Theory Virtual_Substitution.EqualityVS
subsection "Overall Equality VS Proofs"
theory EqualityVS
imports EliminateVariable LuckyFind
begin
lemma degree_find_eq :
assumes "find_eq var L = (A,L')"
shows "∀p∈set(A). MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2" using assms(1)
proof(induction L arbitrary: A L')
case Nil
then show ?case by auto
next
case (Cons a L)
then show ?case proof(cases a)
case (Less p)
{fix A' L'
assume h : "find_eq var L = (A', L')"
have "A=A'"
using Less Cons h by(simp)
then have "∀p∈set A. MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using Cons h by auto
}
then show ?thesis by (meson surj_pair)
next
case (Eq p)
then show ?thesis proof(cases "MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2")
case True
{fix A' L'
assume h : "find_eq var L = (A', L')"
have "A= (p#A')"
using Eq Cons h True by auto
then have "∀p∈set A. MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using Cons h True by auto
}
then show ?thesis by (meson surj_pair)
next
case False
{fix A' L'
assume h : "find_eq var L = (A', L')"
have "A=A'"
using Eq Cons h False
by (smt One_nat_def case_prod_conv find_eq.simps(3) less_2_cases less_SucE numeral_2_eq_2 numeral_3_eq_3 prod.sel(1))
then have "∀p∈set A. MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using Cons h by auto
}
then show ?thesis by (meson surj_pair)
qed
next
case (Leq p)
{fix A' L'
assume h : "find_eq var L = (A', L')"
have "A=A'"
using Leq Cons h by(simp)
then have "∀p∈set A. MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using Cons h by auto
}
then show ?thesis by (meson surj_pair)
next
case (Neq p)
{fix A' L'
assume h : "find_eq var L = (A', L')"
have "A=A'"
using Neq Cons h by(simp)
then have "∀p∈set A. MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using Cons h by auto
}
then show ?thesis by (meson surj_pair)
qed
qed
lemma list_in_find_eq :
assumes "find_eq var L = (A,L')"
shows "set(map Eq A @ L') = set L"using assms(1)
proof(induction L arbitrary: A L')
case Nil
then show ?case by auto
next
case (Cons a L)
then show ?case proof(cases a)
case (Less p)
{fix A' L''
assume h : "find_eq var L = (A', L'')"
have A : "A=A'"
using Less Cons h by(simp)
have L : "L'=Less p # L''"
using Less Cons h by simp
have "set (map Eq A @ L') = set (a # L)"
apply(simp add: A L Less) using Cons(1)[OF h] by auto
}
then show ?thesis by (meson surj_pair)
next
case (Eq p)
then show ?thesis proof(cases "MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2")
case True
{fix A' L''
assume h : "find_eq var L = (A', L'')"
have A : "A=(p#A')"
using Eq Cons h True by auto
have L : "L'= L''"
using Eq Cons h True by auto
have "set (map Eq A @ L') = set (a # L)"
apply(simp add: A L Eq) using Cons(1)[OF h] by auto
}
then show ?thesis by (meson surj_pair)
next
case False
{fix A' L''
assume h : "find_eq var L = (A', L'')"
have A : "A=A'"
using Eq Cons h False
by (smt case_prod_conv degree_find_eq find_eq.simps(3) list.set_intros(1) prod.sel(1))
have L : "L'=Eq p # L''"
using Eq Cons h
by (smt A case_prod_conv find_eq.simps(3) not_Cons_self2 prod.sel(1) prod.sel(2))
have "set (map Eq A @ L') = set (a # L)"
apply(simp add: A L Eq) using Cons(1)[OF h] by auto
}
then show ?thesis by (meson surj_pair)
qed
next
case (Leq p)
{fix A' L''
assume h : "find_eq var L = (A', L'')"
have A : "A=A'"
using Leq Cons h by(simp)
have L : "L'=Leq p # L''"
using Leq Cons h by simp
