Theory Derivatives_Finite
section ‹Finiteness of Derivatives Modulo ACI›
theory Derivatives_Finite
imports "Regular-Sets.Derivatives"
begin
text ‹Lifting constructors to lists›
fun rexp_of_list where
"rexp_of_list OP N [] = N"
| "rexp_of_list OP N [r] = r"
| "rexp_of_list OP N (r # rs) = OP r (rexp_of_list OP N rs)"
abbreviation "PLUS ≡ rexp_of_list Plus Zero"
abbreviation "TIMES ≡ rexp_of_list Times One"
lemma list_singleton_induct [case_names nil single cons]:
assumes "P []" and "⋀x. P [x]" and "⋀x y xs. P (y # xs) ⟹ P (x # (y # xs))"
shows "P xs"
using assms by induction_schema (pat_completeness, lexicographic_order)
subsection ‹ACI normalization›
fun toplevel_summands :: "'a rexp ⇒ 'a rexp set" where
"toplevel_summands (Plus r s) = toplevel_summands r ∪ toplevel_summands s"
| "toplevel_summands r = {r}"
abbreviation "flatten LISTOP X ≡ LISTOP (sorted_list_of_set X)"
lemma toplevel_summands_nonempty[simp]:
"toplevel_summands r ≠ {}"
by (induct r) auto
lemma toplevel_summands_finite[simp]:
"finite (toplevel_summands r)"
by (induct r) auto
primrec ACI_norm :: "('a::linorder) rexp ⇒ 'a rexp" ("«_»") where
"«Zero» = Zero"
| "«One» = One"
| "«Atom a» = Atom a"
| "«Plus r s» = flatten PLUS (toplevel_summands (Plus «r» «s»))"
| "«Times r s» = Times «r» «s»"
| "«Star r» = Star «r»"
lemma Plus_toplevel_summands: "Plus r s ∈ toplevel_summands t ⟹ False"
by (induction t) auto
lemma toplevel_summands_not_Plus[simp]:
"(∀r s. x ≠ Plus r s) ⟹ toplevel_summands x = {x}"
by (induction x) auto
lemma toplevel_summands_PLUS_strong:
"⟦xs ≠ []; list_all (λx. ¬(∃r s. x = Plus r s)) xs⟧ ⟹ toplevel_summands (PLUS xs) = set xs"
by (induct xs rule: list_singleton_induct) auto
lemma toplevel_summands_flatten:
"⟦X ≠ {}; finite X; ∀x ∈ X. ¬(∃r s. x = Plus r s)⟧ ⟹ toplevel_summands (flatten PLUS X) = X"
using toplevel_summands_PLUS_strong[of "sorted_list_of_set X"]
unfolding list_all_iff by fastforce
lemma ACI_norm_Plus: "«r» = Plus s t ⟹ ∃s t. r = Plus s t"
by (induction r) auto
lemma toplevel_summands_flatten_ACI_norm_image:
"toplevel_summands (flatten PLUS (ACI_norm ` toplevel_summands r)) = ACI_norm ` toplevel_summands r"
by (intro toplevel_summands_flatten) (auto dest!: ACI_norm_Plus intro: Plus_toplevel_summands)
lemma toplevel_summands_flatten_ACI_norm_image_Union:
"toplevel_summands (flatten PLUS (ACI_norm ` toplevel_summands r ∪ ACI_norm ` toplevel_summands s)) =
ACI_norm ` toplevel_summands r ∪ ACI_norm ` toplevel_summands s"
