Theory RefineG_Transfer
section ‹Transfer between Domains›
theory RefineG_Transfer
imports "../Refine_Misc"
begin
text ‹Currently, this theory is specialized to
transfers that include no data refinement.
›
definition "REFINEG_TRANSFER_POST_SIMP x y ≡ x=y"
definition [simp]: "REFINEG_TRANSFER_ALIGN x y == True"
lemma REFINEG_TRANSFER_ALIGNI: "REFINEG_TRANSFER_ALIGN x y" by simp
lemma START_REFINEG_TRANSFER:
assumes "REFINEG_TRANSFER_ALIGN d c"
assumes "c≤a"
assumes "REFINEG_TRANSFER_POST_SIMP c d"
shows "d≤a"
using assms
by (simp add: REFINEG_TRANSFER_POST_SIMP_def)
lemma STOP_REFINEG_TRANSFER: "REFINEG_TRANSFER_POST_SIMP c c"
unfolding REFINEG_TRANSFER_POST_SIMP_def ..
ML ‹
structure RefineG_Transfer = struct
structure Post_Processors = Theory_Data
(
type T = (Proof.context -> tactic') Symtab.table
val empty = Symtab.empty
val merge = Symtab.join (K snd)
)
fun add_post_processor name tac =
Post_Processors.map (Symtab.update_new (name,tac))
fun delete_post_processor name =
Post_Processors.map (Symtab.delete name)
val get_post_processors = Post_Processors.get #> Symtab.dest
fun post_process_tac ctxt = let
val tacs = get_post_processors (Proof_Context.theory_of ctxt)
|> map (fn (_,tac) => tac ctxt)
val tac = REPEAT_DETERM' (CHANGED o EVERY' (map (fn t => TRY o t) tacs))
in
tac
end
structure Post_Simp = Generic_Data
(
type T = simpset
val empty = HOL_basic_ss
val merge = Raw_Simplifier.merge_ss
)
fun post_simps_op f a context = let
val ctxt = Context.proof_of context
fun do_it ss = simpset_of (f (put_simpset ss ctxt, a))
in
Post_Simp.map do_it context
end
val add_post_simps = post_simps_op (op addsimps)
val del_post_simps = post_simps_op (op delsimps)
fun get_post_ss ctxt = let
val ss = Post_Simp.get (Context.Proof ctxt)
val ctxt = put_simpset ss ctxt
in
ctxt
end
structure post_subst = Named_Thms
( val name = @{binding refine_transfer_post_subst}
val description = "Refinement Framework: " ^
"Transfer postprocessing substitutions" );
fun post_subst_tac ctxt = let
val s_thms = post_subst.get ctxt
fun dis_tac goal_ctxt = ALLGOALS (Tagged_Solver.solve_tac goal_ctxt)
val cnv = Cond_Rewr_Conv.cond_rewrs_conv dis_tac s_thms
val ts_conv = Conv.top_sweep_conv cnv ctxt
val ss = get_post_ss ctxt
in
REPEAT o CHANGED o
(Simplifier.simp_tac ss THEN' CONVERSION ts_conv)
end
structure transfer = Named_Thms
( val name = @{binding refine_transfer}
val description = "Refinement Framework: " ^
"Transfer rules" );
fun transfer_tac thms ctxt i st = let
val thms = thms @ transfer.get ctxt;
val ss = put_simpset HOL_basic_ss ctxt addsimps @{thms nested_case_prod_simp}
in
REPEAT_DETERM1 (
COND (has_fewer_prems (Thm.nprems_of st)) no_tac (
FIRST [
Method.assm_tac ctxt i,
resolve_tac ctxt thms i,
Tagged_Solver.solve_tac ctxt i,
CHANGED_PROP (simp_tac ss i)]
)) st
end
fun align_tac ctxt = IF_EXGOAL (fn i => fn st =>
case Logic.concl_of_goal (Thm.prop_of st) i of
@{mpat "Trueprop (REFINEG_TRANSFER_ALIGN ?c _)"} => let
val c = Thm.cterm_of ctxt c
val cT = Thm.ctyp_of_cterm c
val rl = @{thm REFINEG_TRANSFER_ALIGNI}
|> Thm.incr_indexes (Thm.maxidx_of st + 1)
|> Thm.instantiate' [NONE,SOME cT] [NONE,SOME c]
in
resolve_tac ctxt [rl] i st
end
| _ => Seq.empty
)
fun post_transfer_tac thms ctxt = let open Autoref_Tacticals in
resolve_tac ctxt @{thms START_REFINEG_TRANSFER}
THEN' align_tac ctxt
THEN' IF_SOLVED (transfer_tac thms ctxt)
(post_process_tac ctxt THEN' resolve_tac ctxt @{thms STOP_REFINEG_TRANSFER})
(K all_tac)
end
fun get_post_simp_rules context = Context.proof_of context
|> get_post_ss
|> simpset_of
|> Raw_Simplifier.dest_ss
|> #simps |> map snd
local
val add_ps = Thm.declaration_attribute (add_post_simps o single)
val del_ps = Thm.declaration_attribute (del_post_simps o single)
in
val setup = I
#> add_post_processor "RefineG_Transfer.post_subst" post_subst_tac
#> post_subst.setup
#> transfer.setup
#> Attrib.setup @{binding refine_transfer_post_simp}
(Attrib.add_del add_ps del_ps)
("declaration of transfer post simplification rules")
#> Global_Theory.add_thms_dynamic (
@{binding refine_transfer_post_simps}, get_post_simp_rules)
end
end
›
setup ‹RefineG_Transfer.setup›
method_setup refine_transfer =
‹Scan.lift (Args.mode "post") -- Attrib.thms
>> (fn (post,thms) => fn ctxt => SIMPLE_METHOD'
( if post then RefineG_Transfer.post_transfer_tac thms ctxt
else RefineG_Transfer.transfer_tac thms ctxt))
› "Invoke transfer rules"
locale transfer = fixes α :: "'c ⇒ 'a::complete_lattice"
begin
text ‹
In the following, we define some transfer lemmas for general
HOL - constructs.
