Theory Closest_Pair_Points.Common
section "Common"
theory Common
imports
"HOL-Library.Going_To_Filter"
"Akra_Bazzi.Akra_Bazzi_Method"
"Akra_Bazzi.Akra_Bazzi_Approximation"
"HOL-Library.Code_Target_Numeral"
"Root_Balanced_Tree.Time_Monad"
begin
type_synonym point = "int * int"
subsection "Auxiliary Functions and Lemmas"
subsubsection "Time Monad"
lemma time_distrib_bind:
"time (bind_tm tm f) = time tm + time (f (val tm))"
unfolding bind_tm_def by (simp split: tm.split)
lemmas time_simps = time_distrib_bind tick_def
lemma bind_tm_cong[fundef_cong]:
assumes "⋀v. v = val n ⟹ f v = g v" "m = n"
shows "bind_tm m f = bind_tm n g"
using assms unfolding bind_tm_def by (auto split: tm.split)
subsubsection "Landau Auxiliary"
text ‹
The following lemma expresses a procedure for deriving complexity properties of
the form @{prop"t ∈ O[m going_to at_top within A](f o m)"} where
▪ ‹t› is a (timing) function on same data domain (e.g. lists),
▪ ‹m› is a measure function on that data domain (e.g. length),
▪ ‹t'› is a function on @{typ nat},
▪ ‹A› is the set of valid inputs for the data domain.
One needs to show that
▪ ‹t› is bounded by @{term "t' o m"} for valid inputs
▪ @{prop"t' ∈ O(f)"}
to conclude the overall property @{prop"t ∈ O[m going_to at_top within A](f o m)"}.
›
lemma bigo_measure_trans:
fixes t :: "'a ⇒ real" and t' :: "nat ⇒ real" and m :: "'a ⇒ nat" and f ::"nat ⇒ real"
assumes "⋀x. x ∈ A ⟹ t x ≤ (t' o m) x"
and "t' ∈ O(f)"
and "⋀x. x ∈ A ⟹ 0 ≤ t x"
shows "t ∈ O[m going_to at_top within A](f o m)"
proof -
have 0: "⋀x. x ∈ A ⟹ 0 ≤ (t' o m) x" by (meson assms(1,3) order_trans)
have 1: "t ∈ O[m going_to at_top within A](t' o m)"
apply(rule bigoI[where c=1]) using assms 0
by (simp add: eventually_inf_principal going_to_within_def)
have 2: "t' o m ∈ O[m going_to at_top](f o m)"
unfolding o_def going_to_def
by(rule landau_o.big.filtercomap[OF assms(2)])
have 3: "t' o m ∈ O[m going_to at_top within A](f o m)"
using landau_o.big.filter_mono[OF _2] going_to_mono[OF _subset_UNIV] by blast
show ?thesis by(rule landau_o.big_trans[OF 1 3])
qed
lemma const_1_bigo_n_ln_n:
"(λ(n::nat). 1) ∈ O(λn. n * ln n)"
proof -
have "∃N. ∀(n::nat) ≥ N. (λx. 1 ≤ x * ln x) n"
proof -
have "∀(n::nat) ≥ 3. (λx. 1 ≤ x * ln x) n"
proof standard
fix n
show "3 ≤ n ⟶ 1 ≤ real n * ln (real n)"
proof standard
assume "3 ≤ n"
hence "1 ≤ real n"
by simp
moreover have "1 ≤ ln (real n)"
using ln_ln_nonneg' ‹3 ≤ n› by simp
ultimately show "1 ≤ real n * ln (real n)"
by (auto simp: order_trans)
qed
qed
thus ?thesis
by blast
qed
thus ?thesis
by auto
qed
subsubsection "Miscellaneous Lemmas"
lemma set_take_drop_i_le_j:
"i ≤ j ⟹ set xs = set (take j xs) ∪ set (drop i xs)"
proof (induction xs arbitrary: i j)
case (Cons x xs)
show ?case
proof (cases "i = 0")
case True
thus ?thesis
using set_take_subset by force
next
case False
hence "set xs = set (take (j - 1) xs) ∪ set (drop (i - 1) xs)"
by (simp add: Cons diff_le_mono)
moreover have "set (take j (x # xs)) = insert x (set (take (j - 1) xs))"
using False Cons.prems by (auto simp: take_Cons')
moreover have "set (drop i (x # xs)) = set (drop (i - 1) xs)"
using False Cons.prems by (auto simp: drop_Cons')
ultimately show ?thesis
by auto
qed
qed simp
lemma set_take_drop:
"set xs = set (take n xs) ∪ set (drop n xs)"
using set_take_drop_i_le_j by fast
lemma sorted_wrt_take_drop:
"sorted_wrt f xs ⟹ ∀x ∈ set (take n xs). ∀y ∈ set (drop n xs). f x y"
using sorted_wrt_append[of f "take n xs" "drop n xs"] by simp
lemma sorted_wrt_hd_less:
assumes "sorted_wrt f xs" "⋀x. f x x"
shows "∀x ∈ set xs. f (hd xs) x"
using assms by (cases xs) auto
lemma sorted_wrt_hd_less_take:
assumes "sorted_wrt f (x # xs)" "⋀x. f x x"
shows "∀y ∈ set (take n (x # xs)). f x y"
using assms sorted_wrt_hd_less [of f ‹x # xs›] in_set_takeD [of _ n ‹x # xs›]
by auto
lemma sorted_wrt_take_less_hd_drop:
assumes "sorted_wrt f xs" "n < length xs"
shows "∀x ∈ set (take n xs). f x (hd (drop n xs))"
using sorted_wrt_take_drop assms by fastforce
lemma sorted_wrt_hd_drop_less_drop:
assumes "sorted_wrt f xs" "⋀x. f x x"
shows "∀x ∈ set (drop n xs). f (hd (drop n xs)) x"
using assms sorted_wrt_drop sorted_wrt_hd_less by blast
lemma length_filter_P_impl_Q:
"(⋀x. P x ⟹ Q x) ⟹ length (filter P xs) ≤ length (filter Q xs)"
by (induction xs) auto
lemma filter_Un:
"set xs = A ∪ B ⟹ set (filter P xs) = { x ∈ A. P x } ∪ { x ∈ B. P x }"
by (induction xs) (auto, metis UnI1 insert_iff, metis UnI2 insert_iff)
subsubsection ‹@{const length}›
fun length_tm :: "'a list ⇒ nat tm" where
"length_tm [] =1 return 0"
| "length_tm (x # xs) =1
do {
l <- length_tm xs;
return (1 + l)
}"
lemma length_eq_val_length_tm:
"val (length_tm xs) = length xs"
by (induction xs) auto
lemma time_length_tm:
"time (length_tm xs) = length xs + 1"
by (induction xs) (auto simp: time_simps)
