pderivs s (Atom c)  {Atom c, One}"
by (induct s) (simp_all)

subsection ‹Relating left-quotients and partial derivatives›

lemma Deriv_pderiv:
  shows "Deriv c (lang r) =  (lang ` pderiv c r)"
by (induct r) (auto simp add: nullable_iff conc_UNION_distrib)

lemma Derivs_pderivs:
  shows "Derivs s (lang r) =  (lang ` pderivs s r)"
proof (induct s arbitrary: r)
  case (Cons c s)
  have ih: "r. Derivs s (lang r) =  (lang ` pderivs s r)" by fact
  have "Derivs (c # s) (lang r) = Derivs s (Deriv c (lang r))" by simp
  also have " = Derivs s ( (lang ` pderiv c r))" by (simp add: Deriv_pderiv)
  also have " = Derivss s (lang ` (pderiv c r))"
    by (auto simp add:  Derivs_def)
  also have " =  (lang ` (pderivs_set s (pderiv c r)))"
    using ih by auto
  also have " =  (lang ` (pderivs (c # s) r))" by simp
  finally show "Derivs (c # s) (lang r) =  (lang ` pderivs (c # s) r)" .
qed (simp add: Derivs_def)

subsection ‹Relating derivatives and partial derivatives›

lemma deriv_pderiv:
  shows " (lang ` (pderiv c r)) = lang (deriv c r)"
unfolding lang_deriv Deriv_pderiv by simp

lemma derivs_pderivs:
  shows " (lang ` (pderivs s r)) = lang (derivs s r)"
unfolding lang_derivs Derivs_pderivs by simp


subsection ‹Finiteness property of partial derivatives›

definition
  pderivs_lang :: "'a lang  'a rexp  'a rexp set"
where
  "pderivs_lang A r  x  A. pderivs x r"

lemma pderivs_lang_subsetI:
  assumes "s. s  A  pderivs s r  C"
  shows "pderivs_lang A r  C"
using assms unfolding pderivs_lang_def by (rule UN_least)

lemma pderivs_lang_union:
  shows "pderivs_lang (A  B) r = (pderivs_lang A r  pderivs_lang B r)"
by (simp add: pderivs_lang_def)

lemma pderivs_lang_subset:
  shows "A  B  pderivs_lang A r  pderivs_lang B r"
by (auto simp add: pderivs_lang_def)

definition
  "UNIV1  UNIV - {[]}"

lemma pderivs_lang_Zero [simp]:
  shows "pderivs_lang UNIV1 Zero = {}"
unfolding UNIV1_def pderivs_lang_def by auto

lemma pderivs_lang_One [simp]:
  shows "pderivs_lang UNIV1 One = {}"
unfolding UNIV1_def pderivs_lang_def by (auto split: if_splits)

lemma pderivs_lang_Atom [simp]:
  shows "pderivs_lang UNIV1 (Atom c) = {One}"
unfolding UNIV1_def pderivs_lang_def 
apply(auto)
apply(frule rev_subsetD)
apply(rule pderivs_Atom)
apply(simp)
apply(case_tac xa)
apply(auto split: if_splits)
done

lemma pderivs_lang_Plus [simp]:
  shows "pderivs_lang UNIV1 (Plus r1 r2) = pderivs_lang UNIV1 r1  pderivs_lang UNIV1 r2"
unfolding UNIV1_def pderivs_lang_def by auto


text ‹Non-empty suffixes of a string (needed for the cases of @{const Times} and @{const Star} below)›

definition
  "PSuf s  {v. v  []  (u. u @ v = s)}"

lemma PSuf_snoc:
  shows "PSuf (s @ [c]) = (PSuf s) @@ {[c]}  {[c]}"
unfolding PSuf_def conc_def
by (auto simp add: append_eq_append_conv2 append_eq_Cons_conv)

lemma PSuf_Union:
  shows "(v  PSuf s @@ {[c]}. f v) = (v  PSuf s. f (v @ [c]))"
by (auto simp add: conc_def)

lemma pderivs_lang_snoc:
  shows "pderivs_lang (PSuf s @@ {[c]}) r = (pderiv_set c (pderivs_lang (PSuf s) r))"
unfolding pderivs_lang_def
by (simp add: PSuf_Union pderivs_snoc)

