Theory Refine_Automation
section "More Automation"
theory Refine_Automation
imports Refine_Basic Refine_Transfer
keywords "concrete_definition" :: thy_decl
and "prepare_code_thms" :: thy_decl
and "uses"
begin
text ‹
This theory provides a tool for extracting definitions from terms, and
for generating code equations for recursion combinators.
›
ML ‹
signature REFINE_AUTOMATION = sig
type extraction = {
pattern: term,
gen_thm: thm,
gen_tac: local_theory -> tactic'
}
val extract_as_def: (string * typ) list -> string -> term
-> local_theory -> ((term * thm) * local_theory)
val extract_recursion_eqs: extraction list -> string -> thm
-> local_theory -> local_theory
val add_extraction: string -> extraction -> theory -> theory
val prepare_code_thms_cmd: string list -> thm -> local_theory -> local_theory
val define_concrete_fun: extraction list option -> binding ->
Token.src list -> indexname list -> thm ->
cterm list -> local_theory -> (thm * thm) * local_theory
val mk_qualified: string -> bstring -> binding
val prepare_cd_pattern: Proof.context -> cterm -> cterm
val add_cd_pattern: cterm -> Context.generic -> Context.generic
val del_cd_pattern: cterm -> Context.generic -> Context.generic
val get_cd_patterns: Proof.context -> cterm list
val add_vc_rec_thm: thm -> Context.generic -> Context.generic
val del_vc_rec_thm: thm -> Context.generic -> Context.generic
val get_vc_rec_thms: Proof.context -> thm list
val add_vc_solve_thm: thm -> Context.generic -> Context.generic
val del_vc_solve_thm: thm -> Context.generic -> Context.generic
val get_vc_solve_thms: Proof.context -> thm list
val vc_solve_tac: Proof.context -> bool -> tactic'
val vc_solve_modifiers: Method.modifier parser list
val setup: theory -> theory
end
structure Refine_Automation :REFINE_AUTOMATION = struct
type extraction = {
pattern: term,
gen_thm: thm,
gen_tac: local_theory -> tactic'
}
structure extractions = Generic_Data
(
type T = extraction list Symtab.table
val empty = Symtab.empty
val merge = Symtab.merge_list ((op =) o apply2 #pattern)
)
fun add_extraction name ex =
Context.theory_map (extractions.map (
Symtab.update_list ((op =) o apply2 #pattern) (name,ex)))
fun extract_as_def bnd name t lthy = let
val loose = rev (loose_bnos t);
val rnames = #1 (Variable.names_of lthy |> fold_map (Name.variant o #1) bnd);
val rfrees = map (fn (name,(_,typ)) => Free (name,typ)) (rnames ~~ bnd);
val t' = subst_bounds (rfrees,t);
val params = map Bound (rev loose);
val param_vars
= (Library.foldl (fn (l,i) => nth rfrees i :: l) ([],loose));
val param_types = map fastype_of param_vars;
val def_t = Logic.mk_equals
(list_comb (Free (name,param_types ---> fastype_of t'),param_vars),t');
val ((lhs_t,(_,def_thm)),lthy)
= Specification.definition NONE [] [] (Binding.empty_atts,def_t) lthy;
val app_t = list_comb (lhs_t, params);
in
((app_t,def_thm),lthy)
end;
fun mk_qualified basename q = Binding.qualify true basename (Binding.name q);
fun extract_recursion_eqs exs basename orig_def_thm lthy = let
val thy = Proof_Context.theory_of lthy
val pat_net : extraction Item_Net.T =
Item_Net.init ((op =) o apply2 #pattern) (fn {pattern, ...} => [pattern])
|> fold Item_Net.update exs
local
fun tr env t ctx = let
val (t,ctx) = case t of
t1$t2 => let
val (t1,ctx) = tr env t1 ctx
val (t2,ctx) = tr env t2 ctx
in
(t1$t2,ctx)
end
| Abs (x,T,t) => let
val (t',ctx) = tr ((x,T)::env) t ctx
in (Abs (x,T,t'),ctx) end
| _ => (t,ctx)
val ex =
Item_Net.retrieve_matching pat_net t
|> get_first (fn ex =>
case
try (Pattern.first_order_match thy (#pattern ex,t))
(Vartab.empty,Vartab.empty)
of NONE => NONE | SOME _ => SOME ex
)
in
case ex of
NONE => (t,ctx)
| SOME ex => let
val (idx,defs,lthy) = ctx
val name = (basename ^ "_" ^ string_of_int idx)
val ((t,def_thm),lthy) = extract_as_def env name t lthy