fun length_it' :: "nat ⇒ 'a list ⇒ nat" where
"length_it' acc [] = acc"
| "length_it' acc (x#xs) = length_it' (acc+1) xs"
definition length_it :: "'a list ⇒ nat" where
"length_it xs = length_it' 0 xs"
lemma length_conv_length_it':
"length xs + acc = length_it' acc xs"
by (induction acc xs rule: length_it'.induct) auto
lemma length_conv_length_it[code_unfold]:
"length xs = length_it xs"
unfolding length_it_def using length_conv_length_it' add_0_right by metis
subsubsection ‹@{const rev}›
fun rev_it' :: "'a list ⇒ 'a list ⇒ 'a list" where
"rev_it' acc [] = acc"
| "rev_it' acc (x#xs) = rev_it' (x#acc) xs"
definition rev_it :: "'a list ⇒ 'a list" where
"rev_it xs = rev_it' [] xs"
lemma rev_conv_rev_it':
"rev xs @ acc = rev_it' acc xs"
by (induction acc xs rule: rev_it'.induct) auto
lemma rev_conv_rev_it[code_unfold]:
"rev xs = rev_it xs"
unfolding rev_it_def using rev_conv_rev_it' append_Nil2 by metis
subsubsection ‹@{const take}›
fun take_tm :: "nat ⇒ 'a list ⇒ 'a list tm" where
"take_tm n [] =1 return []"
| "take_tm n (x # xs) =1
(case n of
0 ⇒ return []
| Suc m ⇒ do {
ys <- take_tm m xs;
return (x # ys)
}
)"
lemma take_eq_val_take_tm:
"val (take_tm n xs) = take n xs"
by (induction xs arbitrary: n) (auto split: nat.split)
lemma time_take_tm:
"time (take_tm n xs) = min n (length xs) + 1"
by (induction xs arbitrary: n) (auto simp: time_simps split: nat.split)
subsubsection ‹@{const filter}›
fun filter_tm :: "('a ⇒ bool) ⇒ 'a list ⇒ 'a list tm" where
"filter_tm P [] =1 return []"
| "filter_tm P (x # xs) =1
(if P x then
do {
ys <- filter_tm P xs;
return (x # ys)
}
else
filter_tm P xs
)"
lemma filter_eq_val_filter_tm:
"val (filter_tm P xs) = filter P xs"
by (induction xs) auto
lemma time_filter_tm:
"time (filter_tm P xs) = length xs + 1"
by (induction xs) (auto simp: time_simps)
fun filter_it' :: "'a list ⇒ ('a ⇒ bool) ⇒ 'a list ⇒ 'a list" where
"filter_it' acc P [] = rev acc"
| "filter_it' acc P (x#xs) = (
if P x then
filter_it' (x#acc) P xs
else
filter_it' acc P xs
)"
definition filter_it :: "('a ⇒ bool) ⇒ 'a list ⇒ 'a list" where
"filter_it P xs = filter_it' [] P xs"
lemma filter_conv_filter_it':
"rev acc @ filter P xs = filter_it' acc P xs"
by (induction acc P xs rule: filter_it'.induct) auto
lemma filter_conv_filter_it[code_unfold]:
"filter P xs = filter_it P xs"
unfolding filter_it_def using filter_conv_filter_it' append_Nil rev.simps(1) by metis
subsubsection ‹‹split_at››
fun split_at_tm :: "nat ⇒ 'a list ⇒ ('a list × 'a list) tm" where
"split_at_tm n [] =1 return ([], [])"
| "split_at_tm n (x # xs) =1 (
case n of
0 ⇒ return ([], x # xs)
| Suc m ⇒
do {
(xs', ys') <- split_at_tm m xs;
return (x # xs', ys')
}
)"
fun split_at :: "nat ⇒ 'a list ⇒ 'a list × 'a list" where
"split_at n [] = ([], [])"
| "split_at n (x # xs) = (
case n of
0 ⇒ ([], x # xs)
| Suc m ⇒
let (xs', ys') = split_at m xs in
(x # xs', ys')
)"
lemma split_at_eq_val_split_at_tm:
"val (split_at_tm n xs) = split_at n xs"
by (induction xs arbitrary: n) (auto split: nat.split prod.split)
lemma split_at_take_drop_conv:
"split_at n xs = (take n xs, drop n xs)"
by (induction xs arbitrary: n) (auto simp: split: nat.split)
lemma time_split_at_tm:
"time (split_at_tm n xs) = min n (length xs) + 1"
by (induction xs arbitrary: n) (auto simp: time_simps split: nat.split prod.split)
fun split_at_it' :: "'a list ⇒ nat ⇒ 'a list ⇒ ('a list * 'a list)" where
"split_at_it' acc n [] = (rev acc, [])"
| "split_at_it' acc n (x#xs) = (
case n of
0 ⇒ (rev acc, x#xs)
| Suc m ⇒ split_at_it' (x#acc) m xs
)"
definition split_at_it :: "nat ⇒ 'a list ⇒ ('a list * 'a list)" where
"split_at_it n xs = split_at_it' [] n xs"
lemma split_at_conv_split_at_it':
assumes "(ts, ds) = split_at n xs" "(ts', ds') = split_at_it' acc n xs"
shows "rev acc @ ts = ts'"
and "ds = ds'"
using assms
by (induction acc n xs arbitrary: ts rule: split_at_it'.induct)
(auto simp: split: prod.splits nat.splits)
lemma split_at_conv_split_at_it_prod:
assumes "(ts, ds) = split_at n xs" "(ts', ds') = split_at_it n xs"
shows "(ts, ds) = (ts', ds')"
using assms unfolding split_at_it_def
using split_at_conv_split_at_it' rev.simps(1) append_Nil by fast+
lemma split_at_conv_split_at_it[code_unfold]:
"split_at n xs = split_at_it n xs"
using split_at_conv_split_at_it_prod surj_pair by metis
declare split_at_tm.simps [simp del]
declare split_at.simps [simp del]
subsection "Mergesort"
subsubsection "Functional Correctness Proof"
definition sorted_fst :: "point list ⇒ bool" where
"sorted_fst ps = sorted_wrt (λp⇩0 p⇩1. fst p⇩0 ≤ fst p⇩1) ps"
definition sorted_snd :: "point list ⇒ bool" where
"sorted_snd ps = sorted_wrt (λp⇩0 p⇩1. snd p⇩0 ≤ snd p⇩1) ps"
fun merge_tm :: "('b ⇒ 'a::linorder) ⇒ 'b list ⇒ 'b list ⇒ 'b list tm" where
"merge_tm f (x # xs) (y # ys) =1 (
if f x ≤ f y then
do {