›
lemma transfer_if[refine_transfer]:
assumes "b ⟹ α s1 ≤ S1"
assumes "¬b ⟹ α s2 ≤ S2"
shows "α (if b then s1 else s2) ≤ (if b then S1 else S2)"
using assms by auto
lemma transfer_prod[refine_transfer]:
assumes "⋀a b. α (f a b) ≤ F a b"
shows "α (case_prod f x) ≤ (case_prod F x)"
using assms by (auto split: prod.split)
lemma transfer_Let[refine_transfer]:
assumes "⋀x. α (f x) ≤ F x"
shows "α (Let x f) ≤ Let x F"
using assms by auto
lemma transfer_option[refine_transfer]:
assumes "α fa ≤ Fa"
assumes "⋀x. α (fb x) ≤ Fb x"
shows "α (case_option fa fb x) ≤ case_option Fa Fb x"
using assms by (auto split: option.split)
lemma transfer_sum[refine_transfer]:
assumes "⋀l. α (fl l) ≤ Fl l"
assumes "⋀r. α (fr r) ≤ Fr r"
shows "α (case_sum fl fr x) ≤ (case_sum Fl Fr x)"
using assms by (auto split: sum.split)
lemma transfer_list[refine_transfer]:
assumes "α fn ≤ Fn"
assumes "⋀x xs. α (fc x xs) ≤ Fc x xs"
shows "α (case_list fn fc l) ≤ case_list Fn Fc l"
using assms by (auto split: list.split)
lemma transfer_rec_list[refine_transfer]:
assumes FN: "⋀s. α (fn s) ≤ fn' s"
assumes FC: "⋀x l rec rec' s. ⟦ ⋀s. α (rec s) ≤ (rec' s) ⟧
⟹ α (fc x l rec s) ≤ fc' x l rec' s"
shows "α (rec_list fn fc l s) ≤ rec_list fn' fc' l s"
apply (induct l arbitrary: s)
apply (simp add: FN)
apply (simp add: FC)
done
lemma transfer_rec_nat[refine_transfer]:
assumes FN: "⋀s. α (fn s) ≤ fn' s"
assumes FC: "⋀n rec rec' s. ⟦ ⋀s. α (rec s) ≤ rec' s ⟧
⟹ α (fs n rec s) ≤ fs' n rec' s"
shows "α (rec_nat fn fs n s) ≤ rec_nat fn' fs' n s"
apply (induct n arbitrary: s)
apply (simp add: FN)
apply (simp add: FC)
done
end
text ‹Transfer into complete lattice structure›
locale ordered_transfer = transfer +
constrains α :: "'c::complete_lattice ⇒ 'a::complete_lattice"
text ‹Transfer into complete lattice structure with distributive
transfer function.›
locale dist_transfer = ordered_transfer +
constrains α :: "'c::complete_lattice ⇒ 'a::complete_lattice"
assumes α_dist: "⋀A. is_chain A ⟹ α (Sup A) = Sup (α`A)"
begin
lemma α_mono[simp, intro!]: "mono α"
apply rule
apply (subgoal_tac "is_chain {x,y}")
apply (drule α_dist)
apply (auto simp: le_iff_sup) []
apply (rule chainI)
apply auto
done
lemma α_strict[simp]: "α bot = bot"
using α_dist[of "{}"] by simp
end
text ‹Transfer into ccpo›
locale ccpo_transfer = transfer α for
α :: "'c::ccpo ⇒ 'a::complete_lattice"
text ‹Transfer into ccpo with distributive
transfer function.›
locale dist_ccpo_transfer = ccpo_transfer α
for α :: "'c::ccpo ⇒ 'a::complete_lattice" +
assumes α_dist: "⋀A. is_chain A ⟹ α (Sup A) = Sup (α`A)"
begin
lemma α_mono[simp, intro!]: "mono α"
proof
fix x y :: 'c
assume LE: "x≤y"
hence C[simp, intro!]: "is_chain {x,y}" by (auto intro: chainI)
from LE have "α x ≤ sup (α x) (α y)" by simp
also have "… = Sup (α`{x,y})" by simp
also have "… = α (Sup {x,y})"
by (rule α_dist[symmetric]) simp
also have "Sup {x,y} = y"
apply (rule antisym)
apply (rule ccpo_Sup_least[OF C]) using LE apply auto []
apply (rule ccpo_Sup_upper[OF C]) by auto
finally show "α x ≤ α y" .
qed
lemma α_strict[simp]: "α (Sup {}) = bot"
using α_dist[of "{}"] by simp
end
end