val ctx = (idx+1,(def_thm,ex)::defs,lthy)
in
(t,ctx)
end
end
in
fun transform t lthy = let
val (t,(_,defs,lthy)) = tr [] t (0,[],lthy)
in
((t,defs),lthy)
end
end
val ((_,orig_def_thm'),lthy) = yield_singleton2
(Variable.import true) orig_def_thm lthy;
val (lhs,rhs) = orig_def_thm' |> Thm.prop_of |> Logic.dest_equals;
val ((rhs',defs),lthy) = transform rhs lthy;
val def_thms = map #1 defs
val (_,lthy)
= Local_Theory.note ((mk_qualified basename "defs",[]),def_thms) lthy;
val def_unfold_ss =
put_simpset HOL_basic_ss lthy addsimps (orig_def_thm::def_thms)
val new_def_thm = Goal.prove_internal lthy
[] (Logic.mk_equals (lhs,rhs') |> Thm.cterm_of lthy) (K (simp_tac def_unfold_ss 1))
fun mk_code_thm lthy (def_thm,{gen_thm, gen_tac, ...}) = let
val ((_,def_thm),lthy') = yield_singleton2
(Variable.import true) def_thm lthy;
val thm = def_thm RS gen_thm;
val tac = SOLVED' (gen_tac lthy')
ORELSE' (simp_tac def_unfold_ss THEN' gen_tac lthy')
val thm = the (SINGLE (ALLGOALS tac) thm);
val thm = singleton (Variable.export lthy' lthy) thm;
in
thm
end;
val code_thms = map (mk_code_thm lthy) defs;
val _ = if forall Thm.no_prems code_thms then () else
warning "Unresolved premises in code theorems"
val (_,lthy) = Local_Theory.note
((mk_qualified basename "code",@{attributes [code]}),new_def_thm::code_thms)
lthy;
in
lthy
end;
fun prepare_code_thms_cmd names thm lthy = let
fun name_of (Const (n,_)) = n
| name_of (Free (n,_)) = n
| name_of _ = raise (THM ("No definitional theorem",0,[thm]));
val (lhs,_) = thm |> Thm.prop_of |> Logic.dest_equals;
val basename = lhs |> strip_comb |> #1
|> name_of
|> Long_Name.base_name;
val exs_tab = extractions.get (Context.Proof lthy)
fun get_exs name =
case Symtab.lookup exs_tab name of
NONE => error ("No such extraction mode: " ^ name)
| SOME exs => exs
val exs = case names of
[] => Symtab.dest_list exs_tab |> map #2
| _ => map get_exs names |> flat
val _ = case exs of [] => error "No extraction patterns selected" | _ => ()
val lthy = extract_recursion_eqs exs basename thm lthy
in
lthy
end;
fun extract_concrete_fun _ [] concl =
raise TERM ("Conclusion does not match any extraction pattern",[concl])
| extract_concrete_fun thy (pat::pats) concl = (
case Refine_Util.fo_matchp thy pat concl of
NONE => extract_concrete_fun thy pats concl
| SOME [t] => t
| SOME (t::_) => (
warning ("concrete_definition: Pattern has multiple holes, taking "
^ "first one: " ^ @{make_string} pat
); t)
| _ => (warning ("concrete_definition: Ignoring invalid pattern "
^ @{make_string} pat);
extract_concrete_fun thy pats concl)
)
fun define_concrete_fun gen_code fun_name attribs_raw param_names thm pats
(orig_lthy:local_theory) =
let
val lthy = orig_lthy;
val (((_,inst),thm'),lthy) = yield_singleton2 (Variable.import true) thm lthy;
val concl = thm' |> Thm.concl_of
val term_subst = build (inst |> Vars.fold (cons o apsnd Thm.term_of))
val param_terms = map (fn name =>
case AList.lookup (fn (n,v) => n = #1 v) term_subst name of
NONE => raise TERM ("No such variable: "
^Term.string_of_vname name,[concl])
| SOME t => t
) param_names;
val f_term = extract_concrete_fun (Proof_Context.theory_of lthy) pats concl;
val lhs_type = map Term.fastype_of param_terms ---> Term.fastype_of f_term;
val lhs_term
= list_comb ((Free (Binding.name_of fun_name,lhs_type)),param_terms);
val def_term = Logic.mk_equals (lhs_term,f_term)
|> fold Logic.all param_terms;
val attribs = map (Attrib.check_src lthy) attribs_raw;
val ((_,(_,def_thm)),lthy) = Specification.definition
(SOME (fun_name,NONE,Mixfix.NoSyn)) [] [] ((Binding.empty,attribs),def_term) lthy;
val folded_thm = Local_Defs.fold lthy [def_thm] thm';
val (_,lthy)
= Local_Theory.note
((mk_qualified (Binding.name_of fun_name) "refine",[]),[folded_thm])