lemma pderivs_Times:
  shows "pderivs s (Times r1 r2)  Timess (pderivs s r1) r2  (pderivs_lang (PSuf s) r2)"
proof (induct s rule: rev_induct)
  case (snoc c s)
  have ih: "pderivs s (Times r1 r2)  Timess (pderivs s r1) r2  (pderivs_lang (PSuf s) r2)" 
    by fact
  have "pderivs (s @ [c]) (Times r1 r2) = pderiv_set c (pderivs s (Times r1 r2))" 
    by (simp add: pderivs_snoc)
  also have "  pderiv_set c (Timess (pderivs s r1) r2  (pderivs_lang (PSuf s) r2))"
    using ih by fastforce
  also have " = pderiv_set c (Timess (pderivs s r1) r2)  pderiv_set c (pderivs_lang (PSuf s) r2)"
    by (simp)
  also have " = pderiv_set c (Timess (pderivs s r1) r2)  pderivs_lang (PSuf s @@ {[c]}) r2"
    by (simp add: pderivs_lang_snoc)
  also 
  have "  pderiv_set c (Timess (pderivs s r1) r2)  pderiv c r2  pderivs_lang (PSuf s @@ {[c]}) r2"
    by auto
  also 
  have "  Timess (pderiv_set c (pderivs s r1)) r2  pderiv c r2  pderivs_lang (PSuf s @@ {[c]}) r2"
    by (auto simp add: if_splits)
  also have " = Timess (pderivs (s @ [c]) r1) r2  pderiv c r2  pderivs_lang (PSuf s @@ {[c]}) r2"
    by (simp add: pderivs_snoc)
  also have "  Timess (pderivs (s @ [c]) r1) r2  pderivs_lang (PSuf (s @ [c])) r2"
    unfolding pderivs_lang_def by (auto simp add: PSuf_snoc)  
  finally show ?case .
qed (simp) 

lemma pderivs_lang_Times_aux1:
  assumes a: "s  UNIV1"
  shows "pderivs_lang (PSuf s) r  pderivs_lang UNIV1 r"
using a unfolding UNIV1_def PSuf_def pderivs_lang_def by auto

lemma pderivs_lang_Times_aux2:
  assumes a: "s  UNIV1"
  shows "Timess (pderivs s r1) r2  Timess (pderivs_lang UNIV1 r1) r2"
using a unfolding pderivs_lang_def by auto

lemma pderivs_lang_Times:
  shows "pderivs_lang UNIV1 (Times r1 r2)  Timess (pderivs_lang UNIV1 r1) r2  pderivs_lang UNIV1 r2"
apply(rule pderivs_lang_subsetI)
apply(rule subset_trans)
apply(rule pderivs_Times)
using pderivs_lang_Times_aux1 pderivs_lang_Times_aux2
apply auto
apply blast
done

lemma pderivs_Star:
  assumes a: "s  []"
  shows "pderivs s (Star r)  Timess (pderivs_lang (PSuf s) r) (Star r)"
using a
proof (induct s rule: rev_induct)
  case (snoc c s)
  have ih: "s  []  pderivs s (Star r)  Timess (pderivs_lang (PSuf s) r) (Star r)" by fact
  { assume asm: "s  []"
    have "pderivs (s @ [c]) (Star r) = pderiv_set c (pderivs s (Star r))" by (simp add: pderivs_snoc)
    also have "  pderiv_set c (Timess (pderivs_lang (PSuf s) r) (Star r))"
      using ih[OF asm] by fast
    also have "  Timess (pderiv_set c (pderivs_lang (PSuf s) r)) (Star r)  pderiv c (Star r)"
      by (auto split: if_splits)
    also have "  Timess (pderivs_lang (PSuf (s @ [c])) r) (Star r)  (Timess (pderiv c r) (Star r))"
      by (simp only: PSuf_snoc pderivs_lang_snoc pderivs_lang_union)
         (auto simp add: pderivs_lang_def)
    also have " = Timess (pderivs_lang (PSuf (s @ [c])) r) (Star r)"
      by (auto simp add: PSuf_snoc PSuf_Union pderivs_snoc pderivs_lang_def)
    finally have ?case .
  }
  moreover
  { assume asm: "s = []"
    then have ?case by (auto simp add: pderivs_lang_def pderivs_snoc PSuf_def)
  }
  ultimately show ?case by blast
qed (simp)

lemma pderivs_lang_Star:
  shows "pderivs_lang UNIV1 (Star r)  Timess (pderivs_lang UNIV1 r) (Star r)"
apply(rule pderivs_lang_subsetI)
apply(rule subset_trans)
apply(rule pderivs_Star)
apply(simp add: UNIV1_def)
apply(simp add: UNIV1_def PSuf_def)
apply(auto simp add: pderivs_lang_def)
done