by (intro toplevel_summands_flatten) (auto dest!: ACI_norm_Plus[OF sym] intro: Plus_toplevel_summands)
lemma toplevel_summands_ACI_norm:
"toplevel_summands «r» = ACI_norm ` toplevel_summands r"
by (induction r) (auto simp: toplevel_summands_flatten_ACI_norm_image_Union)
lemma ACI_norm_flatten:
"«r» = flatten PLUS (ACI_norm ` toplevel_summands r)"
by (induction r) (auto simp: image_Un toplevel_summands_flatten_ACI_norm_image)
theorem ACI_norm_idem[simp]: "««r»» = «r»"
proof (induct r)
case (Plus r s)
have "««Plus r s»» = «flatten PLUS (toplevel_summands «r» ∪ toplevel_summands «s»)»"
(is "_ = «flatten PLUS ?U»") by simp
also have "… = flatten PLUS (ACI_norm ` toplevel_summands (flatten PLUS ?U))"
by (simp only: ACI_norm_flatten)
also have "toplevel_summands (flatten PLUS ?U) = ?U"
by (intro toplevel_summands_flatten) (auto intro: Plus_toplevel_summands)
also have "flatten PLUS (ACI_norm ` ?U) = flatten PLUS (toplevel_summands «r» ∪ toplevel_summands «s»)"
by (simp only: image_Un toplevel_summands_ACI_norm[symmetric] Plus)
finally show ?case by simp
qed auto
subsection "Atoms"
lemma atoms_toplevel_summands:
"atoms s = (⋃r∈toplevel_summands s. atoms r)"
by (induct s) auto
lemma wf_PLUS: "atoms (PLUS xs) ⊆ Σ ⟷ (∀r ∈ set xs. atoms r ⊆ Σ)"
by (induct xs rule: list_singleton_induct) auto
lemma atoms_PLUS: "atoms (PLUS xs) = (⋃r ∈ set xs. atoms r)"
by (induct xs rule: list_singleton_induct) auto
lemma atoms_flatten_PLUS:
"finite X ⟹ atoms (flatten PLUS X) = (⋃r ∈ X. atoms r)"
using wf_PLUS[of "sorted_list_of_set X"] by auto
theorem atoms_ACI_norm: "atoms «r» = atoms r"
proof (induct r)
case (Plus r1 r2) thus ?case
using atoms_toplevel_summands[of "«r1»"] atoms_toplevel_summands[of "«r2»"]
by(simp add: atoms_flatten_PLUS ball_Un Un_commute)
qed auto
subsection "Language"
lemma toplevel_summands_lang: "r ∈ toplevel_summands s ⟹ lang r ⊆ lang s"
by (induct s) auto
lemma toplevel_summands_lang_UN:
"lang s = (⋃r∈toplevel_summands s. lang r)"
by (induct s) auto
lemma toplevel_summands_in_lang:
"w ∈ lang s = (∃r∈toplevel_summands s. w ∈ lang r)"
by (induct s) auto
lemma lang_PLUS: "lang (PLUS xs) = (⋃r ∈ set xs. lang r)"
by (induct xs rule: list_singleton_induct) auto
lemma lang_PLUS_map[simp]:
"lang (PLUS (map f xs)) = (⋃a∈set xs. lang (f a))"
by (induct xs rule: list_singleton_induct) auto
lemma lang_flatten_PLUS[simp]:
"finite X ⟹ lang (flatten PLUS X) = (⋃r ∈ X. lang r)"
using lang_PLUS[of "sorted_list_of_set X"] by fastforce
theorem lang_ACI_norm[simp]: "lang «r» = lang r"