tl <- merge_tm f xs (y # ys);
return (x # tl)
}
else
do {
tl <- merge_tm f (x # xs) ys;
return (y # tl)
}
)"
| "merge_tm f [] ys =1 return ys"
| "merge_tm f xs [] =1 return xs"
fun merge :: "('b ⇒ 'a::linorder) ⇒ 'b list ⇒ 'b list ⇒ 'b list" where
"merge f (x # xs) (y # ys) = (
if f x ≤ f y then
x # merge f xs (y # ys)
else
y # merge f (x # xs) ys
)"
| "merge f [] ys = ys"
| "merge f xs [] = xs"
lemma merge_eq_val_merge_tm:
"val (merge_tm f xs ys) = merge f xs ys"
by (induction f xs ys rule: merge.induct) auto
lemma length_merge:
"length (merge f xs ys) = length xs + length ys"
by (induction f xs ys rule: merge.induct) auto
lemma set_merge:
"set (merge f xs ys) = set xs ∪ set ys"
by (induction f xs ys rule: merge.induct) auto
lemma distinct_merge:
assumes "set xs ∩ set ys = {}" "distinct xs" "distinct ys"
shows "distinct (merge f xs ys)"
using assms by (induction f xs ys rule: merge.induct) (auto simp: set_merge)
lemma sorted_merge:
assumes "P = (λx y. f x ≤ f y)"
shows "sorted_wrt P (merge f xs ys) ⟷ sorted_wrt P xs ∧ sorted_wrt P ys"
using assms by (induction f xs ys rule: merge.induct) (auto simp: set_merge)
declare split_at_take_drop_conv [simp]
function (sequential) mergesort_tm :: "('b ⇒ 'a::linorder) ⇒ 'b list ⇒ 'b list tm" where
"mergesort_tm f [] =1 return []"
| "mergesort_tm f [x] =1 return [x]"
| "mergesort_tm f xs =1 (
do {
n <- length_tm xs;
(xs⇩l, xs⇩r) <- split_at_tm (n div 2) xs;
l <- mergesort_tm f xs⇩l;
r <- mergesort_tm f xs⇩r;
merge_tm f l r
}
)"
by pat_completeness auto
termination mergesort_tm
by (relation "Wellfounded.measure (λ(_, xs). length xs)")
(auto simp add: length_eq_val_length_tm split_at_eq_val_split_at_tm)
fun mergesort :: "('b ⇒ 'a::linorder) ⇒ 'b list ⇒ 'b list" where
"mergesort f [] = []"
| "mergesort f [x] = [x]"
| "mergesort f xs = (
let n = length xs div 2 in
let (l, r) = split_at n xs in
merge f (mergesort f l) (mergesort f r)
)"
declare split_at_take_drop_conv [simp del]
lemma mergesort_eq_val_mergesort_tm:
"val (mergesort_tm f xs) = mergesort f xs"
by (induction f xs rule: mergesort.induct)
(auto simp add: length_eq_val_length_tm split_at_eq_val_split_at_tm merge_eq_val_merge_tm split: prod.split)
lemma sorted_wrt_mergesort:
"sorted_wrt (λx y. f x ≤ f y) (mergesort f xs)"
by (induction f xs rule: mergesort.induct) (auto simp: split_at_take_drop_conv sorted_merge)
lemma set_mergesort:
"set (mergesort f xs) = set xs"
by (induction f xs rule: mergesort.induct)
(simp_all add: set_merge split_at_take_drop_conv, metis list.simps(15) set_take_drop)
lemma length_mergesort:
"length (mergesort f xs) = length xs"
by (induction f xs rule: mergesort.induct) (auto simp: length_merge split_at_take_drop_conv)
lemma distinct_mergesort:
"distinct xs ⟹ distinct (mergesort f xs)"
proof (induction f xs rule: mergesort.induct)
case (3 f x y xs)
let ?xs' = "x # y # xs"
obtain l r where lr_def: "(l, r) = split_at (length ?xs' div 2) ?xs'"
by (metis surj_pair)
have "distinct l" "distinct r"
using "3.prems" split_at_take_drop_conv distinct_take distinct_drop lr_def by (metis prod.sel)+
hence "distinct (mergesort f l)" "distinct (mergesort f r)"
using "3.IH" lr_def by auto
moreover have "set l ∩ set r = {}"
using "3.prems" split_at_take_drop_conv lr_def by (metis append_take_drop_id distinct_append prod.sel)
ultimately show ?case
using lr_def by (auto simp: distinct_merge set_mergesort split: prod.splits)
qed auto
lemmas mergesort = sorted_wrt_mergesort set_mergesort length_mergesort distinct_mergesort
lemma sorted_fst_take_less_hd_drop:
assumes "sorted_fst ps" "n < length ps"
shows "∀p ∈ set (take n ps). fst p ≤ fst (hd (drop n ps))"
using assms sorted_wrt_take_less_hd_drop[of "λp⇩0 p⇩1. fst p⇩0 ≤ fst p⇩1"] sorted_fst_def by fastforce
lemma sorted_fst_hd_drop_less_drop:
assumes "sorted_fst ps"
shows "∀p ∈ set (drop n ps). fst (hd (drop n ps)) ≤ fst p"
using assms sorted_wrt_hd_drop_less_drop[of "λp⇩0 p⇩1. fst p⇩0 ≤ fst p⇩1"] sorted_fst_def by fastforce
subsubsection "Time Complexity Proof"
lemma time_merge_tm:
"time (merge_tm f xs ys) ≤ length xs + length ys + 1"
by (induction f xs ys rule: merge_tm.induct) (auto simp: time_simps)
function mergesort_recurrence :: "nat ⇒ real" where
"mergesort_recurrence 0 = 1"
| "mergesort_recurrence 1 = 1"
| "2 ≤ n ⟹ mergesort_recurrence n = 4 + 3 * n + mergesort_recurrence (nat ⌊real n / 2⌋) +
mergesort_recurrence (nat ⌈real n / 2⌉)"
by force simp_all
termination by akra_bazzi_termination simp_all
lemma mergesort_recurrence_nonneg[simp]:
"0 ≤ mergesort_recurrence n"
by (induction n rule: mergesort_recurrence.induct) (auto simp del: One_nat_def)
lemma time_mergesort_conv_mergesort_recurrence:
"time (mergesort_tm f xs) ≤ mergesort_recurrence (length xs)"
proof (induction f xs rule: mergesort_tm.induct)
case (1 f)
thus ?case by (auto simp: time_simps)