have "set (map Eq A @ L') = set (a # L)"
apply(simp add: A L Leq) using Cons(1)[OF h] by auto
}
then show ?thesis by (meson surj_pair)
next
case (Neq p)
{fix A' L''
assume h : "find_eq var L = (A', L'')"
have A : "A=A'"
using Neq Cons h by(simp)
have L : "L'=Neq p # L''"
using Neq Cons h by simp
have "set (map Eq A @ L') = set (a # L)"
apply(simp add: A L Neq) using Cons(1)[OF h] by auto
}
then show ?thesis by (meson surj_pair)
qed
qed
lemma qe_eq_one_eval :
assumes hlength : "length xs = var"
shows "(∃x. (eval (list_conj ((map Atom L) @ F)) (xs @ (x#Γ)))) = (∃x.(eval (qe_eq_one var L F) (xs @ (x#Γ))))"
proof(cases "find_eq var L")
case (Pair A L')
then show ?thesis proof(cases A)
case Nil
show ?thesis proof safe
fix x
assume h : "eval (list_conj (map fm.Atom L @ F)) (xs @ x # Γ)"
show "∃x. eval (qe_eq_one var L F) (xs @ x # Γ)" apply(simp) using Nil Pair h by auto
next
fix x
assume h : "eval (qe_eq_one var L F) (xs @ x # Γ)"
show "∃x. eval (list_conj (map fm.Atom L @ F)) (xs @ x # Γ)"
apply(rule exI[where x="x"]) using Nil Pair h by auto
qed
next
case (Cons p A')
have "set(map Eq (p # A') @ L') = set L"
using list_in_find_eq[OF Pair] Cons by auto
then have in_p: "Eq p ∈ set (L)"
by auto
have "p∈(set A)" using Cons by auto
then have low_pow : "MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using degree_find_eq[OF Pair] by auto
have "(∃x.(eval (qe_eq_one var L F) (xs @ (x#Γ)))) =
(∃x.(eval (Or (And (Neg (split_p var p))
((elimVar var L F) (Eq p))
)
(And (split_p var p)
(list_conj (map Atom ((map Eq A') @ L') @ F))
)) (xs @ (x#Γ))))"
apply(rule ex_cong1) apply(simp only: qe_eq_one.simps) using Pair Cons by auto
also have "... = (∃x. ((¬eval (split_p var p) (xs @ x # Γ)) ∧ eval (elimVar var L F (Eq p)) (xs @ x # Γ)) ∨
eval (split_p var p) (xs @ x # Γ) ∧
(∀f∈set (map fm.Atom (map Eq A' @ L') @ F). eval f (xs @ x # Γ)))"
by(simp add: eval_list_conj)
also have "... = (∃x. eval (list_conj (map fm.Atom L @ F)) (xs @ x # Γ))"
proof(cases "∀x. insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 2) ≠ 0 ∨
insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 1) ≠ 0 ∨
insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 0) ≠ 0")
case True
have "(∃x. ((¬eval (split_p var p) (xs @ x # Γ)) ∧ eval (elimVar var L F (Eq p)) (xs @ x # Γ)) ∨
eval (split_p var p) (xs @ x # Γ) ∧
(∀f∈set (map fm.Atom (map Eq A' @ L') @ F). eval f (xs @ x # Γ))) =
(∃x. eval (elimVar var L F (Eq p)) (xs @ x # Γ))"
proof safe
fix x
assume "eval (elimVar var L F (Eq p)) (xs @ x # Γ)"
then show "∃x. eval (elimVar var L F (Eq p)) (xs @ x # Γ)" by auto
next
fix x
assume h : "eval (split_p var p) (xs @ x # Γ)"
have "¬ eval (split_p var p) (xs @ x # Γ)"
using True by simp
then show "∃x. eval (elimVar var L F (Eq p)) (xs @ x # Γ)" using h by simp
next
fix x
assume "eval (elimVar var L F (Eq p)) (xs @ x # Γ)"
then show "∃x. ¬ eval (split_p var p) (xs @ x # Γ) ∧ eval (elimVar var L F (Eq p)) (xs @ x # Γ) ∨
eval (split_p var p) (xs @ x # Γ) ∧
(∀f∈set (map fm.Atom (map Eq A' @ L') @ F). eval f (xs @ x # Γ))"
by auto
qed
then show ?thesis using elimVar_eq_2[OF hlength in_p low_pow True] by simp
next
case False
have h1: "∀x. eval (split_p var p) (xs @ x # Γ)"
using False apply(simp) using not_in_isovarspar
by (metis hlength insertion_lowerPoly1)
have "set(map Eq (p # A') @ L') = set L"
using list_in_find_eq[OF Pair] Cons by auto
then have h5 : "set(map fm.Atom (map Eq (p # A') @ L') @ F) = set(map fm.Atom L @ F)"