proof (induct r)
case (Plus r1 r2)
moreover
from Plus[symmetric] have "lang (Plus r1 r2) ⊆ lang «Plus r1 r2»"
using toplevel_summands_in_lang[of _ "«r1»"] toplevel_summands_in_lang[of _ "«r2»"]
by auto
ultimately show ?case by (fastforce dest!: toplevel_summands_lang)
qed auto
subsection ‹Finiteness of ACI-Equivalent Derivatives›
lemma toplevel_summands_deriv:
"toplevel_summands (deriv as r) = (⋃s∈toplevel_summands r. toplevel_summands (deriv as s))"
by (induction r) (auto simp: Let_def)
lemma derivs_Zero[simp]: "derivs xs Zero = Zero"
by (induction xs) auto
lemma derivs_One: "derivs xs One ∈ {Zero, One}"
by (induction xs) auto
lemma derivs_Atom: "derivs xs (Atom as) ∈ {Zero, One, Atom as}"
proof (induction xs)
case Cons thus ?case by (auto intro: insertE[OF derivs_One])
qed simp
lemma derivs_Plus: "derivs xs (Plus r s) = Plus (derivs xs r) (derivs xs s)"
by (induction xs arbitrary: r s) auto
lemma derivs_PLUS: "derivs xs (PLUS ys) = PLUS (map (derivs xs) ys)"
by (induction ys rule: list_singleton_induct) (auto simp: derivs_Plus)
lemma toplevel_summands_derivs_Times: "toplevel_summands (derivs xs (Times r s)) ⊆
{Times (derivs xs r) s} ∪
{r'. ∃ys zs. r' ∈ toplevel_summands (derivs ys s) ∧ ys ≠ [] ∧ zs @ ys = xs}"
proof (induction xs arbitrary: r s)
case (Cons x xs)
thus ?case by (auto simp: Let_def derivs_Plus) (fastforce intro: exI[of _ "x#xs"])+
qed simp
lemma toplevel_summands_derivs_Star_nonempty:
"xs ≠ [] ⟹ toplevel_summands (derivs xs (Star r)) ⊆
{Times (derivs ys r) (Star r) | ys. ∃zs. ys ≠ [] ∧ zs @ ys = xs}"
proof (induction xs rule: length_induct)
case (1 xs)
then obtain y ys where "xs = y # ys" by (cases xs) auto
thus ?case using spec[OF 1(1)]
by (auto dest!: subsetD[OF toplevel_summands_derivs_Times] intro: exI[of _ "y#ys"])
(auto elim!: impE dest!: meta_spec subsetD)
qed
lemma toplevel_summands_derivs_Star:
"toplevel_summands (derivs xs (Star r)) ⊆
{Star r} ∪ {Times (derivs ys r) (Star r) | ys. ∃zs. ys ≠ [] ∧ zs @ ys = xs}"
by (cases "xs = []") (auto dest!: toplevel_summands_derivs_Star_nonempty)
lemma toplevel_summands_PLUS:
"xs ≠ [] ⟹ toplevel_summands (PLUS (map f xs)) = (⋃r ∈ set xs. toplevel_summands (f r))"
by (induction xs rule: list_singleton_induct) simp_all
lemma ACI_norm_toplevel_summands_Zero: "toplevel_summands r ⊆ {Zero} ⟹ «r» = Zero"
by (subst ACI_norm_flatten) (auto dest: subset_singletonD)
lemma finite_ACI_norm_toplevel_summands:
"finite {f «s» |s. toplevel_summands s ⊆ B}" if "finite B"
proof -
have *: "{f «s» | s.