next
case (2 f x)
thus ?case using mergesort_recurrence.simps(2) by (auto simp: time_simps)
next
case (3 f x y xs')
define xs where "xs = x # y # xs'"
define n where "n = length xs"
obtain l r where lr_def: "(l, r) = split_at (n div 2) xs"
using prod.collapse by blast
define l' where "l' = mergesort f l"
define r' where "r' = mergesort f r"
note defs = xs_def n_def lr_def l'_def r'_def
have IHL: "time (mergesort_tm f l) ≤ mergesort_recurrence (length l)"
using defs "3.IH"(1) by (auto simp: length_eq_val_length_tm split_at_eq_val_split_at_tm)
have IHR: "time (mergesort_tm f r) ≤ mergesort_recurrence (length r)"
using defs "3.IH"(2) by (auto simp: length_eq_val_length_tm split_at_eq_val_split_at_tm)
have *: "length l = n div 2" "length r = n - n div 2"
using defs by (auto simp: split_at_take_drop_conv)
hence "(nat ⌊real n / 2⌋) = length l" "(nat ⌈real n / 2⌉) = length r"
by linarith+
hence IH: "time (mergesort_tm f l) ≤ mergesort_recurrence (nat ⌊real n / 2⌋)"
"time (mergesort_tm f r) ≤ mergesort_recurrence (nat ⌈real n / 2⌉)"
using IHL IHR by simp_all
have "n = length l + length r"
using * by linarith
hence "time (merge_tm f l' r') ≤ n + 1"
using time_merge_tm defs by (metis length_mergesort)
have "time (mergesort_tm f xs) = 1 + time (length_tm xs) + time (split_at_tm (n div 2) xs) +
time (mergesort_tm f l) + time (mergesort_tm f r) + time (merge_tm f l' r')"
using defs by (auto simp add: time_simps length_eq_val_length_tm mergesort_eq_val_mergesort_tm
split_at_eq_val_split_at_tm
split: prod.split)
also have "... ≤ 4 + 3 * n + time (mergesort_tm f l) + time (mergesort_tm f r)"
using time_length_tm[of xs] time_split_at_tm[of "n div 2" xs] n_def ‹time (merge_tm f l' r') ≤ n + 1› by simp
also have "... ≤ 4 + 3 * n + mergesort_recurrence (nat ⌊real n / 2⌋) + mergesort_recurrence (nat ⌈real n / 2⌉)"
using IH by simp
also have "... = mergesort_recurrence n"
using defs by simp
finally show ?case
using defs by simp
qed
theorem mergesort_recurrence:
"mergesort_recurrence ∈ Θ(λn. n * ln n)"
by (master_theorem) auto
theorem time_mergesort_tm_bigo:
"(λxs. time (mergesort_tm f xs)) ∈ O[length going_to at_top]((λn. n * ln n) o length)"
proof -
have 0: "⋀xs. time (mergesort_tm f xs) ≤ (mergesort_recurrence o length) xs"
unfolding comp_def using time_mergesort_conv_mergesort_recurrence by blast
show ?thesis
using bigo_measure_trans[OF 0] by (simp add: bigthetaD1 mergesort_recurrence)
qed
subsubsection "Code Export"
lemma merge_xs_Nil[simp]:
"merge f xs [] = xs"
by (cases xs) auto
fun merge_it' :: "('b ⇒ 'a::linorder) ⇒ 'b list ⇒ 'b list ⇒ 'b list ⇒ 'b list" where
"merge_it' f acc [] [] = rev acc"
| "merge_it' f acc (x#xs) [] = merge_it' f (x#acc) xs []"
| "merge_it' f acc [] (y#ys) = merge_it' f (y#acc) ys []"
| "merge_it' f acc (x#xs) (y#ys) = (
if f x ≤ f y then
merge_it' f (x#acc) xs (y#ys)
else
merge_it' f (y#acc) (x#xs) ys
)"
definition merge_it :: "('b ⇒ 'a::linorder) ⇒ 'b list ⇒ 'b list ⇒ 'b list" where
"merge_it f xs ys = merge_it' f [] xs ys"
lemma merge_conv_merge_it':
"rev acc @ merge f xs ys = merge_it' f acc xs ys"
by (induction f acc xs ys rule: merge_it'.induct) auto
lemma merge_conv_merge_it[code_unfold]:
"merge f xs ys = merge_it f xs ys"
unfolding merge_it_def using merge_conv_merge_it' rev.simps(1) append_Nil by metis
subsection "Minimal Distance"
definition sparse :: "real ⇒ point set ⇒ bool" where
"sparse δ ps ⟷ (∀p⇩0 ∈ ps. ∀p⇩1 ∈ ps. p⇩0 ≠ p⇩1 ⟶ δ ≤ dist p⇩0 p⇩1)"
lemma sparse_identity:
assumes "sparse δ (set ps)" "∀p ∈ set ps. δ ≤ dist p⇩0 p"
shows "sparse δ (set (p⇩0 # ps))"
using assms by (simp add: dist_commute sparse_def)
lemma sparse_update:
assumes "sparse δ (set ps)"
assumes "dist p⇩0 p⇩1 ≤ δ" "∀p ∈ set ps. dist p⇩0 p⇩1 ≤ dist p⇩0 p"
shows "sparse (dist p⇩0 p⇩1) (set (p⇩0 # ps))"
using assms by (auto simp: dist_commute sparse_def, force+)
lemma sparse_mono:
"sparse Δ P ⟹ δ ≤ Δ ⟹ sparse δ P"
unfolding sparse_def by fastforce
subsection "Distance"
lemma dist_transform:
fixes p :: point and δ :: real and l :: int
shows "dist p (l, snd p) < δ ⟷ l - δ < fst p ∧ fst p < l + δ"
proof -
have "dist p (l, snd p) = sqrt ((real_of_int (fst p) - l)⇧2)"
by (auto simp add: dist_prod_def dist_real_def prod.case_eq_if)
thus ?thesis
by auto
qed
fun dist_code :: "point ⇒ point ⇒ int" where
"dist_code p⇩0 p⇩1 = (fst p⇩0 - fst p⇩1)⇧2 + (snd p⇩0 - snd p⇩1)⇧2"
lemma dist_eq_sqrt_dist_code:
fixes p⇩0 :: point
shows "dist p⇩0 p⇩1 = sqrt (dist_code p⇩0 p⇩1)"
by (auto simp: dist_prod_def dist_real_def split: prod.splits)
lemma dist_eq_dist_code_lt:
fixes p⇩0 :: point
shows "dist p⇩0 p⇩1 < dist p⇩2 p⇩3 ⟷ dist_code p⇩0 p⇩1 < dist_code p⇩2 p⇩3"
using dist_eq_sqrt_dist_code real_sqrt_less_iff by presburger
lemma dist_eq_dist_code_le:
fixes p⇩0 :: point