by auto
have h4 : "(∃x. (aEval (Eq p) (xs @ x # Γ)) ∧
(∀f∈set (map fm.Atom (map Eq A' @ L') @ F). eval f (xs @ x # Γ))) =
(∃x.(∀f∈set (map fm.Atom (map Eq (p#A') @ L') @ F). eval f (xs @ x # Γ)))"
by(simp)
have h2 : "(∃x. eval (list_conj (map fm.Atom L @ F)) (xs @ x # Γ)) = (∃x. (aEval (Eq p) (xs @ x # Γ)) ∧
(∀f∈set (map fm.Atom (map Eq A' @ L') @ F). eval f (xs @ x # Γ)))"
by(simp only: h4 h5 eval_list_conj)
have h3 : "∀x. (aEval (Eq p) (xs @ x # Γ))"
proof-
define A where "A = (isolate_variable_sparse p var 2)"
define B where "B = (isolate_variable_sparse p var 1)"
define C where "C = (isolate_variable_sparse p var 0)"
have freeA : "var ∉ vars A"
unfolding A_def
by (simp add: not_in_isovarspar)
have freeB : "var ∉ vars B"
unfolding B_def
by (simp add: not_in_isovarspar)
have freeC : "var ∉ vars C"
unfolding C_def
by (simp add: not_in_isovarspar)
have express_p : "p = A*(Var var)^2+B*(Var var)+C"
using express_poly[OF low_pow] unfolding A_def B_def C_def
by fastforce
have xlength : "∀x. (insertion (nth_default 0 (xs @ x # Γ)) (Var var))= x"
using hlength insertion_var
by (metis add.commute add_strict_increasing length_append length_greater_0_conv list.distinct(1) list_update_id nth_append_length order_refl)
fix x
define c where "c i = (insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var i))" for i
have c2 : "∀x. insertion (nth_default 0 (xs @ x # Γ)) A = c 2"
using freeA apply(simp add: A_def c_def)
by (simp add: hlength insertion_lowerPoly1)
have c1 : "∀x. insertion (nth_default 0 (xs @ x # Γ)) B = c 1"
using freeB apply(simp add: B_def c_def)
by (simp add: hlength insertion_lowerPoly1)
have c0 : "∀x. insertion (nth_default 0 (xs @ x # Γ)) C = c 0"
using freeC apply(simp add: C_def c_def)
by (simp add: hlength insertion_lowerPoly1)
have sum : "∀x. c 2 * x⇧2 + c (Suc 0) * x + c 0 = (∑i≤2. c i * x ^ i)"
by (simp add: numerals(2))
show ?thesis unfolding express_p apply(simp add:insertion_add insertion_mult insertion_pow xlength)
apply(simp add:c2 c1 c0 sum polyfun_eq_0[where c="c", where n="2"])
using False apply(simp)
by (metis A_def B_def C_def One_nat_def c0 c1 c2 le_SucE le_zero_eq numeral_2_eq_2)
qed
show ?thesis apply(simp only: h1 h2) using h3 by(simp)
qed
finally show ?thesis by auto
qed
qed
lemma qe_eq_repeat_helper_eval_case1 :
assumes hlength : "length xs = var"
assumes degreeGood : "∀p∈set(A). MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
shows "((eval (list_conj ((map (Atom o Eq) A) @ (map Atom L) @ F)) (xs @ (x#Γ))))
⟹ (eval (qe_eq_repeat_helper var A L F) (xs @ x # Γ))"
proof(induction A rule : in_list_induct)
case Nil
then show ?case by auto
next
case (Cons p A')
assume assm : "((eval (list_conj ((map (Atom o Eq) (p#A')) @ (map Atom L) @ F)) (xs @ (x#Γ)))) "
then have h : "insertion (nth_default 0 (xs @ x # Γ)) p = 0 ∧ (eval (qe_eq_repeat_helper var A' L F) (xs @ x # Γ))"
using Cons by(simp add: eval_list_conj)
have "¬ eval (split_p var p) (xs @ x # Γ) ∧ eval (elimVar var ((map Eq (p# A')) @ L) F (Eq p)) (xs @ x # Γ) ∨
eval (split_p var p) (xs @ x # Γ) ∧ eval (qe_eq_repeat_helper var A' L F) (xs @ x # Γ)"
proof(cases "eval (split_p var p) (xs @ x # Γ)")
case True
then show ?thesis using h by blast
next
case False
have all0 : " ∀x. insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 2) ≠ 0 ∨
insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 1) ≠ 0 ∨
insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 0) ≠ 0"
using False apply(simp) using not_in_isovarspar
by (metis hlength insertion_lowerPoly1)
have in_p : "Eq p∈set((map Eq (p # A') @ L))"
by auto
have "p∈(set A)" using Cons by auto
then have low_pow : "MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using degreeGood by auto
have list_manipulate : "map fm.Atom (map Eq (p # A') @ L) = map (fm.Atom ∘ Eq) (p # A') @ map fm.Atom L"
by(simp)
have "eval (elimVar var ((map Eq (p# A')) @ L) F (Eq p)) (xs @ x # Γ)"
using elimVar_eq_2[OF hlength in_p low_pow all0, where F="F"] apply(simp only: list_manipulate)
using assm freeIn_elimVar_eq[where var="var", where L="(map Eq (p # A') @ L)", where F="F", where p="p"]
by (metis append.assoc hlength list_update_length var_not_in_eval)
then show ?thesis apply(simp only: False) by blast
qed
then show ?case by(simp only: qe_eq_repeat_helper.simps eval.simps)
qed
lemma qe_eq_repeat_helper_eval_case2 :
assumes hlength : "length xs = var"
assumes degreeGood : "∀p∈set(A). MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
shows "(eval (qe_eq_repeat_helper var A L F) (xs @ x # Γ))
⟹ ∃x. ((eval (list_conj ((map (Atom o Eq) A) @ (map Atom L) @ F)) (xs @ (x#Γ))))"
proof(induction A rule : in_list_induct)
case Nil
then show ?case apply(simp) apply(rule exI[where x=x]) by simp
next
case (Cons p A')
have h : "¬ eval (split_p var p) (xs @ x # Γ) ∧ eval (elimVar var ((map Eq (p# A')) @ L) F (Eq p)) (xs @ x # Γ) ∨
eval (split_p var p) (xs @ x # Γ) ∧ eval (qe_eq_repeat_helper var A' L F) (xs @ x # Γ)"
using Cons by(simp only:qe_eq_repeat_helper.simps eval.simps)
have "p∈set(A)" using Cons(1) .
then have degp : "MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using degreeGood by auto
show ?case proof(cases "eval (split_p var p) (xs @ x # Γ)")
case True
have "∃x. eval (list_conj (map (fm.Atom ∘ Eq) A' @ map fm.Atom L @ F)) (xs @ x # Γ)"
using h True Cons by blast
then obtain x where x_def : "eval (list_conj (map (fm.Atom ∘ Eq) A' @ map fm.Atom L @ F)) (xs @ x # Γ)" by metis
define A where "A = (isolate_variable_sparse p var 2)"
define B where "B = (isolate_variable_sparse p var 1)"
define C where "C = (isolate_variable_sparse p var 0)"
have express_p : "p = A * Var var ^2+B * Var var+C"
proof(cases "MPoly_Type.degree p var = 1")
case True
have a0 : "A = 0" apply(simp add: A_def) using True
by (simp add: isovar_greater_degree)
show ?thesis using sum_over_zero[where mp="p", where x="var"] apply(subst (asm) True) by(simp add:a0 B_def C_def add.commute)
next
case False
then have deg : "MPoly_Type.degree p var = 2" using degp by blast
have flip : "A * (Var var)⇧2 + B * Var var + C = C + B * Var var + A * (Var var)^2" using add.commute by auto
show ?thesis using sum_over_zero[where mp="p", where x="var"] apply(subst (asm) deg) apply(simp add: flip) apply(simp add: A_def B_def C_def)
by (simp add: numeral_2_eq_2)
qed
have insert_x : "insertion (nth_default 0 (xs @ x # Γ)) (Var var) = x" using hlength
by (metis add.commute add_strict_increasing insertion_var length_append length_greater_0_conv list.distinct(1) list_update_id nth_append_length order_refl)
have h : "(aEval (Eq p) (xs @ x # Γ))"
proof-
have freeA : "var ∉ vars A"
unfolding A_def
by (simp add: not_in_isovarspar)
have freeB : "var ∉ vars B"
unfolding B_def
by (simp add: not_in_isovarspar)
have freeC : "var ∉ vars C"
unfolding C_def