toplevel_summands s ⊆ B} ⊆ (f ∘ flatten PLUS ∘ (`) ACI_norm) ` Pow B"
by (subst ACI_norm_flatten) auto
with that show ?thesis
by (rule finite_surj [OF iffD2 [OF finite_Pow_iff]])
qed
theorem finite_derivs: "finite {«derivs xs r» | xs . True}"
proof (induct r)
case Zero show ?case by simp
next
case One show ?case
by (rule finite_surj[of "{Zero, One}"]) (blast intro: insertE[OF derivs_One])+
next
case (Atom as) show ?case
by (rule finite_surj[of "{Zero, One, Atom as}"]) (blast intro: insertE[OF derivs_Atom])+
next
case (Plus r s)
show ?case by (auto simp: derivs_Plus intro!: finite_surj[OF finite_cartesian_product[OF Plus]])
next
case (Times r s)
hence "finite (⋃ (toplevel_summands ` {«derivs xs s» | xs . True}))" by auto
moreover have "{«r'» |r'. ∃ys. r' ∈ toplevel_summands (derivs ys s)} =
{r'. ∃ys. r' ∈ toplevel_summands «derivs ys s»}"
by (auto simp: toplevel_summands_ACI_norm)
ultimately have fin: "finite {«r'» |r'. ∃ys. r' ∈ toplevel_summands (derivs ys s)}"
by (fastforce intro: finite_subset[of _ "⋃ (toplevel_summands ` {«derivs xs s» | xs . True})"])
let ?X = "λxs. {Times (derivs ys r) s | ys. True} ∪ {r'. r' ∈ (⋃ys. toplevel_summands (derivs ys s))}"
show ?case
proof (simp only: ACI_norm_flatten,
rule finite_surj[of "{X. ∃xs. X ⊆ ACI_norm ` ?X xs}" _ "flatten PLUS"])
show "finite {X. ∃xs. X ⊆ ACI_norm ` ?X xs}"
using fin by (fastforce simp: image_Un elim: finite_subset[rotated] intro: finite_surj[OF Times(1), of _ "λr. Times r «s»"])
qed (fastforce dest!: subsetD[OF toplevel_summands_derivs_Times] intro!: imageI)
next
case (Star r)
let ?f = "λf r'. Times r' (Star (f r))"
let ?X = "{Star r} ∪ ?f id ` {r'. r' ∈ {derivs ys r|ys. True}}"
show ?case
proof (simp only: ACI_norm_flatten,
rule finite_surj[of "{X. X ⊆ ACI_norm ` ?X}" _ "flatten PLUS"])
have *: "⋀X. ACI_norm ` ?f (λx. x) ` X = ?f ACI_norm ` ACI_norm ` X" by (auto simp: image_def)
show "finite {X. X ⊆ ACI_norm ` ?X}"
by (rule finite_Collect_subsets)
(auto simp: * intro!: finite_imageI[of _ "?f ACI_norm"] intro: finite_subset[OF _ Star])
qed (fastforce dest!: subsetD[OF toplevel_summands_derivs_Star] intro!: imageI)
qed
subsection ‹Deriving preserves ACI-equivalence›
lemma ACI_norm_PLUS:
"list_all2 (λr s. «r» = «s») xs ys ⟹ «PLUS xs» = «PLUS ys»"
proof (induct rule: list_all2_induct)
case (Cons x xs y ys)
hence "length xs = length ys" by (elim list_all2_lengthD)
thus ?case using Cons by (induct xs ys rule: list_induct2) auto
qed simp
lemma toplevel_summands_ACI_norm_deriv:
"(⋃a∈toplevel_summands r. toplevel_summands «deriv as «a»») = toplevel_summands «deriv as «r»»"
proof (induct r)
case (Plus r1 r2) thus ?case
unfolding toplevel_summands.simps toplevel_summands_ACI_norm
toplevel_summands_deriv[of as "«Plus r1 r2»"] image_Un Union_Un_distrib