shows "dist p⇩0 p⇩1 ≤ dist p⇩2 p⇩3 ⟷ dist_code p⇩0 p⇩1 ≤ dist_code p⇩2 p⇩3"
using dist_eq_sqrt_dist_code real_sqrt_le_iff by presburger
lemma dist_eq_dist_code_abs_lt:
fixes p⇩0 :: point
shows "¦c¦ < dist p⇩0 p⇩1 ⟷ c⇧2 < dist_code p⇩0 p⇩1"
using dist_eq_sqrt_dist_code
by (metis of_int_less_of_int_power_cancel_iff real_sqrt_abs real_sqrt_less_iff)
lemma dist_eq_dist_code_abs_le:
fixes p⇩0 :: point
shows "dist p⇩0 p⇩1 ≤ ¦c¦ ⟷ dist_code p⇩0 p⇩1 ≤ c⇧2"
using dist_eq_sqrt_dist_code
by (metis of_int_power_le_of_int_cancel_iff real_sqrt_abs real_sqrt_le_iff)
lemma dist_fst_abs:
fixes p :: point and l :: int
shows "dist p (l, snd p) = ¦fst p - l¦"
proof -
have "dist p (l, snd p) = sqrt ((real_of_int (fst p) - l)⇧2)"
by (simp add: dist_prod_def dist_real_def prod.case_eq_if)
thus ?thesis
by simp
qed
declare dist_code.simps [simp del]
subsection "Brute Force Closest Pair Algorithm"
subsubsection "Functional Correctness Proof"
fun find_closest_bf_tm :: "point ⇒ point list ⇒ point tm" where
"find_closest_bf_tm _ [] =1 return undefined"
| "find_closest_bf_tm _ [p] =1 return p"
| "find_closest_bf_tm p (p⇩0 # ps) =1 (
do {
p⇩1 <- find_closest_bf_tm p ps;
if dist p p⇩0 < dist p p⇩1 then
return p⇩0
else
return p⇩1
}
)"
fun find_closest_bf :: "point ⇒ point list ⇒ point" where
"find_closest_bf _ [] = undefined"
| "find_closest_bf _ [p] = p"
| "find_closest_bf p (p⇩0 # ps) = (
let p⇩1 = find_closest_bf p ps in
if dist p p⇩0 < dist p p⇩1 then
p⇩0
else
p⇩1
)"
lemma find_closest_bf_eq_val_find_closest_bf_tm:
"val (find_closest_bf_tm p ps) = find_closest_bf p ps"
by (induction p ps rule: find_closest_bf.induct) (auto simp: Let_def)
lemma find_closest_bf_set:
"0 < length ps ⟹ find_closest_bf p ps ∈ set ps"
by (induction p ps rule: find_closest_bf.induct)
(auto simp: Let_def split: prod.splits if_splits)
lemma find_closest_bf_dist:
"∀q ∈ set ps. dist p (find_closest_bf p ps) ≤ dist p q"
by (induction p ps rule: find_closest_bf.induct)
(auto split: prod.splits)
fun closest_pair_bf_tm :: "point list ⇒ (point × point) tm" where
"closest_pair_bf_tm [] =1 return undefined"
| "closest_pair_bf_tm [_] =1 return undefined"
| "closest_pair_bf_tm [p⇩0, p⇩1] =1 return (p⇩0, p⇩1)"
| "closest_pair_bf_tm (p⇩0 # ps) =1 (
do {
(c⇩0::point, c⇩1::point) <- closest_pair_bf_tm ps;
p⇩1 <- find_closest_bf_tm p⇩0 ps;
if dist c⇩0 c⇩1 ≤ dist p⇩0 p⇩1 then
return (c⇩0, c⇩1)
else
return (p⇩0, p⇩1)
}
)"
fun closest_pair_bf :: "point list ⇒ (point * point)" where
"closest_pair_bf [] = undefined"
| "closest_pair_bf [_] = undefined"
| "closest_pair_bf [p⇩0, p⇩1] = (p⇩0, p⇩1)"
| "closest_pair_bf (p⇩0 # ps) = (
let (c⇩0, c⇩1) = closest_pair_bf ps in
let p⇩1 = find_closest_bf p⇩0 ps in
if dist c⇩0 c⇩1 ≤ dist p⇩0 p⇩1 then
(c⇩0, c⇩1)
else
(p⇩0, p⇩1)
)"
lemma closest_pair_bf_eq_val_closest_pair_bf_tm:
"val (closest_pair_bf_tm ps) = closest_pair_bf ps"
by (induction ps rule: closest_pair_bf.induct)
(auto simp: Let_def find_closest_bf_eq_val_find_closest_bf_tm split: prod.split)
lemma closest_pair_bf_c0:
"1 < length ps ⟹ (c⇩0, c⇩1) = closest_pair_bf ps ⟹ c⇩0 ∈ set ps"
by (induction ps arbitrary: c⇩0 c⇩1 rule: closest_pair_bf.induct)
(auto simp: Let_def find_closest_bf_set split: if_splits prod.splits)
lemma closest_pair_bf_c1:
"1 < length ps ⟹ (c⇩0, c⇩1) = closest_pair_bf ps ⟹ c⇩1 ∈ set ps"
proof (induction ps arbitrary: c⇩0 c⇩1 rule: closest_pair_bf.induct)
case (4 p⇩0 p⇩2 p⇩3 ps)
let ?ps = "p⇩2 # p⇩3 # ps"
obtain c⇩0 c⇩1 where c⇩0_def: "(c⇩0, c⇩1) = closest_pair_bf ?ps"
using prod.collapse by blast
define p⇩1 where p⇩1_def: "p⇩1 = find_closest_bf p⇩0 ?ps"
note defs = c⇩0_def p⇩1_def
have "c⇩1 ∈ set ?ps"
using "4.IH" defs by simp
moreover have "p⇩1 ∈ set ?ps"
using find_closest_bf_set defs by blast
ultimately show ?case
using "4.prems"(2) defs by (auto simp: Let_def split: prod.splits if_splits)
qed auto
lemma closest_pair_bf_c0_ne_c1:
"1 < length ps ⟹ distinct ps ⟹ (c⇩0, c⇩1) = closest_pair_bf ps ⟹ c⇩0 ≠ c⇩1"
proof (induction ps arbitrary: c⇩0 c⇩1 rule: closest_pair_bf.induct)
case (4 p⇩0 p⇩2 p⇩3 ps)
let ?ps = "p⇩2 # p⇩3 # ps"
obtain c⇩0 c⇩1 where c⇩0_def: "(c⇩0, c⇩1) = closest_pair_bf ?ps"
using prod.collapse by blast
define p⇩1 where p⇩1_def: "p⇩1 = find_closest_bf p⇩0 ?ps"
note defs = c⇩0_def p⇩1_def
have "c⇩0 ≠ c⇩1"
using "4.IH" "4.prems"(2) defs by simp
moreover have "p⇩0 ≠ p⇩1"
using find_closest_bf_set "4.prems"(2) defs
by (metis distinct.simps(2) length_pos_if_in_set list.set_intros(1))
ultimately show ?case
using "4.prems"(3) defs by (auto simp: Let_def split: prod.splits if_splits)
qed auto
lemmas closest_pair_bf_c0_c1 = closest_pair_bf_c0 closest_pair_bf_c1 closest_pair_bf_c0_ne_c1
lemma closest_pair_bf_dist:
assumes "1 < length ps" "(c⇩0, c⇩1) = closest_pair_bf ps"
shows "sparse (dist c⇩0 c⇩1) (set ps)"
using assms
proof (induction ps arbitrary: c⇩0 c⇩1 rule: closest_pair_bf.induct)