lthy;
val lthy = case gen_code of
NONE => lthy
| SOME modes =>
extract_recursion_eqs modes (Binding.name_of fun_name) def_thm lthy
in
((def_thm,folded_thm),lthy)
end;
val cd_pat_eq = apply2 (Thm.term_of #> Refine_Util.anorm_term) #> (op aconv)
structure cd_patterns = Generic_Data
(
type T = cterm list
val empty = []
val merge = merge cd_pat_eq
)
fun prepare_cd_pattern ctxt pat =
case Thm.term_of pat |> fastype_of of
@{typ bool} =>
Thm.term_of pat
|> HOLogic.mk_Trueprop
|> Thm.cterm_of ctxt
| _ => pat
fun add_cd_pattern pat context =
cd_patterns.map (insert cd_pat_eq (prepare_cd_pattern (Context.proof_of context) pat)) context
fun del_cd_pattern pat context =
cd_patterns.map (remove cd_pat_eq (prepare_cd_pattern (Context.proof_of context) pat)) context
val get_cd_patterns = cd_patterns.get o Context.Proof
structure rec_thms = Named_Thms (
val name = @{binding vcs_rec}
val description = "VC-Solver: Recursive intro rules"
)
structure solve_thms = Named_Thms (
val name = @{binding vcs_solve}
val description = "VC-Solver: Solve rules"
)
val add_vc_rec_thm = rec_thms.add_thm
val del_vc_rec_thm = rec_thms.del_thm
val get_vc_rec_thms = rec_thms.get
val add_vc_solve_thm = solve_thms.add_thm
val del_vc_solve_thm = solve_thms.del_thm
val get_vc_solve_thms = solve_thms.get
val rec_modifiers = [
Args.$$$ "rec" -- Scan.option Args.add -- Args.colon
>> K (Method.modifier rec_thms.add ⌂),
Args.$$$ "rec" -- Scan.option Args.del -- Args.colon
>> K (Method.modifier rec_thms.del ⌂)
];
val solve_modifiers = [
Args.$$$ "solve" -- Scan.option Args.add -- Args.colon
>> K (Method.modifier solve_thms.add ⌂),
Args.$$$ "solve" -- Scan.option Args.del -- Args.colon
>> K (Method.modifier solve_thms.del ⌂)
];
val vc_solve_modifiers =
clasimp_modifiers @ rec_modifiers @ solve_modifiers;
fun vc_solve_tac ctxt no_pre = let
val rthms = rec_thms.get ctxt
val sthms = solve_thms.get ctxt
val pre_tac = if no_pre then K all_tac else clarsimp_tac ctxt
val tac = SELECT_GOAL (auto_tac ctxt)
in
TRY o pre_tac
THEN_ALL_NEW_FWD (TRY o REPEAT_ALL_NEW_FWD (resolve_tac ctxt rthms))
THEN_ALL_NEW_FWD (TRY o SOLVED' (resolve_tac ctxt sthms THEN_ALL_NEW_FWD tac))
end
val setup = I
#> rec_thms.setup
#> solve_thms.setup
end;
›
setup Refine_Automation.setup
setup ‹
let
fun parse_cpat cxt = let
val (t, (context, tks)) = Scan.lift Parse.embedded_inner_syntax cxt
val ctxt = Context.proof_of context
val t = Proof_Context.read_term_pattern ctxt t
in
(Thm.cterm_of ctxt t, (context, tks))
end
fun do_p f = Scan.repeat1 parse_cpat >> (fn pats =>
Thm.declaration_attribute (K (fold f pats)))
in
Attrib.setup @{binding "cd_patterns"} (
Scan.lift Args.add |-- do_p Refine_Automation.add_cd_pattern
|| Scan.lift Args.del |-- do_p Refine_Automation.del_cd_pattern
|| do_p Refine_Automation.add_cd_pattern
)
"Add/delete concrete_definition pattern"
end
›
ML ‹Outer_Syntax.local_theory
@{command_keyword concrete_definition}
"Define function from refinement theorem"
(Parse.binding
-- Parse.opt_attribs
-- Scan.optional (@{keyword "for"} |-- Scan.repeat1 Args.var) []
--| @{keyword "uses"} -- Parse.thm
-- Scan.optional (@{keyword "is"} |-- Scan.repeat1 Parse.embedded_inner_syntax) []
>> (fn ((((name,attribs),params),raw_thm),pats) => fn lthy => let
val thm =
case Attrib.eval_thms lthy [raw_thm] of
[thm] => thm
| _ => error "Expecting exactly one theorem";
val pats = case pats of
[] => Refine_Automation.get_cd_patterns lthy
| l => map (Proof_Context.read_term_pattern lthy #> Thm.cterm_of lthy #>
Refine_Automation.prepare_cd_pattern lthy) l
in
Refine_Automation.define_concrete_fun
NONE name attribs params thm pats lthy
|> snd
end))
›
text ‹
Command:
‹concrete_definition name [attribs] for params uses thm is patterns›
where ‹attribs›, ‹for›, and ‹is›-parts are optional.