by (simp add: image_UN)
qed (auto simp: Let_def)
lemma toplevel_summands_nullable:
"nullable s = (∃r∈toplevel_summands s. nullable r)"
by (induction s) auto
lemma nullable_PLUS:
"nullable (PLUS xs) = (∃r ∈ set xs. nullable r)"
by (induction xs rule: list_singleton_induct) auto
theorem ACI_norm_nullable: "nullable «r» = nullable r"
proof (induction r)
case (Plus r1 r2) thus ?case using toplevel_summands_nullable
by (auto simp: nullable_PLUS)
qed auto
theorem ACI_norm_deriv: "«deriv as «r»» = «deriv as r»"
proof (induction r arbitrary: as)
case (Plus r1 r2) thus ?case
unfolding deriv.simps ACI_norm_flatten[of "deriv as «Plus r1 r2»"]
toplevel_summands_deriv[of as "«Plus r1 r2»"] image_Un image_UN
by (auto simp: toplevel_summands_ACI_norm toplevel_summands_flatten_ACI_norm_image_Union)
(auto simp: toplevel_summands_ACI_norm[symmetric] toplevel_summands_ACI_norm_deriv)
qed (simp_all add: ACI_norm_nullable)
corollary deriv_preserves: "«r» = «s» ⟹ «deriv as r» = «deriv as s»"
by (rule box_equals[OF _ ACI_norm_deriv ACI_norm_deriv]) (erule arg_cong)
lemma derivs_snoc[simp]: "derivs (xs @ [x]) r = (deriv x (derivs xs r))"
by (induction xs arbitrary: r) auto
theorem ACI_norm_derivs: "«derivs xs «r»» = «derivs xs r»"
proof (induction xs arbitrary: r rule: rev_induct)
case (snoc x xs) thus ?case
using ACI_norm_deriv[of x "derivs xs r"] ACI_norm_deriv[of x "derivs xs «r»"] by auto
qed simp
subsection ‹Alternative ACI defintions›
text ‹Not necessary but conceptually nicer (and seems also to be faster?!)›
fun ACI_nPlus :: "'a::linorder rexp ⇒ 'a rexp ⇒ 'a rexp"
where
"ACI_nPlus (Plus r1 r2) s = ACI_nPlus r1 (ACI_nPlus r2 s)"
| "ACI_nPlus r (Plus s1 s2) =
(if r = s1 then Plus s1 s2
else if r < s1 then Plus r (Plus s1 s2)
else Plus s1 (ACI_nPlus r s2))"
| "ACI_nPlus r s =
(if r = s then r
else if r < s then Plus r s
else Plus s r)"
primrec ACI_norm_alt where
"ACI_norm_alt Zero = Zero"
| "ACI_norm_alt One = One"
| "ACI_norm_alt (Atom a) = Atom a"
| "ACI_norm_alt (Plus r s) = ACI_nPlus (ACI_norm_alt r) (ACI_norm_alt s)"
| "ACI_norm_alt (Times r s) = Times (ACI_norm_alt r) (ACI_norm_alt s)"
| "ACI_norm_alt (Star r) = Star (ACI_norm_alt r)"
lemma toplevel_summands_ACI_nPlus:
"toplevel_summands (ACI_nPlus r s) = toplevel_summands (Plus r s)"
by (induct r s rule: ACI_nPlus.induct) auto
lemma toplevel_summands_ACI_norm_alt:
"toplevel_summands (ACI_norm_alt r) = ACI_norm_alt ` toplevel_summands r"
by (induct r) (auto simp: toplevel_summands_ACI_nPlus)
lemma ACI_norm_alt_Plus:
"ACI_norm_alt r = Plus s t ⟹ ∃s t. r = Plus s t"
by (induct r) auto
lemma toplevel_summands_flatten_ACI_norm_alt_image:
"toplevel_summands (flatten PLUS (ACI_norm_alt ` toplevel_summands r)) = ACI_norm_alt ` toplevel_summands r"