case (4 p⇩0 p⇩2 p⇩3 ps)
let ?ps = "p⇩2 # p⇩3 # ps"
obtain c⇩0 c⇩1 where c⇩0_def: "(c⇩0, c⇩1) = closest_pair_bf ?ps"
using prod.collapse by blast
define p⇩1 where p⇩1_def: "p⇩1 = find_closest_bf p⇩0 ?ps"
note defs = c⇩0_def p⇩1_def
hence IH: "sparse (dist c⇩0 c⇩1) (set ?ps)"
using 4 c⇩0_def by simp
have *: "∀p ∈ set ?ps. (dist p⇩0 p⇩1) ≤ dist p⇩0 p"
using find_closest_bf_dist defs by blast
show ?case
proof (cases "dist c⇩0 c⇩1 ≤ dist p⇩0 p⇩1")
case True
hence "∀p ∈ set ?ps. dist c⇩0 c⇩1 ≤ dist p⇩0 p"
using * by auto
hence "sparse (dist c⇩0 c⇩1) (set (p⇩0 # ?ps))"
using sparse_identity IH by blast
thus ?thesis
using True "4.prems" defs by (auto split: prod.splits)
next
case False
hence "sparse (dist p⇩0 p⇩1) (set (p⇩0 # ?ps))"
using sparse_update[of "dist c⇩0 c⇩1" ?ps p⇩0 p⇩1] IH * defs by argo
thus ?thesis
using False "4.prems" defs by (auto split: prod.splits)
qed
qed (auto simp: dist_commute sparse_def)
subsubsection "Time Complexity Proof"
lemma time_find_closest_bf_tm:
"time (find_closest_bf_tm p ps) ≤ length ps + 1"
by (induction p ps rule: find_closest_bf_tm.induct) (auto simp: time_simps)
lemma time_closest_pair_bf_tm:
"time (closest_pair_bf_tm ps) ≤ length ps * length ps + 1"
proof (induction ps rule: closest_pair_bf_tm.induct)
case (4 p⇩0 p⇩2 p⇩3 ps)
let ?ps = "p⇩2 # p⇩3 # ps"
have "time (closest_pair_bf_tm (p⇩0 # ?ps)) = 1 + time (find_closest_bf_tm p⇩0 ?ps) + time (closest_pair_bf_tm ?ps)"
by (auto simp: time_simps split: prod.split)
also have "... ≤ 2 + length ?ps + time (closest_pair_bf_tm ?ps)"
using time_find_closest_bf_tm[of p⇩0 ?ps] by simp
also have "... ≤ 2 + length ?ps + length ?ps * length ?ps + 1"
using "4.IH" by simp
also have "... ≤ length (p⇩0 # ?ps) * length (p⇩0 # ?ps) + 1"
by auto
finally show ?case
by blast
qed (auto simp: time_simps)
subsubsection "Code Export"
fun find_closest_bf_code :: "point ⇒ point list ⇒ (int * point)" where
"find_closest_bf_code p [] = undefined"
| "find_closest_bf_code p [p⇩0] = (dist_code p p⇩0, p⇩0)"
| "find_closest_bf_code p (p⇩0 # ps) = (
let (δ⇩1, p⇩1) = find_closest_bf_code p ps in
let δ⇩0 = dist_code p p⇩0 in
if δ⇩0 < δ⇩1 then
(δ⇩0, p⇩0)
else
(δ⇩1, p⇩1)
)"
lemma find_closest_bf_code_dist_eq:
"0 < length ps ⟹ (δ, c) = find_closest_bf_code p ps ⟹ δ = dist_code p c"
by (induction p ps rule: find_closest_bf_code.induct)
(auto simp: Let_def split: prod.splits if_splits)
lemma find_closest_bf_code_eq:
"0 < length ps ⟹ c = find_closest_bf p ps ⟹ (δ', c') = find_closest_bf_code p ps ⟹ c = c'"
proof (induction p ps arbitrary: c δ' c' rule: find_closest_bf.induct)
case (3 p p⇩0 p⇩2 ps)
define δ⇩0 δ⇩0' where δ⇩0_def: "δ⇩0 = dist p p⇩0" "δ⇩0' = dist_code p p⇩0"
obtain δ⇩1 p⇩1 δ⇩1' p⇩1' where δ⇩1_def: "δ⇩1 = dist p p⇩1" "p⇩1 = find_closest_bf p (p⇩2 # ps)"
"(δ⇩1', p⇩1') = find_closest_bf_code p (p⇩2 # ps)"
using prod.collapse by blast+
note defs = δ⇩0_def δ⇩1_def
have *: "p⇩1 = p⇩1'"
using "3.IH" defs by simp
hence "δ⇩0 < δ⇩1 ⟷ δ⇩0' < δ⇩1'"
using find_closest_bf_code_dist_eq[of "p⇩2 # ps" δ⇩1' p⇩1' p]
dist_eq_dist_code_lt defs
by simp
thus ?case
using "3.prems"(2,3) * defs by (auto split: prod.splits)
qed auto
declare find_closest_bf_code.simps [simp del]
fun closest_pair_bf_code :: "point list ⇒ (int * point * point)" where
"closest_pair_bf_code [] = undefined"
| "closest_pair_bf_code [p⇩0] = undefined"
| "closest_pair_bf_code [p⇩0, p⇩1] = (dist_code p⇩0 p⇩1, p⇩0, p⇩1)"
| "closest_pair_bf_code (p⇩0 # ps) = (
let (δ⇩c, c⇩0, c⇩1) = closest_pair_bf_code ps in
let (δ⇩p, p⇩1) = find_closest_bf_code p⇩0 ps in
if δ⇩c ≤ δ⇩p then
(δ⇩c, c⇩0, c⇩1)
else
(δ⇩p, p⇩0, p⇩1)
)"
lemma closest_pair_bf_code_dist_eq:
"1 < length ps ⟹ (δ, c⇩0, c⇩1) = closest_pair_bf_code ps ⟹ δ = dist_code c⇩0 c⇩1"
proof (induction ps arbitrary: δ c⇩0 c⇩1 rule: closest_pair_bf_code.induct)
case (4 p⇩0 p⇩2 p⇩3 ps)
let ?ps = "p⇩2 # p⇩3 # ps"
obtain δ⇩c c⇩0 c⇩1 where δ⇩c_def: "(δ⇩c, c⇩0, c⇩1) = closest_pair_bf_code ?ps"
by (metis prod_cases3)
obtain δ⇩p p⇩1 where δ⇩p_def: "(δ⇩p, p⇩1) = find_closest_bf_code p⇩0 ?ps"
using prod.collapse by blast
note defs = δ⇩c_def δ⇩p_def
have "δ⇩c = dist_code c⇩0 c⇩1"
using "4.IH" defs by simp
moreover have "δ⇩p = dist_code p⇩0 p⇩1"
using find_closest_bf_code_dist_eq defs by blast
ultimately show ?case
using "4.prems"(2) defs by (auto split: prod.splits if_splits)
qed auto
lemma closest_pair_bf_code_eq:
assumes "1 < length ps"
assumes "(c⇩0, c⇩1) = closest_pair_bf ps" "(δ', c⇩0', c⇩1') = closest_pair_bf_code ps"
shows "c⇩0 = c⇩0' ∧ c⇩1 = c⇩1'"
using assms
proof (induction ps arbitrary: c⇩0 c⇩1 δ' c⇩0' c⇩1' rule: closest_pair_bf_code.induct)
case (4 p⇩0 p⇩2 p⇩3 ps)
let ?ps = "p⇩2 # p⇩3 # ps"
obtain c⇩0 c⇩1 δ⇩c' c⇩0' c⇩1' where δ⇩c_def: "(c⇩0, c⇩1) = closest_pair_bf ?ps"
"(δ⇩c', c⇩0', c⇩1') = closest_pair_bf_code ?ps"
by (metis prod_cases3)