Declares a new constant ‹name› by matching the theorem ‹thm›
against a pattern.
If the ‹for› clause is given, it lists variables in the theorem,
and thus determines the order of parameters of the defined constant. Otherwise,
parameters will be in order of occurrence.
If the ‹is› clause is given, it lists patterns. The conclusion of the
theorem will be matched against each of these patterns. For the first matching
pattern, the constant will be declared to be the term that matches the first
non-dummy variable of the pattern. If no ‹is›-clause is specified,
the default patterns will be tried.
Attribute: ‹cd_patterns pats›. Declaration attribute. Declares
default patterns for the ‹concrete_definition› command.
›
declare [[ cd_patterns "(?f,_)∈_"]]
declare [[ cd_patterns "RETURN ?f ≤ _" "nres_of ?f ≤ _"]]
declare [[ cd_patterns "(RETURN ?f,_)∈_" "(nres_of ?f,_)∈_"]]
declare [[ cd_patterns "_ = ?f" "_ == ?f" ]]
ML ‹
let
val modes = (Scan.optional
(@{keyword "("} |-- Parse.list1 Parse.name --| @{keyword ")"}) [])
in
Outer_Syntax.local_theory
@{command_keyword prepare_code_thms}
"Refinement framework: Prepare theorems for code generation"
(modes -- Parse.thms1
>> (fn (modes,raw_thms) => fn lthy => let
val thms = Attrib.eval_thms lthy raw_thms
in
fold (Refine_Automation.prepare_code_thms_cmd modes) thms lthy
end)
)
end
›
text ‹
Command:
‹prepare_code_thms (modes) thm›
where the ‹(mode)›-part is optional.
Set up code-equations for recursions in constant defined by ‹thm›.
The optional ‹modes› is a comma-separated list of extraction modes.
›
lemma gen_code_thm_RECT:
fixes x
assumes D: "f ≡ RECT B"
assumes M: "trimono B"
shows "f x ≡ B f x"
unfolding D
apply (subst RECT_unfold)
by (rule M)
lemma gen_code_thm_REC:
fixes x
assumes D: "f ≡ REC B"
assumes M: "trimono B"
shows "f x ≡ B f x"
unfolding D
apply (subst REC_unfold)
by (rule M)
setup ‹
Refine_Automation.add_extraction "nres" {
pattern = Logic.varify_global @{term "REC x"},
gen_thm = @{thm gen_code_thm_REC},
gen_tac = Refine_Mono_Prover.mono_tac
}
#>
Refine_Automation.add_extraction "nres" {
pattern = Logic.varify_global @{term "RECT x"},
gen_thm = @{thm gen_code_thm_RECT},
gen_tac = Refine_Mono_Prover.mono_tac
}
›
text ‹
Method ‹vc_solve (no_pre) clasimp_modifiers
rec (add/del): ... solve (add/del): ...›
Named theorems ‹vcs_rec› and ‹vcs_solve›.
This method is specialized to
solve verification conditions. It first clarsimps all goals, then
it tries to apply a set of safe introduction rules (‹vcs_rec›, ‹rec add›).
Finally, it applies introduction rules (‹vcs_solve›, ‹solve add›) and tries
to discharge all emerging subgoals by auto. If this does not succeed, it
backtracks over the application of the solve-rule.
›
method_setup vc_solve =
‹Scan.lift (Args.mode "nopre")
--| Method.sections Refine_Automation.vc_solve_modifiers >>
(fn (nopre) => fn ctxt => SIMPLE_METHOD (
CHANGED (ALLGOALS (Refine_Automation.vc_solve_tac ctxt nopre))
))› "Try to solve verification conditions"
end