lemma finite_Timess [simp]:
  assumes a: "finite A"
  shows "finite (Timess A r)"
using a by auto

lemma finite_pderivs_lang_UNIV1:
  shows "finite (pderivs_lang UNIV1 r)"
apply(induct r)
apply(simp_all add: 
  finite_subset[OF pderivs_lang_Times]
  finite_subset[OF pderivs_lang_Star])
done
    
lemma pderivs_lang_UNIV:
  shows "pderivs_lang UNIV r = pderivs [] r  pderivs_lang UNIV1 r"
unfolding UNIV1_def pderivs_lang_def
by blast

lemma finite_pderivs_lang_UNIV:
  shows "finite (pderivs_lang UNIV r)"
unfolding pderivs_lang_UNIV
by (simp add: finite_pderivs_lang_UNIV1)

lemma finite_pderivs_lang:
  shows "finite (pderivs_lang A r)"
by (metis finite_pderivs_lang_UNIV pderivs_lang_subset rev_finite_subset subset_UNIV)


text‹The following relationship between the alphabetic width of regular expressions
(called awidth› below) and the number of partial derivatives was proved
by Antimirov~cite"Antimirov95" and formalized by Max Haslbeck.›

fun awidth :: "'a rexp  nat" where
"awidth Zero = 0" |
"awidth One = 0" |
"awidth (Atom a) = 1" |
"awidth (Plus r1 r2) = awidth r1 + awidth r2" |
"awidth (Times r1 r2) = awidth r1 + awidth r2" |
"awidth (Star r1) = awidth r1"

lemma card_Timess_pderivs_lang_le:
  "card (Timess (pderivs_lang A r) s)  card (pderivs_lang A r)"
  using finite_pderivs_lang unfolding Timess_eq_image by (rule card_image_le)

lemma card_pderivs_lang_UNIV1_le_awidth: "card (pderivs_lang UNIV1 r)  awidth r"
proof (induction r)
  case (Plus r1 r2)
  have "card (pderivs_lang UNIV1 (Plus r1 r2)) = card (pderivs_lang UNIV1 r1  pderivs_lang UNIV1 r2)" by simp
  also have "  card (pderivs_lang UNIV1 r1) + card (pderivs_lang UNIV1 r2)"
    by(simp add: card_Un_le)
  also have "  awidth (Plus r1 r2)" using Plus.IH by simp
  finally show ?case .
next
  case (Times r1 r2)
  have "card (pderivs_lang UNIV1 (Times r1 r2))  card (Timess (pderivs_lang UNIV1 r1) r2  pderivs_lang UNIV1 r2)"
    by (simp add: card_mono finite_pderivs_lang pderivs_lang_Times)
  also have "  card (Timess (pderivs_lang UNIV1 r1) r2) + card (pderivs_lang UNIV1 r2)"
    by (simp add: card_Un_le)
  also have "  card (pderivs_lang UNIV1 r1) + card (pderivs_lang UNIV1 r2)"
    by (simp add: card_Timess_pderivs_lang_le)
  also have "  awidth (Times r1 r2)" using Times.IH by simp
  finally show ?case .
next
  case (Star r)
  have "card (pderivs_lang UNIV1 (Star r))  card (Timess (pderivs_lang UNIV1 r) (Star r))"
    by (simp add: card_mono finite_pderivs_lang pderivs_lang_Star)
  also have "  card (pderivs_lang UNIV1 r)" by (rule card_Timess_pderivs_lang_le)
  also have "  awidth (Star r)" by (simp add: Star.IH)
  finally show ?case .
qed (auto)

text‹Antimirov's Theorem 3.4:›
theorem card_pderivs_lang_UNIV_le_awidth: "card (pderivs_lang UNIV r)  awidth r + 1"
proof -
  have "card (insert r (pderivs_lang UNIV1 r))  Suc (card (pderivs_lang UNIV1 r))"
    by(auto simp: card_insert_if[OF finite_pderivs_lang_UNIV1])
  also have "  Suc (awidth r)" by(simp add: card_pderivs_lang_UNIV1_le_awidth)
  finally show ?thesis by(simp add: pderivs_lang_UNIV)
qed 

text‹Antimirov's Corollary 3.5:›
corollary card_pderivs_lang_le_awidth: "card (pderivs_lang A r)  awidth r + 1"
by(rule order_trans[OF
  card_mono[OF finite_pderivs_lang_UNIV pderivs_lang_subset[OF subset_UNIV]]
  card_pderivs_lang_UNIV_le_awidth])

end