by (intro toplevel_summands_flatten) (auto dest!: ACI_norm_alt_Plus intro: Plus_toplevel_summands)
lemma ACI_norm_ACI_norm_alt: "«ACI_norm_alt r» = «r»"
proof (induction r)
case (Plus r s) show ?case
using ACI_norm_flatten [of r] ACI_norm_flatten [of s]
by (auto simp add: toplevel_summands_ACI_nPlus)
(metis ACI_norm_flatten Plus.IH(1) Plus.IH(2) image_Un toplevel_summands.simps(1) toplevel_summands_ACI_nPlus toplevel_summands_ACI_norm)
qed auto
lemma ACI_nPlus_singleton_PLUS:
"⟦xs ≠ []; sorted xs; distinct xs; ∀x ∈ {x} ∪ set xs. ¬(∃r s. x = Plus r s)⟧ ⟹
ACI_nPlus x (PLUS xs) = (if x ∈ set xs then PLUS xs else PLUS (insort x xs))"
proof (induct xs rule: list_singleton_induct)
case (single y)
thus ?case
by (cases x y rule: linorder_cases) (induct x y rule: ACI_nPlus.induct, auto)+
next
case (cons y1 y2 ys) thus ?case by (cases x) (auto)
qed simp
lemma ACI_nPlus_PLUS:
"⟦xs1 ≠ []; xs2 ≠ []; ∀x ∈ set (xs1 @ xs2). ¬(∃r s. x = Plus r s); sorted xs2; distinct xs2⟧⟹
ACI_nPlus (PLUS xs1) (PLUS xs2) = flatten PLUS (set (xs1 @ xs2))"
proof (induct xs1 arbitrary: xs2 rule: list_singleton_induct)
case (single x1)
thus ?case
apply (auto intro!: trans[OF ACI_nPlus_singleton_PLUS] simp del: sorted_list_of_set_insert_remove)
apply (simp only: insert_absorb)
apply (metis List.finite_set finite_sorted_distinct_unique sorted_list_of_set)
apply (rule arg_cong[of _ _ PLUS])
apply (metis remdups_id_iff_distinct sorted_list_of_set_sort_remdups sorted_sort_id)
done
next
case (cons x11 x12 xs1) thus ?case
apply (simp del: sorted_list_of_set_insert_remove)
apply (rule trans[OF ACI_nPlus_singleton_PLUS])
apply (auto simp del: sorted_list_of_set_insert_remove simp add: insert_commute[of x11])
apply (auto simp only: Un_insert_left[of x11, symmetric] insert_absorb) []
apply (auto simp only: Un_insert_right[of _ x11, symmetric] insert_absorb) []
apply (auto simp add: insert_commute[of x12])
done
qed simp
lemma ACI_nPlus_flatten_PLUS:
"⟦X1 ≠ {}; X2 ≠ {}; finite X1; finite X2; ∀x ∈ X1 ∪ X2. ¬(∃r s. x = Plus r s)⟧⟹
ACI_nPlus (flatten PLUS X1) (flatten PLUS X2) = flatten PLUS (X1 ∪ X2)"
by (rule trans[OF ACI_nPlus_PLUS]) auto
lemma ACI_nPlus_ACI_norm [simp]: "ACI_nPlus «r» «s» = «Plus r s»"
by (auto simp: image_Un Un_assoc ACI_norm_flatten [of r] ACI_norm_flatten [of s] ACI_norm_flatten [of "Plus r s"]
toplevel_summands_flatten_ACI_norm_image
intro!: trans [OF ACI_nPlus_flatten_PLUS])
(metis ACI_norm_Plus Plus_toplevel_summands)+
lemma ACI_norm_alt:
"ACI_norm_alt r = «r»"
by (induct r) auto
declare ACI_norm_alt[symmetric, code]
inductive ACI where
ACI_refl: "ACI r r" |
ACI_sym: "ACI r s ⟹ ACI s r" |
ACI_trans: "ACI r s ⟹ ACI s t ⟹ ACI r t" |
ACI_Plus_cong: "⟦ACI r1 s1; ACI r2 s2⟧ ⟹ ACI (Plus r1 r2) (Plus s1 s2)" |
ACI_Times_cong: "⟦ACI r1 s1; ACI r2 s2⟧ ⟹ ACI (Times r1 r2) (Times s1 s2)" |