obtain p⇩1 δ⇩p' p⇩1' where δ⇩p_def: "p⇩1 = find_closest_bf p⇩0 ?ps"
"(δ⇩p', p⇩1') = find_closest_bf_code p⇩0 ?ps"
using prod.collapse by blast
note defs = δ⇩c_def δ⇩p_def
have A: "c⇩0 = c⇩0' ∧ c⇩1 = c⇩1'"
using "4.IH" defs by simp
moreover have B: "p⇩1 = p⇩1'"
using find_closest_bf_code_eq defs by blast
moreover have "δ⇩c' = dist_code c⇩0' c⇩1'"
using defs closest_pair_bf_code_dist_eq[of ?ps] by simp
moreover have "δ⇩p' = dist_code p⇩0 p⇩1'"
using defs find_closest_bf_code_dist_eq by blast
ultimately have "dist c⇩0 c⇩1 ≤ dist p⇩0 p⇩1 ⟷ δ⇩c' ≤ δ⇩p'"
by (simp add: dist_eq_dist_code_le)
thus ?case
using "4.prems"(2,3) defs A B by (auto simp: Let_def split: prod.splits)
qed auto
subsection "Geometry"
subsubsection "Band Filter"
lemma set_band_filter_aux:
fixes δ :: real and ps :: "point list"
assumes "p⇩0 ∈ ps⇩L" "p⇩1 ∈ ps⇩R" "p⇩0 ≠ p⇩1" "dist p⇩0 p⇩1 < δ" "set ps = ps⇩L ∪ ps⇩R"
assumes "∀p ∈ ps⇩L. fst p ≤ l" "∀p ∈ ps⇩R. l ≤ fst p"
assumes "ps' = filter (λp. l - δ < fst p ∧ fst p < l + δ) ps"
shows "p⇩0 ∈ set ps' ∧ p⇩1 ∈ set ps'"
proof (rule ccontr)
assume "¬ (p⇩0 ∈ set ps' ∧ p⇩1 ∈ set ps')"
then consider (A) "p⇩0 ∉ set ps' ∧ p⇩1 ∉ set ps'"
| (B) "p⇩0 ∈ set ps' ∧ p⇩1 ∉ set ps'"
| (C) "p⇩0 ∉ set ps' ∧ p⇩1 ∈ set ps'"
by blast
thus False
proof cases
case A
hence "fst p⇩0 ≤ l - δ ∨ l + δ ≤ fst p⇩0" "fst p⇩1 ≤ l - δ ∨ l + δ ≤ fst p⇩1"
using assms(1,2,5,8) by auto
hence "fst p⇩0 ≤ l - δ" "l + δ ≤ fst p⇩1"
using assms(1,2,6,7) by force+
hence "δ ≤ dist (fst p⇩0) (fst p⇩1)"
using dist_real_def by simp
hence "δ ≤ dist p⇩0 p⇩1"
using dist_fst_le[of p⇩0 p⇩1] by (auto split: prod.splits)
then show ?thesis
using assms(4) by fastforce
next
case B
hence "fst p⇩1 ≤ l - δ ∨ l + δ ≤ fst p⇩1"
using assms(2,5,8) by auto
hence "l + δ ≤ fst p⇩1"
using assms(2,7) by auto
moreover have "fst p⇩0 ≤ l"
using assms(1,6) by simp
ultimately have "δ ≤ dist (fst p⇩0) (fst p⇩1)"
using dist_real_def by simp
hence "δ ≤ dist p⇩0 p⇩1"
using dist_fst_le[of p⇩0 p⇩1] less_le_trans by (auto split: prod.splits)
thus ?thesis
using assms(4) by simp
next
case C
hence "fst p⇩0 ≤ l - δ ∨ l + δ ≤ fst p⇩0"
using assms(1,2,5,8) by auto
hence "fst p⇩0 ≤ l - δ"
using assms(1,6) by auto
moreover have "l ≤ fst p⇩1"
using assms(2,7) by simp
ultimately have "δ ≤ dist (fst p⇩0) (fst p⇩1)"
using dist_real_def by simp
hence "δ ≤ dist p⇩0 p⇩1"
using dist_fst_le[of p⇩0 p⇩1] less_le_trans by (auto split: prod.splits)
thus ?thesis
using assms(4) by simp
qed
qed
lemma set_band_filter:
fixes δ :: real and ps :: "point list"
assumes "p⇩0 ∈ set ps" "p⇩1 ∈ set ps" "p⇩0 ≠ p⇩1" "dist p⇩0 p⇩1 < δ" "set ps = ps⇩L ∪ ps⇩R"
assumes "sparse δ ps⇩L" "sparse δ ps⇩R"
assumes "∀p ∈ ps⇩L. fst p ≤ l" "∀p ∈ ps⇩R. l ≤ fst p"
assumes "ps' = filter (λp. l - δ < fst p ∧ fst p < l + δ) ps"
shows "p⇩0 ∈ set ps' ∧ p⇩1 ∈ set ps'"
proof -
have "p⇩0 ∉ ps⇩L ∨ p⇩1 ∉ ps⇩L" "p⇩0 ∉ ps⇩R ∨ p⇩1 ∉ ps⇩R"
using assms(3,4,6,7) sparse_def by force+
then consider (A) "p⇩0 ∈ ps⇩L ∧ p⇩1 ∈ ps⇩R" | (B) "p⇩0 ∈ ps⇩R ∧ p⇩1 ∈ ps⇩L"
using assms(1,2,5) by auto
thus ?thesis
proof cases
case A
thus ?thesis
using set_band_filter_aux assms(3,4,5,8,9,10) by (auto split: prod.splits)
next
case B
moreover have "dist p⇩1 p⇩0 < δ"
using assms(4) dist_commute by metis
ultimately show ?thesis
using set_band_filter_aux assms(3)[symmetric] assms(5,8,9,10) by (auto split: prod.splits)
qed
qed
subsubsection "2D-Boxes and Points"
lemma cbox_2D:
fixes x⇩0 :: real and y⇩0 :: real
shows "cbox (x⇩0, y⇩0) (x⇩1, y⇩1) = { (x, y). x⇩0 ≤ x ∧ x ≤ x⇩1 ∧ y⇩0 ≤ y ∧ y ≤ y⇩1 }"
by fastforce
lemma mem_cbox_2D:
fixes x :: real and y :: real
shows "x⇩0 ≤ x ∧ x ≤ x⇩1 ∧ y⇩0 ≤ y ∧ y ≤ y⇩1 ⟷ (x, y) ∈ cbox (x⇩0, y⇩0) (x⇩1, y⇩1)"
by fastforce
lemma cbox_top_un:
fixes x⇩0 :: real and y⇩0 :: real
assumes "y⇩0 ≤ y⇩1" "y⇩1 ≤ y⇩2"
shows "cbox (x⇩0, y⇩0) (x⇩1, y⇩1) ∪ cbox (x⇩0, y⇩1) (x⇩1, y⇩2) = cbox (x⇩0, y⇩0) (x⇩1, y⇩2)"
using assms by auto
lemma cbox_right_un:
fixes x⇩0 :: real and y⇩0 :: real
assumes "x⇩0 ≤ x⇩1" "x⇩1 ≤ x⇩2"
shows "cbox (x⇩0, y⇩0) (x⇩1, y⇩1) ∪ cbox (x⇩1, y⇩0) (x⇩2, y⇩1) = cbox (x⇩0, y⇩0) (x⇩2, y⇩1)"
using assms by auto
lemma cbox_max_dist:
assumes "p⇩0 = (x, y)" "p⇩1 = (x + δ, y + δ)"
assumes "(x⇩0, y⇩0) ∈ cbox p⇩0 p⇩1" "(x⇩1, y⇩1) ∈ cbox p⇩0 p⇩1" "0 ≤ δ"
shows "dist (x⇩0, y⇩0) (x⇩1, y⇩1) ≤ sqrt 2 * δ"
proof -
have X: "dist x⇩0 x⇩1 ≤ δ"
using assms dist_real_def by auto
have Y: "dist y⇩0 y⇩1 ≤ δ"
using assms dist_real_def by auto
have "dist (x⇩0, y⇩0) (x⇩1, y⇩1) = sqrt ((dist x⇩0 x⇩1)⇧2 + (dist y⇩0 y⇩1)⇧2)"
using dist_Pair_Pair by auto
also have "... ≤ sqrt (δ⇧2 + (dist y⇩0 y⇩1)⇧2)"
using X power_mono by fastforce
also have "... ≤ sqrt (δ⇧2 + δ⇧2)"
using Y power_mono by fastforce
also have "... = sqrt 2 * sqrt (δ⇧2)"
using real_sqrt_mult by simp
also have "... = sqrt 2 * δ"
using assms(5) by simp
finally show ?thesis .
