Theory JinjaDCI.Decl
section ‹ Class Declarations and Programs ›
theory Decl imports Type begin
type_synonym
fdecl = "vname × staticb × ty"
type_synonym
'm mdecl = "mname × staticb × ty list × ty × 'm"
type_synonym
'm "class" = "cname × fdecl list × 'm mdecl list"
type_synonym
'm cdecl = "cname × 'm class"
type_synonym
'm prog = "'m cdecl list"
translations
(type) "fdecl" <= (type) "char list × staticb × ty"
(type) "'c mdecl" <= (type) "char list × staticb × ty list × ty × 'c"
(type) "'c class" <= (type) "char list × fdecl list × ('c mdecl) list"
(type) "'c cdecl" <= (type) "char list × ('c class)"
(type) "'c prog" <= (type) "('c cdecl) list"
definition "class" :: "'m prog ⇒ cname ⇀ 'm class"
where
"class ≡ map_of"
lemma class_cons: "⟦ C ≠ fst x ⟧ ⟹ class (x # P) C = class P C"
by (simp add: class_def)
definition is_class :: "'m prog ⇒ cname ⇒ bool"
where
"is_class P C ≡ class P C ≠ None"
lemma finite_is_class: "finite {C. is_class P C}"
proof -
have "{C. is_class P C} = dom (map_of P)"
by (simp add: is_class_def class_def dom_def)
thus ?thesis by (simp add: finite_dom_map_of)
qed
definition is_type :: "'m prog ⇒ ty ⇒ bool"
where
"is_type P T ≡
(case T of Void ⇒ True | Boolean ⇒ True | Integer ⇒ True | NT ⇒ True
| Class C ⇒ is_class P C)"
lemma is_type_simps [simp]:
"is_type P Void ∧ is_type P Boolean ∧ is_type P Integer ∧
is_type P NT ∧ is_type P (Class C) = is_class P C"
by(simp add:is_type_def)
abbreviation
"types P == Collect (is_type P)"
lemma class_exists_equiv:
"(∃x. fst x = cn ∧ x ∈ set P) = (class P cn ≠ None)"
proof(rule iffI)
assume "∃x. fst x = cn ∧ x ∈ set P" then show "class P cn ≠ None"
by (metis class_def image_eqI map_of_eq_None_iff)
next
assume "class P cn ≠ None" then show "∃x. fst x = cn ∧ x ∈ set P"
by (metis class_def fst_conv map_of_SomeD option.exhaust)
qed
lemma class_exists_equiv2:
"(∃x. fst x = cn ∧ x ∈ set (P1 @ P2)) = (class P1 cn ≠ None ∨ class P2 cn ≠ None)"
by (simp only: class_exists_equiv [where P = "P1@P2"], simp add: class_def)
end