ACI_Star_cong: "ACI r s ⟹ ACI (Star r) (Star s)" |
ACI_assoc: "ACI (Plus (Plus r s) t) (Plus r (Plus s t))" |
ACI_comm: "ACI (Plus r s) (Plus s r)" |
ACI_idem: "ACI (Plus r r) r"
lemma ACI_atoms: "ACI r s ⟹ atoms r = atoms s"
by (induct rule: ACI.induct) auto
lemma ACI_nullable: "ACI r s ⟹ nullable r = nullable s"
by (induct rule: ACI.induct) auto
lemma ACI_lang: "ACI r s ⟹ lang r = lang s"
by (induct rule: ACI.induct) auto
lemma ACI_deriv: "ACI r s ⟹ ACI (deriv a r) (deriv a s)"
proof (induct arbitrary: a rule: ACI.induct)
case (ACI_Times_cong r1 s1 r2 s2) thus ?case
by (auto simp: Let_def intro: ACI.intros dest: ACI_nullable)
(metis ACI.ACI_Times_cong ACI_Plus_cong)
qed (auto intro: ACI.intros)
lemma ACI_Plus_assocI[intro]:
"ACI (Plus r1 r2) s2 ⟹ ACI (Plus r1 (Plus s1 r2)) (Plus s1 s2)"
"ACI (Plus r1 r2) s2 ⟹ ACI (Plus r1 (Plus r2 s1)) (Plus s1 s2)"
by (metis ACI_assoc ACI_comm ACI_Plus_cong ACI_refl ACI_trans)+
lemma ACI_Plus_idemI[intro]: "⟦ACI r s1; ACI r s2⟧ ⟹ ACI r (Plus s1 s2)"
by (metis ACI_Plus_cong ACI_idem ACI_sym ACI_trans)
lemma ACI_Plus_idemI'[intro]:
"⟦ACI r1 s1; ACI (Plus r1 r2) s2⟧ ⟹ ACI (Plus r1 r2) (Plus s1 s2)"
by (rule ACI_trans[OF ACI_Plus_cong[OF ACI_sym[OF ACI_idem] ACI_refl]
ACI_trans[OF ACI_assoc ACI_trans[OF ACI_Plus_cong ACI_refl]]])
lemma ACI_ACI_nPlus: "⟦ACI r1 s1; ACI r2 s2⟧ ⟹ ACI (ACI_nPlus r1 r2) (Plus s1 s2)"
proof (induct r1 r2 arbitrary: s1 s2 rule: ACI_nPlus.induct)
case 1
from 1(2)[OF ACI_refl 1(1)[OF ACI_refl 1(4)]] 1(3) show ?case by (auto intro: ACI_comm ACI_trans)
next
case ("2_1" r1 r2)
with ACI_Plus_cong[OF ACI_refl "2_1"(1)[OF _ _ "2_1"(2) ACI_refl], of r1]
show ?case by (auto intro: ACI.intros)
next
case ("2_2" r1 r2)
with ACI_Plus_cong[OF ACI_refl "2_2"(1)[OF _ _ "2_2"(2) ACI_refl], of r1]
show ?case by (auto intro: ACI.intros)
next
case ("2_3" _ r1 r2)
with ACI_Plus_cong[OF ACI_refl "2_3"(1)[OF _ _ "2_3"(2) ACI_refl], of r1]
show ?case by (auto intro: ACI.intros)
next
case ("2_4" _ _ r1 r2)
with ACI_Plus_cong[OF ACI_refl "2_4"(1)[OF _ _ "2_4"(2) ACI_refl], of r1]
show ?case by (auto intro: ACI.intros)
next
case ("2_5" _ r1 r2)
with ACI_Plus_cong[OF ACI_refl "2_5"(1)[OF _ _ "2_5"(2) ACI_refl], of r1]
show ?case by (auto intro: ACI.intros)
qed (auto intro: ACI.intros)
lemma ACI_ACI_norm: "ACI «r» r"
unfolding ACI_norm_alt[symmetric]
by (induct r) (auto intro: ACI.intros simp: ACI_ACI_nPlus)
lemma ACI_norm_eqI: "ACI r s ⟹ «r» = «s»"
by (induct rule: ACI.induct) (auto simp: toplevel_summands_ACI_norm ACI_norm_flatten[symmetric]
toplevel_summands_flatten_ACI_norm_image_Union ac_simps)
lemma ACI_I: "«r» = «s» ⟹ ACI r s"
by (metis ACI_ACI_norm ACI_sym ACI_trans)
lemma ACI_decidable: "ACI r s = («r» = «s»)"
by (metis ACI_I ACI_norm_eqI)
end