qed
subsubsection "Pigeonhole Argument"
lemma card_le_1_if_pairwise_eq:
assumes "∀x ∈ S. ∀y ∈ S. x = y"
shows "card S ≤ 1"
proof (rule ccontr)
assume "¬ card S ≤ 1"
hence "2 ≤ card S"
by simp
then obtain T where *: "T ⊆ S ∧ card T = 2"
using ex_card by metis
then obtain x y where "x ∈ T ∧ y ∈ T ∧ x ≠ y"
by (meson card_2_iff')
then show False
using * assms by blast
qed
lemma card_Int_if_either_in:
assumes "∀x ∈ S. ∀y ∈ S. x = y ∨ x ∉ T ∨ y ∉ T"
shows "card (S ∩ T) ≤ 1"
proof (rule ccontr)
assume "¬ (card (S ∩ T) ≤ 1)"
then obtain x y where *: "x ∈ S ∩ T ∧ y ∈ S ∩ T ∧ x ≠ y"
by (meson card_le_1_if_pairwise_eq)
hence "x ∈ T" "y ∈ T"
by simp_all
moreover have "x ∉ T ∨ y ∉ T"
using assms * by auto
ultimately show False
by blast
qed
lemma card_Int_Un_le_Sum_card_Int:
assumes "finite S"
shows "card (A ∩ ⋃S) ≤ (∑B ∈ S. card (A ∩ B))"
using assms
proof (induction "card S" arbitrary: S)
case (Suc n)
then obtain B T where *: "S = { B } ∪ T" "card T = n" "B ∉ T"
by (metis card_Suc_eq Suc_eq_plus1 insert_is_Un)
hence "card (A ∩ ⋃S) = card (A ∩ ⋃({ B } ∪ T))"
by blast
also have "... ≤ card (A ∩ B) + card (A ∩ ⋃T)"
by (simp add: card_Un_le inf_sup_distrib1)
also have "... ≤ card (A ∩ B) + (∑B ∈ T. card (A ∩ B))"
using Suc * by simp
also have "... ≤ (∑B ∈ S. card (A ∩ B))"
using Suc.prems * by simp
finally show ?case .
qed simp
lemma pigeonhole:
assumes "finite T" "S ⊆ ⋃T" "card T < card S"
shows "∃x ∈ S. ∃y ∈ S. ∃X ∈ T. x ≠ y ∧ x ∈ X ∧ y ∈ X"
proof (rule ccontr)
assume "¬ (∃x ∈ S. ∃y ∈ S. ∃X ∈ T. x ≠ y ∧ x ∈ X ∧ y ∈ X)"
hence *: "∀X ∈ T. card (S ∩ X) ≤ 1"
using card_Int_if_either_in by metis
have "card T < card (S ∩ ⋃T)"
using Int_absorb2 assms by fastforce
also have "... ≤ (∑X ∈ T. card (S ∩ X))"
using assms(1) card_Int_Un_le_Sum_card_Int by blast
also have "... ≤ card T"
using * sum_mono by fastforce
finally show False by simp
qed
subsubsection "Delta Sparse Points within a Square"
lemma max_points_square:
assumes "∀p ∈ ps. p ∈ cbox (x, y) (x + δ, y + δ)" "sparse δ ps" "0 ≤ δ"
shows "card ps ≤ 4"
proof (cases "δ = 0")
case True
hence "{ (x, y) } = cbox (x, y) (x + δ, y + δ)"
using cbox_def by simp
hence "∀p ∈ ps. p = (x, y)"
using assms(1) by blast
hence "∀p ∈ ps. ∀q ∈ ps. p = q"
apply (auto split: prod.splits) by (metis of_int_eq_iff)+
thus ?thesis
using card_le_1_if_pairwise_eq by force
next
case False
hence δ: "0 < δ"
using assms(3) by simp
show ?thesis
proof (rule ccontr)
assume A: "¬ (card ps ≤ 4)"
define PS where PS_def: "PS = (λ(x, y). (real_of_int x, real_of_int y)) ` ps"
have "inj_on (λ(x, y). (real_of_int x, real_of_int y)) ps"
using inj_on_def by fastforce
hence *: "¬ (card PS ≤ 4)"
using A PS_def by (simp add: card_image)
let ?x' = "x + δ / 2"
let ?y' = "y + δ / 2"
let ?ll = "cbox ( x , y ) (?x' , ?y' )"
let ?lu = "cbox ( x , ?y') (?x' , y + δ)"
let ?rl = "cbox (?x', y ) ( x + δ, ?y' )"
let ?ru = "cbox (?x', ?y') ( x + δ, y + δ)"
let ?sq = "{ ?ll, ?lu, ?rl, ?ru }"
have card_le_4: "card ?sq ≤ 4"
by (simp add: card_insert_le_m1)
have "cbox (x, y) (?x', y + δ) = ?ll ∪ ?lu"
using cbox_top_un assms(3) by auto
moreover have "cbox (?x', y) (x + δ, y + δ) = ?rl ∪ ?ru"
using cbox_top_un assms(3) by auto
moreover have "cbox (x, y) (?x', y + δ) ∪ cbox (?x', y) (x + δ, y + δ) = cbox (x, y) (x + δ, y + δ)"
using cbox_right_un assms(3) by simp
ultimately have "?ll ∪ ?lu ∪ ?rl ∪ ?ru = cbox (x, y) (x + δ, y + δ)"
by blast
hence "PS ⊆ ⋃(?sq)"
using assms(1) PS_def by (auto split: prod.splits)
moreover have "card ?sq < card PS"
using * card_insert_le_m1 card_le_4 by linarith
moreover have "finite ?sq"
by simp
ultimately have "∃p⇩0 ∈ PS. ∃p⇩1 ∈ PS. ∃S ∈ ?sq. (p⇩0 ≠ p⇩1 ∧ p⇩0 ∈ S ∧ p⇩1 ∈ S)"
using pigeonhole[of ?sq PS] by blast
then obtain S p⇩0 p⇩1 where #: "p⇩0 ∈ PS" "p⇩1 ∈ PS" "S ∈ ?sq" "p⇩0 ≠ p⇩1" "p⇩0 ∈ S" "p⇩1 ∈ S"
by blast
have D: "0 ≤ δ / 2"
using assms(3) by simp
have LL: "∀p⇩0 ∈ ?ll. ∀p⇩1 ∈ ?ll. dist p⇩0 p⇩1 ≤ sqrt 2 * (δ / 2)"
using cbox_max_dist[of "(x, y)" x y "(?x', ?y')" "δ / 2"] D by auto
have LU: "∀p⇩0 ∈ ?lu. ∀p⇩1 ∈ ?lu. dist p⇩0 p⇩1 ≤ sqrt 2 * (δ / 2)"
using cbox_max_dist[of "(x, ?y')" x ?y' "(?x', y + δ)" "δ / 2"] D by auto
have RL: "∀p⇩0 ∈ ?rl. ∀p⇩1 ∈ ?rl. dist p⇩0 p⇩1 ≤ sqrt 2 * (δ / 2)"
using cbox_max_dist[of "(?x', y)" ?x' y "(x + δ, ?y')" "δ / 2"] D by auto
have RU: "∀p⇩0 ∈ ?ru. ∀p⇩1 ∈ ?ru. dist p⇩0 p⇩1 ≤ sqrt 2 * (δ / 2)"
using cbox_max_dist[of "(?x', ?y')" ?x' ?y' "(x + δ, y + δ)" "δ / 2"] D by auto
have "∀p⇩0 ∈ S. ∀p⇩1 ∈ S. dist p⇩0 p⇩1 ≤ sqrt 2 * (δ / 2)"
using # LL LU RL RU by blast
hence "dist p⇩0 p⇩1 ≤ (sqrt 2 / 2) * δ"
using # by simp
moreover have "(sqrt 2 / 2) * δ < δ"
using sqrt2_less_2 δ by simp
ultimately have "dist p⇩0 p⇩1 < δ"
by simp
moreover have "δ ≤ dist p⇩0 p⇩1"
using assms(2) # sparse_def PS_def by auto
ultimately show False
by simp
qed
qed
end