by (simp add: not_in_isovarspar)
have xlength : "(insertion (nth_default 0 (xs @ x # Γ)) (Var var))= x"
using hlength insertion_var
using insert_x by blast
define c where "c i = (insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var i))" for i
have c2 : "∀x. insertion (nth_default 0 (xs @ x # Γ)) A = c 2"
using freeA apply(simp add: A_def c_def)
by (simp add: hlength insertion_lowerPoly1)
have c1 : "∀x. insertion (nth_default 0 (xs @ x # Γ)) B = c 1"
using freeB apply(simp add: B_def c_def)
by (simp add: hlength insertion_lowerPoly1)
have c0 : "∀x. insertion (nth_default 0 (xs @ x # Γ)) C = c 0"
using freeC apply(simp add: C_def c_def)
by (simp add: hlength insertion_lowerPoly1)
have sum : "c 2 * x⇧2 + c (Suc 0) * x + c 0 = (∑i≤2. c i * x ^ i)"
by (simp add: numerals(2))
show ?thesis apply(subst express_p) apply(simp add:insertion_add insertion_mult insertion_pow xlength)
apply(simp add:c2 c1 c0 sum polyfun_eq_0[where c="c", where n="2"])
using True apply(simp) using le_SucE numeral_2_eq_2
by (metis (no_types) A_def B_def C_def One_nat_def add.left_neutral c0 c1 c2 mult_zero_class.mult_zero_left sum)
qed
show ?thesis apply(rule exI[where x=x]) using x_def h apply(simp only:eval_list_conj) by(simp)
next
case False
have all0 : " ∀x. insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 2) ≠ 0 ∨
insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 1) ≠ 0 ∨
insertion (nth_default 0 (xs @ x # Γ)) (isolate_variable_sparse p var 0) ≠ 0"
using False apply(simp) using not_in_isovarspar
by (metis hlength insertion_lowerPoly1)
have h : "eval (elimVar var ((map Eq (p# A')) @ L) F (Eq p)) (xs @ x # Γ)"
using False h by blast
have in_list : "Eq p ∈ set (((map Eq (p# A')) @ L))"
by(simp)
show ?thesis using elimVar_eq_2[OF hlength in_list, where F="F", OF degp all0] h
by (metis append_assoc map_append map_map)
qed
qed
lemma qe_eq_repeat_eval :
assumes hlength : "length xs = var"
shows "(∃x. (eval (list_conj ((map Atom L) @ F)) (xs @ (x#Γ)))) = (∃x.(eval (qe_eq_repeat var L F) (xs @ (x#Γ))))"
proof(cases "luckyFind var L F")
case None
then show ?thesis proof(cases "find_eq var L")
case (Pair A L')
have degGood : "∀p∈set A. MPoly_Type.degree p var = 1 ∨ MPoly_Type.degree p var = 2"
using degree_find_eq[OF Pair] .
have "(∃x. eval (qe_eq_repeat var L F) (xs @ x # Γ)) =(∃x. eval
(qe_eq_repeat_helper var A L' F)
(xs @ x # Γ))"
using Pair None by auto
also have "...
= (∃x. ((eval (list_conj ((map (Atom o Eq) A) @ (map Atom L') @ F)) (xs @ (x#Γ)))))"
using qe_eq_repeat_helper_eval_case1[OF hlength degGood, where L="L'", where F="F", where Γ="Γ"]
qe_eq_repeat_helper_eval_case2[OF hlength degGood, where L="L'", where F="F", where Γ="Γ"]
by blast
also have "... = (∃x. (eval (list_conj ((map Atom L) @ F)) (xs @ (x#Γ))))"
proof-
have list_manipulate : "map (fm.Atom ∘ Eq) A @ map fm.Atom L' = map fm.Atom (map Eq A @ L')"
by simp
have changeA : "map (fm.Atom ∘ Eq) A = map Atom (map Eq A)" by auto
have split : "(∃x. ∀f∈set ((map (fm.Atom ∘ Eq) A) @
(map fm.Atom L') @ F).
eval f (xs @ x # Γ)) = (∃x. ∀f∈ (Atom ` set ((map (Eq) A) @ L')) ∪ set(F).
eval f (xs @ x # Γ))"
apply (rule ex_cong1)
apply(subst changeA)
by auto
show ?thesis apply(simp only: eval_list_conj split list_in_find_eq[OF Pair]) by auto
qed
finally have ?thesis by simp
then show ?thesis by auto
qed
next
case (Some a)
then show ?thesis using luckyFind_eval[OF Some assms(1)] by auto
qed
end